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Abstract: This paper introduces logistic regression with sparse and smooth regulariza-
tions (LR-SS), a novel framework that simultaneously enhances both classification and
feature extraction capabilities of standard logistic regression. By incorporating a family
of symmetric smoothness constraints into sparse logistic regression, LR-SS uniquely pre-
serves underlying structures inherent in structured data, distinguishing it from existing
approaches. Within the minorization–maximization (MM) framework, we develop an
efficient optimization algorithm that combines coordinate descent with soft-thresholding
techniques. Through extensive experiments on both simulated and real-world datasets,
including time series and image data, we demonstrate that LR-SS significantly outper-
forms conventional sparse logistic regression in classification tasks while providing more
interpretable feature extraction. The results highlight LR-SS’s ability to leverage sparse
and symmetric smooth regularizations for capturing intrinsic data structures, making it
particularly valuable for machine learning applications requiring both predictive accuracy
and model interpretability.

Keywords: logistic regression; classification; feature extraction; sparse regularization;
symmetric smooth regularization; minorization–maximization

1. Introduction
Logistic regression (LR) [1] has long been a cornerstone in binary classification tasks

across various domains. Its versatility is evident in its wide-ranging applications, from
predicting disease risks and patient mortality rates in medicine [2–4] to forecasting voting
behaviors in political science [5], assessing system failures in engineering [6], and identi-
fying key indicators for successful foreign direct investment in finance [7]. The extension
of logistic regression to sequential data through conditional random fields (CRFs) [8] has
further broadened its utility, particularly in natural language processing.

A key advancement in logistic regression has been the development of sparse logistic
regression (SLR), which performs feature selection by enforcing sparsity in model coeffi-
cients through L1-norm (lasso) or other non-convex regularizations [9,10]. This approach
selects only the most relevant features, making the model more interpretable and resistant
to overfitting, which is particularly valuable in high-dimensional settings where predictors
outnumber observations [11]. The effectiveness of SLR has been demonstrated across
diverse domains, including bioinformatics [12,13] and neuroimaging [14,15], where both
feature selection and model interpretability are crucial.
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However, traditional sparse logistic regression has a significant limitation: it fails to
leverage inherent structural relationships between predictors, particularly in datasets with
temporal or spatial dependencies. For example, in EEG-based motor imagery classification,
SLR produces predictive maps with discretely activated channels on the scalp [14]. Similarly,
in fMRI-based functional task classification, the predictive maps reveal distinct activation
regions within brain space [15]. This discrete nature of activation patterns fails to capture
the smooth spatial relationships that naturally exist in various datasets.

When predictors exhibit natural ordering or grouping structures, such as in time series
biomarkers or spatially distributed signals, incorporating smoothness constraints alongside
sparsity can better capture underlying patterns [16,17]. For instance, in medical diagnostics,
biomarkers typically show gradual changes over time or space, making smooth variations
in model coefficients essential for both prediction accuracy and result interpretability [16].
Moreover, smooth models often demonstrate superior stability and convergence properties.
Algorithms designed for smooth approximations of non-differentiable penalties achieve
faster convergence and computational efficiency, as evidenced in methods like Lassplore
and adaptive line search schemes [18]. The addition of smoothness constraints also en-
hances model robustness to noise, as demonstrated in applications such as Raman spectral
data analysis [17].

Given the compelling advantages of smooth models, researchers have developed nu-
merous methods that combine smooth constraints with sparse regularizations, particularly
in brain decoding applications. For instance, Grosenick et al. [19] constructed smooth
regularizations based on GraphNet, and de Brecht et al. [20] developed smooth sparse
logistic regression (SSLR) by introducing a smooth regularization using the inverse of the
adjacency matrix. Building upon these approaches, Watanabe et al. [21] integrated the 6-D
structure of the functional connectome into either fused lasso (FL) or GraphNet regular-
izations. Zhang et al. [22] introduced Euler elastica (EE) regularized logistic regression
that overcame the limitation of total variation (TV) regularization that favored piece-wise
constant rather than piece-wise smooth images. Additionally, Wen et al. [23] designed
regularizations with the group sparse property based on prior structural or functional
segmented brain atlases. These approaches aim to fully leverage the classification-relevant
information from raw data while ensuring that the extracted features adequately reflect the
temporal and spatial structures inherent in the original data.

A fundamental characteristic of these regularization approaches is their inherent sym-
metry. The smooth regularization matrices employed in these methods are predominantly
symmetric, a property that reflects the natural reciprocity in spatial and temporal feature
relationships. For instance, in spatiotemporal modeling [16,17], adjacent areas demonstrate
reciprocal dependencies, while in neuroimaging applications [19,20], neural pathways
typically exhibit mutual influences between regions. The symmetric structure of these
regularization matrices thus provides both mathematical rigor and physical interpretabil-
ity, making them particularly effective for applications where feature relationships are
inherently bidirectional.

Building upon previous research, this paper introduces a family of symmetric smooth
matrices into traditional sparse logistic regression, leading to a logistic regression with
sparse and smooth regularizations (LR-SS) framework. Compared to existing models,
the proposed framework offers greater flexibility in characterizing spatial or temporal
structures by considering the relationships between both adjacent and non-adjacent features,
thereby enabling more comprehensive utilization of structural information. Furthermore,
by adjusting the parameters of the symmetric smooth matrices, our model can naturally
reduce to several existing models as special cases.
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This paper makes three key contributions: (1) We propose a novel LR-SS framework
that leverages symmetric smooth matrices to generalize existing algorithms, including
LR with GraphNet regularization and SSLR, with these algorithms emerging as special
cases through parameter adjustment. (2) We develop an efficient vectorized iterative
solution within the minorization–maximization (MM) framework, including simplified
solutions specifically designed for Laplacian matrix-based smooth matrices. (3) We provide
comprehensive experimental validation using both simulated and real-world datasets,
demonstrating the superior capabilities of LR-SS in classification and feature extraction
compared to existing logistic regression algorithms.

The paper is organized as follows: Section 2 establishes the theoretical foundation
of LR-SS, including the problem formulation, smooth matrix construction, optimization
algorithm, and experimental setup. Section 3 presents comprehensive experimental results
on both simulated and real-world datasets. Section 4 provides a detailed discussion of
the findings and implications. Finally, Section 5 summarizes our conclusions and outlines
future research directions.

2. Materials and Methods
Based on the motivation outlined in the introduction, this section presents the the-

oretical foundation and methodology of our proposed LR-SS framework. We begin by
establishing notation and formulating the basic logistic regression problem, then progres-
sively build up to our full LR-SS model through the incorporation of sparse and smooth
regularizations. We also detail the construction of different smooth matrices and present an
efficient optimization algorithm.

In this study, we adopt the following notational conventions: lowercase letters denote
scalars, bold lowercase letters denote column vectors, and bold uppercase letters denote
matrices. The L1-norm and L2-norm are denoted by ∥ · ∥1 and ∥ · ∥2, respectively. We use
sign(·) to represent the sign function. The function diag(·) serves a dual purpose: when
applied to a matrix, it extracts the diagonal elements to form a vector; when applied to a
vector, it constructs a diagonal matrix by putting the vector elements on the diagonal. 1d

denotes a d-dimensional column vector of ones. For two vectors a and b, a ◦ b denotes the
Hadamard product, which represents the element-wise product between vectors a and b.
For a vector x, the ith element is denoted as xi. For a matrix Y, the ith column is denoted as
yi, the element in the ith row and the jth column is denoted as yij.

2.1. Problem Formulation

To establish a solid theoretical foundation for our LR-SS framework, we systematically
develop the mathematical formulation, starting from basic logistic regression and building
up to our complete LR-SS model through the incorporation of various regularization terms.

2.1.1. Logistic Regression

Logistic regression (LR) [1] is widely employed for binary classification tasks. Con-
sider a dataset comprising n independent and identically distributed samples, repre-
sented as X = [x1, x2, ..., xn] ∈ R(d−1)×n, with corresponding binary labels denoted by
y = [y1, y2, . . . , yn]T ∈ Rn, where yi ∈ {0, 1} for i = 1, 2, ..., n. Given a weight vector
w ∈ Rd−1 and an intercept term w0 ∈ R, the probability that a sample xi belongs to the
positive class (yi = 1) can be expressed as

P(yi = 1 | xi, w, w0) =
1

1 + exp(−(w0 + wTxi))
. (1)
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To eliminate the intercept term w0, we construct augmented matrices xi ← [1; xi] and
w← [w0; w]. This transformation yields

P(yi = 1|xi, w) = σ(wTxi), (2)

where σ(x) = 1
1+exp(−x) represents the sigmoid function. Consequently, the probability

that sample xi belongs to category yi can be expressed as

P(yi|w, xi) =
(

σ(wTxi)
)yi
(

1− σ(wTxi)
)1−yi

. (3)

The joint probability density function is given by

P(y|X, w) =
n

∏
i=1

(
σ(wTxi)

)yi
(

1− σ(wTxi)
)1−yi

. (4)

The weight vector w can be estimated using the maximum likelihood method. Taking
the logarithm of the joint probability density yields the optimization problem for logistic
regression (LR):

max
w

ln P(y|X, w). (5)

When prior knowledge of w is available, Bayesian theory allows us to estimate w through
posterior probability maximization. The posterior probability of w given X and y can be
expressed as

P(w|X, y) ∝ P(y|X, w)P(w), (6)

where P(w) represents the prior probability of w, defined only on the weight coefficients
excluding the intercept term w0.

2.1.2. Logistic Regression with L2-Norm Regularization

Applying a Gaussian prior to the weight vector w, and then taking the logarithm
of the posterior probability, yields the optimization problem for logistic regression with
L2-norm regularization (LR-L2) [9,24]:

max
w

{
ln P(y|X, w)− λ2

2
∥w∥2

2

}
, (7)

where λ2 is a non-negative regularization parameter controlling the strength of the Gaussian
priors. The addition of L2-norm regularization helps prevent overfitting by imposing
smoothness constraints on the model parameters. This regularization approach serves as an
important precursor to our more sophisticated smooth regularization schemes. Note that
incorporating the L2-norm regularization into the standard linear regression framework
will yield the well-established ridge regression formulation, also known as Tikhonov
regularization [25].

2.1.3. Logistic Regression with L1-Norm Regularization

Applying a Laplacian prior to the weight vector w, and then taking the logarithm
of the posterior probability, yields the optimization problem for logistic regression with
L1-norm regularization (LR-L1), also known as sparse logistic regression (SLR) [9,15,26,27]:

max
w
{ln P(y|X, w)− λ1∥w∥1}, (8)

where λ1 is a non-negative regularization parameter controlling the strength of the Lapla-
cian priors. The incorporation of L1-norm regularization introduces sparsity into the model,
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crucial for feature selection and model interpretability. This regularization is also known as
lasso regularization [28].

2.1.4. Logistic Regression with ElasticNet Regularization

Having separately examined the Gaussian and Laplacian priors, we now consider
applying them to the weight vector w simultaneously. Then, taking the logarithm of the
posterior probability yields the optimization problem for logistic regression with ElasticNet
regularization (LR-ElasticNet) [9]:

max
w

{
ln P(y|X, w)− λ1∥w∥1 −

λ2

2
∥w∥2

2

}
, (9)

where λ1 and λ2 are non-negative regularization parameters controlling the strength of the
Laplacian and Gaussian priors, respectively. The combination of L1-norm and L2-norm
regularizations is known as ElasticNet regularization [29].

2.1.5. Logistic Regression with Sparse and Smooth Regularizations

Replacing the L2-norm regularization in LR-ElasticNet with a smooth regularization
yields the optimization problem for logistic regression with sparse and smooth regulariza-
tions (LR-SS):

max
w

{
ln P(y|X, w)− λ1∥w∥1 −

λ2

2
wTQw

}
, (10)

where wTQw is the smooth regularization, and λ1 and λ2 are non-negative regulariza-
tion parameters controlling the strength of the Laplacian and smooth priors, respectively.
This generalization allows for better capture of temporal and spatial relationships while
maintaining the desirable sparsity properties.

The proposed LR-SS algorithm is a general framework that encompasses several exist-
ing methods, including spatially regularized logistic regression (SRLR) [30], spatially regu-
larized sparse logistic regression (SRSLR) [31], smooth sparse logistic regression (SSLR) [20],
and logistic regression with GraphNet regularization [19]. These algorithms are rooted
in the graphical lasso theory [32,33], which models a Gaussian prior whose covariance
matrix is not an identity matrix. Consequently, the inverse of the covariance matrix, or
equivalently the smooth matrix Q in Equation (10), has non-zero offdiagonal elements that
are capable of capturing complex temporal and spatial relationships between features.

The optimization problems of the five algorithms are summarized in Table 1. When
λ1 = λ2 = 0, LR-SS degenerates to LR. When λ1 = 0 and Q = I, LR-SS degenerates to
LR-L2. When λ2 = 0, LR-SS degenerates to LR-L1. When Q = I, LR-SS degenerates to
LR-ElasticNet. Therefore, LR-SS is a generalized form of the other four algorithms.

Table 1. Summary of optimization problems for different logistic regression algorithms.

Algorithm Optimization Problem

LR maxw ln P(y|X, w)

LR-L2 maxw

{
ln P(y|X, w)− λ2

2 ∥w∥2
2

}
LR-L1 maxw{ln P(y|X, w)− λ1∥w∥1}

LR-ElasticNet maxw

{
ln P(y|X, w)− λ1∥w∥1 − λ2

2 ∥w∥2
2

}
LR-SS maxw

{
ln P(y|X, w)− λ1∥w∥1 − λ2

2 wTQw
}
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2.1.6. Classification

Once w is computed by one of the above LR algorithms, for a given test sample z,
the probability that the sample belongs to the positive class can be calculated using the
following logistic function:

P(y = 1|z, w) = σ(wTz) =
1

1 + exp(−wTz)
. (11)

This probability can be used to classify the sample by applying an appropriate threshold
(typically 0.5). By classifying all test samples and calculating the average classification
accuracy, the overall performance of a specific logistic regression algorithm can be assessed.

2.2. Smooth Matrix Construction

Having established the basic framework of LR-SS, we now turn to the crucial task
of building appropriate smooth models that can effectively capture the temporal and
spatial relationships in the data. The smooth properties can be characterized in various
ways [19–23]. This paper focuses on constructing smooth matrices that can be readily
incorporated into the LR-SS framework. The different approaches are presented and their
properties are analyzed throught visual comparisons.

2.2.1. Smooth Matrix Based on the Laplacian Matrix

Our first approach utilizes the Laplacian matrix, which provides a natural way to
capture symmetric relationships between neighboring features in a graph structure. The
construction proceeds as follows. Let ai and aj, i, j = 1, 2, ..., d be the coordinates of any two
features in spatial or temporal dimensions. The distance between them is dij =

∥∥ai − aj
∥∥

2.
Then, the adjacency matrix N is defined as

Nij =

exp
(
−

d2
ij

2δ2

)
, 0 < dij ≤ ε,

0, otherwise.
(12)

This construction ensures that N is symmetric, as dij = dji. After obtaining the adjacency
matrix N, we calculate the degree matrix D = diag(1T

d N). The Laplacian matrix is then
defined as L = D−N. The Laplacian matrix inherits symmetry from N and D, and is
positive semi-definite [34]. The symmetry property captures bidirectional relationships be-
tween features, while positive semi-definiteness ensures the convexity of the regularization
term in the optimization problem. We therefore define the smooth matrix by the Laplacian
matrix, i.e., Q = L, and denote this Laplacian-based smooth matrix as Q(1) to distinguish it
from other variants introduced later.

The parameters δ and ε in N serve as tuning parameters. The parameter δ controls
the magnitude of the non-zero elements in N, with smaller δ resulting in smaller non-zero
elements. The parameter ε regulates the sparsity of N, with smaller ε leading to a sparser
N, reducing storage and computational requirements. When ε = 1, the smooth regular-
ization only considers symmetric relationships between weights of neighboring features,
smoothing only local information. When ε > 1, it also considers symmetric relationships
between weights of non-adjacent features, potentially achieving a global smooth effect and
improving the algorithm’s classification and feature extraction capabilities.

In the one-dimensional case, the smooth regularization can be expressed as the follow-
ing quadratic form [35]:

wTQw = wTLw =
1
2

d

∑
i,j=1

Nij(wi − wj)
2. (13)
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This symmetric formulation encourages the weights wi and wj to be similar when the
corresponding features are strongly connected (i.e., when Nij is large), thus promoting
smoothness in the weight vector w.

2.2.2. Smooth Matrix Based on GraphNet

A notable special case of the smooth matrix Q(1) arises when ε = 1, simplifying the
adjacency matrix to

Nij =

c, dij = 1,

0, otherwise,
(14)

where c = exp
(
− 1

2δ2

)
. In this case, the product cλ2 serves as the effective regularization

parameter for the smooth regularization term in Equation (10). Without loss of generality,
we can set δ = ∞ (equivalently, c = 1), leaving λ2 as the sole smooth regularization
parameter. This simplification results in a smooth matrix Q that is independent of δ.

This simplified form, as a key component of GraphNet [19], only considers symmetric
relationships between adjacent features, reducing computational complexity while main-
taining effective weight smoothing. The resulting symmetric structure has influenced
various interpretable graph neural network architectures in neuroscience [36–39].

The GraphNet regularization is closely related to several other existing smooth reg-
ularizations. For the one-dimensional case, we can derive an alternative formulation by
substituting Equation (14) into Equation (13):

wTQw =
1
2

d

∑
i,j=1

Nij(wi − wj)
2 =

d−1

∑
i=1

(wi+1 − wi)
2 = ∥Pw∥2

2 = wTPTPw, (15)

where P is the first-order difference matrix with elements of −1 and 1 on the bidiagonal:

P =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ R(d−1)×d. (16)

The smooth matrix Q can be calculated as

Q = PTP =


1 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ Rd×d. (17)

In this one-dimensional case, matrix Q is symmetric and tridiagonal, with diagonal ele-
ments equal to 2 (except for the first and last elements, which equal 1) and offdiagonal
elements equal to −1.

Replacing L2-norm in Equation (15) with L1-norm yields the total variation (TV) regular-
ization, i.e., ∥Pw∥1 = ∑d−1

i=1 |wi+1 −wi| [40]. Combining TV regularization with lasso regular-
ization generates the fussed lasso (FL) regularization, i.e., λ1∥w∥1 + λ2 ∑d−1

i=1 |wi+1−wi| [41],
where λ1 and λ2 control sparsity and smoothness, respectively. The sparse regularization
promotes sparsity by shrinking weights to zero, while the TV regularization encourages
adjacent weights to be similar, producing piece-wise constant solutions [18,22,42]. While
these alternative formulations are noteworthy, our primary focus remains on analyzing
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the smooth effects of various symmetric smooth matrices. Therefore, discussing these
alternative formulations is beyond the scope of this study.

2.2.3. Smooth Matrix Based on the Inverse of the Adjacency Matrix

Another definition of the smooth matrix Q is the inverse of the adjacency matrix N,
i.e., Q = N−1 [20]. This smooth matrix, denoted as Q(2), is defined such that the correlation
strength between weights is directly proportional to a distance measure between the
weights in feature space. While this construction inherits symmetry from N, it does not
guarantee positive semi-definiteness like the Laplacian-based approaches. Nevertheless,
by carefully adjusting the parameters δ and ε of the adjacency matrix, this smooth matrix
can achieve effective smoothing of the weights [20].

Table 2 summarizes the construction methods for different smooth matrices used in
this study. The table presents three main approaches: the Laplacian matrix-based method,
the GraphNet-based method, and the inverse matrix-based method. Each approach has its
unique construction formula and characteristics. The Laplacian and GraphNet methods
both utilize the Q(1) framework but differ in their adjacency matrix definitions, while the
inverse matrix method employs Q(2) by directly inverting the adjacency matrix. These
approaches offer different smoothing properties and may be more suitable for certain types
of data structures.

Table 2. Construction methods of different smooth matrices.

Smooth Matrix Construction Process

Q(1) 1. Calculate Nij =

exp
(
−

d2
ij

2δ2

)
, 0 < dij ≤ ε

0, otherwise
2. Form diagonal matrix D with Dii = ∑d

j=1 Nij

3. Calculate Q(1) = D−N

Q(1) with GraphNet 1. Calculate Nij =

{
1, dij = 1
0, otherwise

2. Form diagonal matrix D with Dii = ∑d
j=1 Nij

3. Calculate Q(1) = D−N

Q(2) 1. Calculate Nij =

exp
(
−

d2
ij

2δ2

)
, 0 < dij ≤ ε

0, otherwise
2. Calculate Q(2) = N−1

2.2.4. Parameter Selection for Smooth Matrices

As outlined above, the smooth matrix Q is built from an adjacency matrix N, whose
entries depend on two key parameters, δ and ε. The construction ensures that the smooth
matrix Q (e.g., a Laplacian matrix or its variant) captures symmetric relationships tied to
physical or topological proximity of features.

The parameter δ can be viewed as the bandwidth controlling the degree to which
distant features are still regarded as connected. A large δ spreads out the similarity measure
so that features far apart in distance still influence each other, leading to more global
smoothing. Conversely, a small δ localizes the smoothing, causing more pronounced
weight similarity among only those features that are very close. In datasets with smoothly
varying signals (e.g., spatially continuous measurements), a larger δ may better preserve
global coherence. However, in environments where local continuity is paramount (e.g.,
signals that change sharply), a smaller δ may reduce over-smoothing.
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The parameter ε controls the maximum distance threshold beyond which two features
are considered too far apart to exert mutual influence in the adjacency matrix. This parame-
ter has a direct impact on the sparsity of the adjacency matrix N. A small ε leads to a more
localized smoothing focus, limiting adjacency to immediate neighbors or nearest neighbors.
The resulting N is sparser, which can reduce the computational cost while focusing on local
structure. On the other hand, a large ε includes more distant pair-wise relationships, which
can lead to a denser N. This may capture more global structure but could increase both
model complexity and computational overhead.

In practice, δ and ε are often tuned together through a systematic approach. A common
starting point is to set δ proportionate to a characteristic scale of the data (e.g., median
pair-wise distance among features), while ε is initially chosen to include a moderate number
of neighbors around each feature. These initial values can then be refined through cross-
validation or model selection, performing a grid search or Bayesian optimization over a
range of values while assessing classification performance and smoothness of extracted
features on a validation set.

2.2.5. Visual Comparison of Smooth Matrices

To better understand the characteristics and differences between the proposed smooth
matrices, we provide a visual comparison using a simple one-dimensional example with
11 features. Figure 1 illustrates the inherent symmetry and structural patterns of these
matrices through heatmap visualizations, allowing for direct comparison of their properties.

(a) Identity Matrix
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(b) Smooth Matrix Q(1) (/ = 0:8, " = 3)

2 4 6 8 10

2

4

6

8

10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
(c) Smooth Matrix Q(1) (/ = 1:6, " = 3)

2 4 6 8 10

2

4

6

8

10
-0.5

0

0.5

1

1.5

2

2.5
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2 4 6 8 10

2

4

6

8

10

-1

-0.5

0

0.5

1

Figure 1. Illustration of smooth matrices. (a) Identity matrix. (b) Q(1) with δ = 0.8 and ε = 3. (c) Q(1)

with δ = 1.6 and ε = 3. (d) Q(1) with ε = 1. (e) Q(2) with δ = 0.8 and ε = 3. (f) Q(2) with δ = 1.6 and
ε = 3.

Figure 1a displays the identity matrix for comparison. Figure 1b shows Q(1) with
δ = 0.8 and ε = 3, where the non-zero elements with large magnitudes are symmetrically
distributed in the tridiagonal region of the matrix. The symmetric pattern extends be-
yond the tridiagonal region with smaller magnitudes, reflecting the bidirectional influence
between non-adjacent features in the smoothing process.

Figure 1c shows Q(1) with δ = 1.6 and ε = 3, where the non-zero elements have larger
absolute values compared to Figure 1b, particularly in the central region of the matrix,
while maintaining perfect symmetry about the diagonal.
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Figure 1d shows Q(1) with ε = 1, which is equivalent to GraphNet [19]. This special
case exhibits a symmetric tridiagonal structure where all elements outside the tridiagonal
band are zero, as the adjacency matrix only considers symmetric relationships between
direct neighbors.

Figure 1b–d all exhibit symmetric tridiagonal structures, which are crucial for achiev-
ing the smooth effect. The symmetric tridiagonal structure ensures that each weight is
influenced equally by its immediate neighbors on both sides, leading to a natural and
balanced smoothing of the weight values across adjacent features. When ε > 1, sym-
metric relationships between non-adjacent features are also considered, which may help
extract more structural features from the data while maintaining the symmetry that ensures
stable optimization.

Figure 1e shows Q(2) with δ = 0.8 and ε = 3, and Figure 1f shows Q(2) with δ = 1.6
and ε = 3. Both Q(2) matrices maintain symmetry as they are derived from the inverse
of symmetric adjacency matrices. However, they exhibit a more diffuse pattern without
the clear tridiagonal structure seen in the Q(1) matrices. The lack of concentrated local
influence may affect their ability to enforce smoothness between adjacent features.

2.2.6. Special Cases of LR-SS

With the framework and smooth matrices presented above, we now demonstrate how
LR-SS serves as a unifying framework that generalizes several existing methods. LR-SS
has four key parameters to be tuned: the sparse regularization parameter λ1, the smooth
regularization parameter λ2, and two parameters δ and ε used for constructing the smooth
matrices. By carefully selecting specific parameter values, various well-known algorithms
emerge as special cases of LR-SS, which we describe below.

When λ1 = 0 and λ2 = 0, LR-SS degenerates into standard logistic regression [1],
denoted as LR. When λ1 = 0, λ2 ̸= 0 and Q = I, LR-SS degenerates into logistic regression
with L2-norm regularization [1], denoted as LR-L2. When λ1 ̸= 0 and λ2 = 0, LR-SS
degenerates into logistic regression with L1-norm regularization, which is the standard
sparse logistic regression [9,10], denoted as LR-L1. When λ1 ̸= 0, λ2 ̸= 0 and Q = I,
LR-SS degenerates into logistic regression with ElasticNet regularization, denoted as LR-
ElasticNet [9]. When λ1 ̸= 0, λ2 ̸= 0, Q = Q(1) and ε = 1, LR-SS degenerates into logistic
regression with GraphNet regularization, denoted as LR-GraphNet [19]. When λ1 ̸= 0,
λ2 ̸= 0 and Q = Q(1), the first form of LR-SS is obtained, denoted as LR-SS1. When λ1 ̸= 0,
λ2 ̸= 0 and Q = Q(2), the second form of LR-SS is obtained, denoted as LR-SS2.

This analysis not only illustrates the versatility of our approach but also positions it
within the broader context of regularized logistic regression algorithms. Table 3 summarizes
the special cases of LR-SS with different parameter settings. Among these algorithms, LR-
GraphNet, LR-SS1, and LR-SS2 incorporate both sparse and smooth regularizations.

Table 3. Special cases of LR-SS with different parameter settings.

Parameter Settings Algorithm

λ1 = 0, λ2 = 0 LR
λ1 = 0, λ2 ̸= 0, Q = I LR-L2
λ1 ̸= 0, λ2 = 0 LR-L1
λ1 ̸= 0, λ2 ̸= 0, Q = I LR-ElasticNet
λ1 ̸= 0, λ2 ̸= 0, Q = Q(1), ε = 1 LR-GraphNet
λ1 ̸= 0, λ2 ̸= 0, Q = Q(1) LR-SS1
λ1 ̸= 0, λ2 ̸= 0, Q = Q(2) LR-SS2
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2.2.7. Relationships with Existing Approaches

The proposed LR-SS framework unifies and extends several existing regularized
logistic regression approaches [19,20,30,31] through a flexible family of symmetric smooth
matrices. LR-GraphNet represents a special case of LR-SS when Q = Q(1) and ε = 1, while
SSLR [20] can be viewed as LR-SS with Q = Q(2), i.e., LR-SS2.

Note that GraphNet regularization [19] was originally designed to enhance traditional
linear regression, linear discriminant analysis, support vector machines, and their variants.
Its application to logistic regression posed computational challenges due to the nonlinear
nature of the logistic function and the presence of both smooth and nonsmooth regular-
ization terms. Our LR-SS framework incorporates GraphNet regularization to logistic
regression through careful construction of smooth matrices, resulting in LR-GraphNet.

Several existing methods are closely related to LR-GraphNet and can, therefore, be in-
corporated into the LR-SS framework. For example, spatially regularized logistic regression
(SRLR) [30] corresponds to LR-GraphNet without sparse regularization (λ1 = 0). Spatially
regularized sparse logistic regression (SRSLR) [31] employs a discrete approximation to the
integral of the 3D Laplacian of the weight vector to enforce spatial smoothness, equivalent
to applying GraphNet regularization in 3D space.

While LR-SS extends these existing approaches, it offers significant advantages over
them. Unlike traditional sparse logistic regression, which treats features independently,
LR-SS explicitly models feature relationships through the smooth matrix Q, making it
particularly valuable for datasets with complex temporal and spatial dependencies. The
framework provides greater flexibility in modeling different types of smooth structures
through the parameters δ and ε, allowing it to adapt to varying degrees of smoothness and
capture both local and global dependencies. This contrasts with GraphNet’s limitation to
local neighborhood structures or SSLR’s fixed smoothing effect determined by the inverse
adjacency matrix.

Furthermore, the unified framework enables systematic comparison and analysis of
different regularization approaches, providing insights into their relative strengths and
limitations. Through careful parameter selection and smooth matrix construction, LR-SS
can be tailored to specific application requirements while maintaining the computational
efficiency and theoretical guarantees of its special cases.

2.3. Iterative Solutions

Having fully specified the LR-SS framework and different smooth matrices, we now
focus on solving the resulting optimization problem. We first present the minorization–
maximization (MM) framework, which provides an elegant approach to handle both the
smooth and nonsmooth components of our objective function. Under this framework, we
derive an element-wise iterative solution using coordinate descent and soft-thresholding
techniques, which we then extend to a more efficient vectorized form. We also analyze
two special cases where the smooth matrix Q is either the identity matrix or a Laplacian
matrix, leading to simplified solutions. Finally, we present a complete algorithm procedure
that encompasses all these scenarios.

2.3.1. Minorization–Maximization Framework

The optimization problem of LR-SS contains nonsmooth terms from both the logistic
regression formulation and L1-norm regularization. To solve this challenging problem,
we employ the minorization–maximization (MM) framework [43,44], which solves a nons-
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mooth optimization problem by iteratively optimizing a simpler surrogate function. The
surrogate function must satisfy two conditions:

f (w(k)) = g(w(k)|w(k)),

f (w) ≥ g(w|w(k)), ∀w,
(18)

where f (w) is the original objective function to be maximized, g(w|w(k)) is the surrogate
function, and w(k) is the weight vector at the kth iteration. The first equation represents
the tangency condition, while the second represents the minorization condition. The MM
algorithm proceeds by iteratively maximizing the surrogate function:

w(k+1) = arg max
w

g(w|w(k)). (19)

This process guarantees monotonic improvement:

f (w(k+1)) ≥ g(w(k+1)|w(k)) ≥ g(w(k)|w(k)) = f (w(k)). (20)

The first inequality follows from the minorization condition, while the second inequality
results from the maximization step. This sequence ensures that the objective function value
increases with each iteration until convergence to a local optimum.

2.3.2. Element-Wise Iterative Solution

Building upon the MM framework, we now derive an iterative solution algorithm for
the LR-SS optimization problem. Let l(w) = ln P(y|X, w); then, the LR-SS optimization
problem can be expressed as

f (w) = l(w)− λ1∥w∥1 −
λ2

2
wTQw. (21)

Performing a second-order Taylor expansion on l(w), and by the mean value theorem,
there exists θ ∈ [0, 1] such that

l(w) =l(w(k)) + (w−w(k))T ∂l(w(k))

∂w

+
1
2
(w−w(k))T

∂2l
(

θw + (1− θ)w(k)
)

∂w∂wT (w−w(k)).

(22)

Define
s = [σ(y1wTx1), σ(y2wTx2), ..., σ(ynwTxn)]

T = σ
(

y ◦ (XTw)
)

, (23)

where σ(·) is the element-wise sigmoid function, and y ◦ (XTw) denotes the Hadamard
product, i.e., the element-wise product between vectors y and XTw. The gradient and
Hessian matrix of l(w) can be derived as follows:

g(w) =
∂l(w)

∂w
= X(y− s), (24)

H(w) =
∂2l(w)

∂w∂wT = X diag(−(1n − s) ◦ s)XT ≥ −1
4

XXT , ∀w. (25)

Define A = − 1
4 XXT ; then, we have

l(w) ≥ l(w(k)) + (w−w(k))Tg(w(k)) +
1
2
(w−w(k))TA(w−w(k)). (26)
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Construct the surrogate function:

g(w|w(k)) =l(w(k)) + (w−w(k))Tg(w(k)) +
1
2
(w−w(k))TA(w−w(k))

− λ1∥w∥1 −
λ2

2
wTQw.

(27)

This function satisfies the two conditions of the MM framework, i.e., Equation (18), thus
being a reasonable surrogate function for f (w). Removing terms unrelated to w in
g(w|w(k)) gives

ĝ(w|w(k)) =
1
2

wT(A− λ2Q)w + wT
(

g(w(k))−Aw(k)
)
− λ1∥w∥1. (28)

Consequently, one can iteratively maximize ĝ(w|w(k)) to achieve the maximization of f (w).
The maximization of ĝ(w|w(k)) cannot be directly achieved through conventional ap-

proaches, owing to its composite structure containing a non-differentiable L1-norm regular-
ization. However, it can be solved efficiently by combining coordinate descent [45,46] and
soft-thresholding [47] techniques. Let B = −A+λ2Q = 1

4 XXT +λ2Q, c = g(w(k))−Aw(k),
and g = g(w(k)), where −B and c are the Hessian matrix and the gradient of ĝ(w|w(k)),
respectively. Matrix B is a constant matrix that is independent of w. Vectors c and g are
functions of w(k) and are also independent of w. The surrogate function can be rewritten as

ĝ(w|w(k)) = −1
2

wTBw + wTc− λ1∥w∥1. (29)

When Q is constructed using the Laplacian matrix or GraphNet, which are symmetric
and positive semi-definite matrices [34], the matrix B inherits these properties and is
guaranteed to be symmetric positive semi-definite. These properties are crucial as they
ensure the convexity of the optimization problem and guarantee convergence of the iterative
algorithm. In contrast, when Q is constructed using the inverse of the adjacency matrix [20],
while symmetry is preserved, positive semi-definiteness of B is not guaranteed. This
approach, therefore, lacks theoretical justification, and we must ensure that λ2 is sufficiently
small to maintain the positive semi-definiteness of B.

The following derivation focuses solely on cases where the smooth matrix is con-
structed using the Laplacian matrix or GraphNet. For other types of smooth matrix,
including the inverse of the adjacency matrix, due to a potential lack of theoretical justifi-
cation, we simply apply the iterative solution derived from the former case for numerical
computation and evaluation.

Without loss of generality, we assume that B is positive definite, meaning all of the
diagonal elements of B are strictly positive. While this assumption simplifies our analysis
and guarantees convergence of the iterative algorithm, it can be relaxed in practice. In cases
where some diagonal elements are zeros (which primarily occurs when λ2 = 0), we can
add a small positive constant ϵ to ensure numerical stability and avoid division by zero.
This modification preserves the essential properties of our approach while making it more
robust for practical implementations.

Using coordinate descent [45,46], we fix all elements in w except the ith element wi.
Expanding Equation (29) as a function of wi and ignoring unrelated terms yields

− 1
2

biiw2
i −

d

∑
j=1,j ̸=i

wjbijwi + ciwi − λ1|wi|

=− 1
2

bii

(
wi −

−∑d
j=1,j ̸=i wjbij + ci

bii

)2

− λ1|wi|+

(
−∑d

j=1,j ̸=i wjbij + ci

)2

2bii
,

(30)
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where bii is the ith diagonal element of matrix B, and ci is the ith element of vector c. The
soft-thresholding [47] solution to this problem is

w(k+1)
i = soft

(
−∑d

j=1,j ̸=i wjbij + ci

bii
,

λ1

bii

)
= soft

(
wi +

(−Bw + c)i
bii

,
λ1

bii

)
, (31)

where soft(a, λ) = (|a| − λ)+ sign(a) is the soft-thresholding operator. Note that we use
the following vector w to compute w(k+1)

i :

w =
[
w(k+1)

1 , w(k+1)
2 , ..., w(k+1)

i−1 , w(k)
i , w(k)

i+1, ..., w(k)
d

]T
. (32)

That is, the first i − 1 elements have been updated to the (k + 1)th iteration, while the
last d− i + 1 elements are still at the kth iteration. To avoid unnecessary confusion, the
iteration count of wi is omitted by default. Iteratively solving for w(k+1)

i by Equation (31)
until convergence yields the solution to the LR-SS problem.

2.3.3. Vectorized Iterative Solution

To improve computational efficiency, we now develop a vectorized version of the
iterative solution. The previous approach in Equation (31) updates elements of the weight
vector sequentially, which can be computationally intensive for high-dimensional prob-
lems. By reformulating the solution to enable parallel updates of all elements in the
weight vector simultaneously, we can significantly reduce computational overhead and
accelerate convergence.

Let us begin by substituting the definitions of matrix B and vector c into Equation (31):

w(k+1)
i = soft

wi +

(
−(−A + λ2Q)w + g(w(k))−Aw(k)

)
i

bii
,

λ1

bii

, (33)

where w(k) denotes the weight vector w with all elements updating to the kth iteration,
i.e., w(k) = [w(k)

1 , w(k)
2 , . . . , w(k)

d ]T. To accelerate the convergence speed of iteration, after
calculating each element of w using coordinate descent, we can instantly update all related
quantities, including vectors s, c, and g. Consequently, we can replace w(k) with w in
Equation (33), yielding

w(k+1)
i = soft

(
wi +

(−(−A + λ2Q)w + g−Aw)i
bii

,
λ1

bii

)
= soft

(
wi +

(−λ2Qw + g)i
bii

,
λ1

bii

)
=

soft(biiwi − λ2(Qw)i + gi, λ1)

bii

=
soft((−aii + λ2qii)wi − λ2(Qw)i + gi, λ1)

−aii + λ2qii
,

(34)

where aii is the ith diagonal element of matrix A, qii is the ith diagonal element of matrix
Q, gi is the ith element of vector g, and w contains results from both the kth and (k + 1)th
iterations, as indicated by Equation (32). Strictly following the coordinate descent approach
requires updating w(k+1) element by element. Fortunately, it can be vectorized as follows:

w(k+1) =
soft((−a + λ2q) ◦w− λ2Qw + g, λ1)

−a + λ2q
, (35)
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where a = diag(A), q = diag(Q), and the division of two vectors is conducted in the
element-wise manner. The vector a can be efficiently calculated by a = − 1

4 (X ◦ X)1n. The
update rule in Equation (35) can update all elements in the weight vector simultaneously.
Therefore, it can be reformulated by replacing w with w(k), yielding

w(k+1) =
soft((−a + λ2q) ◦w(k) − λ2Qw(k) + g, λ1)

−a + λ2q
. (36)

This vectorized form efficiently facilitates the update of w(k+1). Through succes-
sive iterations, the algorithm converges to a stationary point that solves the LR-SS
optimization problem.

The vectorized update rule can be further simplified when Q is defined as an identity
matrix or Laplacian matrix. For the identity matrix case, we have Q = I and q = 1d. The
update rule can be reformulated as

w(k+1) =
soft(−a ◦w(k) + g, λ1)

−a + λ2
. (37)

This simple update rule can be utilized to solve LR, LR-L2, LR-L1, and LR-ElasticNet,
depending on the regularization parameters λ1 and λ2.

For the Laplacian matrix case, we have q = diag(Q) = NT1d. The update rule can be
reformulated as

w(k+1) =
soft

(
−a ◦w(k) + λ2Nw(k) + g, λ1

)
−a + λ2NT1d

. (38)

The update rule is exclusively dependent on the adjacency matrix N, without requiring the
smooth matrix Q. This independence eliminates intermediate computational steps, thereby
enhancing computational efficiency. This update rule can be utilized to solve LR-GraphNet
or LR-SS1, depending on the parameters δ and ε.

When Q is neither an identity matrix nor a Laplacian matrix, the LR-SS optimization
problem can be solved through the original update rule in Equation (36). In this case, both
the smooth matrix Q and its diagonal vector q need to be explicitly computed and stored
for the iterative updates. Algorithm 1 presents the algorithm procedure for LR-SS.

2.3.4. Computational Complexity Analysis

We now analyze the computational complexity of different solutions for LR-SS, focus-
ing on the element-wise iterative solution, the vectorized iterative solution, and special
cases with simplified smooth matrices.

The element-wise iteration solution in Equation (31) represents a straightforward
implementation approach. For each iteration, computing Bw requires O(d2) operations
for each coordinate update, and with d coordinates to update, this leads to O(d3) oper-
ations for the regularization term. Additionally, computing the gradient term requires
O(nd) operations, resulting in a total complexity of O(d3 + nd) per iteration. By caching
intermediate results of Bw computations and updating only the changed coordinates,
the computational complexity can be reduced to O(d2 + nd) per iteration. While this
approach offers implementation flexibility, its coordinate-wise update nature still makes
parallelization challenging.

The vectorized iterative solution in Equation (36) takes a different strategy, requiring
one Qw(k) multiplication and one gradient computation per iteration. This leads to an
O(d2 + nd) complexity. This approach enables simultaneous coordinate updates and is
more amenable to parallelization and hardware acceleration.
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Algorithm 1 Algorithm procedures of LR-SS.

Input: Training data X, labels y, parameters λ1, λ2
(and δ, ε if Q is not identity matrix)

Output: Weight vector w

Calculate vector a = − 1
4 (X ◦ X)1n

Set relative error tolerance ϵ = 10−3 and maximum iterations kmax = 103

Initialize k = 0, error = 1, and w(0) = 1d
while error > ϵ and k < kmax do

Calculate s = 1
1+exp(−XTw(k))

Calculate g = X(y− s)
Update w(k+1) based on Q type:
if Q is identity matrix:

w(k+1) = soft(−a◦w(k)+g,λ1)
−a+λ2

else if Q is GraphNet or Laplacian matrix:
Calculate adjacency matrix N using δ and ε

w(k+1) = soft(−a◦w(k)+λ2Nw(k)+g,λ1)
−a+λ2NT1d

else if Q is other types of smooth matrix:
Calculate q = diag(Q)

w(k+1) = soft((−a+λ2q)◦w(k)−λ2Qw(k)+g,λ1)
−a+λ2q

end if
Calculate error = ∥w(k+1) −w(k)∥/∥w(k)∥
k← k + 1

end while

Special cases of the vectorized iterative solution arise when Q takes specific forms,
as presented in Equations (37) and (38). When Q is the identity matrix, the O(d2) matrix
multiplication is eliminated entirely, resulting in a total computational complexity of O(nd)
per iteration. For sparse Laplacian or GraphNet structures, let s denote the number of
non-zero elements in the smooth matrix. The computation of Qw(k) reduces to O(s). In
these cases, the main computational burden comes from the O(nd) gradient calculation,
while the iteration updates require O(s) operations. Therefore, the total computational
complexity is O(nd + s) per iteration for sparse cases, which is significantly more efficient
than the general case complexity of O(d2 + nd) when s≪ d2.

In general, the vectorized iterative solution is more efficient than the element-wise
iterative solution, making it the preferred choice in most cases. The vectorized approach
also facilitates better utilization of modern hardware architectures and parallel computing
capabilities, particularly when dealing with large-scale problems. For special cases where
the smooth matrix is an identity matrix or a Laplacian matrix, we can leverage simplified
solutions to further improve computational efficiency.

2.4. Experimental Setup

This section outlines the experimental setup used to evaluate the LR-SS algorithm. We
begin by describing both simulated and real-world datasets that serve as benchmarks for
our evaluation. The simulated datasets are specifically designed to test the algorithm’s
ability to handle sparse and smooth features, while the real-world datasets represent
practical applications across different domains. We then detail our parameter selection
strategy, including the ranges explored for four key parameters. Finally, we present a
comprehensive set of evaluation metrics chosen to assess both the classification and feature
extraction performance of the algorithm, enabling a thorough comparison with existing
methods. To facilitate reproducibility and further improvements by other researchers, we
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have made all source code, datasets, and experimental configurations used in this study
publicly available at https://github.com/yuzhounh/LR-SS (released on 17 January 2025).

2.4.1. Simulated Datasets

To assess the performance of LR-SS in classification and feature extraction, we first
conducted experiments on simulated datasets, following an approach similar to [20]. The
data generation process is stated as follows. For class 0, we randomly generated 200 inde-
pendent time points from a standard Gaussian distribution with a mean of 0 and a variance
of 1. For class 1, we generated another set of Gaussian noise samples and superimposed a
sinusoidal signal with an amplitude of 1/2 between time points 80 and 120. For each class,
we generated 1000 samples, resulting in a total dataset of 2000 samples. Figure 2 illustrates
an example of these two sample classes and the sinusoidal signal.

0 20 40 60 80 100 120 140 160 180 200

-2

0

2

(a) Class 0

0 20 40 60 80 100 120 140 160 180 200

-2

0

2

(b) Class 1

0 20 40 60 80 100 120 140 160 180 200

-2

0

2

(c) Sinusoidal Signal

Figure 2. Simulated data showing two classes and the sinusoidal signal. (a) Class 0 (blue) consists of
pure Gaussian noise. (b) Class 1 (red) consists of Gaussian noise superimposed with the sinusoidal
signal. (c) The sinusoidal signal. The sinusoidal signal is present with amplitude 1/2 between sample
points 80 and 120.

This dataset design presents a clear classification challenge: class 0 samples consist
purely of random noise, while class 1 samples contain a structured sinusoidal signal
embedded within noise. The objective is twofold: to accurately distinguish between
these two classes and to extract the features of the embedded sinusoidal signal. The
embedded signal introduces a sparse and smooth temporal structure, which is precisely the
characteristic that LR-SS is designed to handle through its dual regularization approach.
Therefore, this dataset is particularly suitable for validating LR-SS.

2.4.2. Real-World Datasets

Next, we introduce four real-world datasets to evaluate the LR-SS algorithm. The
first two datasets are time series data containing a temporal structure: the DistalPhalanx-
OutlineCorrect database [48,49] for bone outline detection and the GunPoint database [50]
for motion classification. The latter two are image datasets containing two-dimensional
spatial structures: the FashionMNIST database [51] for fashion item classification and the
MNIST database [52] for handwritten digit classification. These diverse datasets allow us
to thoroughly evaluate how the proposed algorithm handles both temporal and spatial
structures compared to related algorithms.

The DistalPhalanxOutlineCorrect database [48,49] is derived from hand bone X-ray
images. It contains data from automated outline detection of the distal phalanx bone,

https://github.com/yuzhounh/LR-SS
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with human evaluators labeling the outlines as correct or incorrect. The database in-
cludes 600 training samples and 276 test samples, with 80 features for each sample. This
database can be downloaded from https://www.timeseriesclassification.com/description.
php?Dataset=DistalPhalanxOutlineCorrect (accessed on 25 November 2024).

The GunPoint database [50] consists of hand motion tracking data from two actors
performing either a gun-drawing or pointing motion. The dataset contains 50 training
samples and 150 test samples, with 150 features representing the X-axis motion trajectory.
This database can be downloaded from https://timeseriesclassification.com/description.
php?Dataset=GunPoint (accessed on 25 November 2024).

The FashionMNIST database [51] contains grayscale images of fashion items. For
our binary classification experiments, we only used items labeled as 0 or 1, resulting
in 12,000 training samples and 2000 test samples. Each image is 28 × 28 pixels, giving
784 features. This database can be downloaded from https://github.com/zalandoresearch/
fashion-mnist (accessed on 4 December 2024).

The MNIST database [52] consists of handwritten digit images. Similar to FashionM-
NIST, we only used digits 0 and 1 for binary classification, with 12,000 training samples and
2000 test samples. Each image is also 28 × 28 pixels with 784 features. This database can be
downloaded from https://yann.lecun.com/exdb/mnist/ (accessed on 4 December 2024).

For the DistalPhalanxOutlineCorrect and GunPoint databases, we retained their origi-
nal training and test set splits to maintain consistency with prior research. For the Fashion-
MNIST and MNIST datasets, we implemented a computational reduction strategy due to
their large sample sizes and associated high computational demands. Specifically, we first
combined the original training and test sets, then applied stratified sampling to extract ap-
proximately 1000 samples for training while preserving the remaining samples for testing.
This sampling approach ensures that the class proportions remain consistent between the
training and test sets while significantly reducing computational requirements.

Table 4 provides a detailed overview of the sample sizes and feature dimensions for
all four databases, while Figure 3 illustrates representative samples from each dataset.

0 10 20 30 40 50 60 70 80
-2

0

2
(a) DistalPhalanxOutlineCorrect

0 10 20 30 40 50 60 70 80
-2

0

2

0 50 100 150
-1

0

1

2
(b) GunPoint

0 50 100 150
-1

0

1

2

(c) FashionMNIST (d) MNIST

Figure 3. Examples from the four real-world datasets: (a) DistalPhalanxOutlineCorrect dataset
showing one sample from each class (correct outline in blue vs. incorrect outline in red), (b) GunPoint
dataset showing one trajectory from each class (gun-drawing in blue vs. pointing in red), (c) Fashion-
MNIST dataset showing six samples from each class (T-shirt/top vs. trouser), and (d) MNIST dataset
showing six samples from each class (digits 0 vs. 1).

https://www.timeseriesclassification.com/description.php?Dataset=DistalPhalanxOutlineCorrect
https://www.timeseriesclassification.com/description.php?Dataset=DistalPhalanxOutlineCorrect
https://timeseriesclassification.com/description.php?Dataset=GunPoint
https://timeseriesclassification.com/description.php?Dataset=GunPoint
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://yann.lecun.com/exdb/mnist/
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Table 4. Summary of database information.

Database Training Size Test Size Features

Class 0/1 Total Class 0/1 Total

DistalPhalanxOutlineCorrect 222/378 600 115/161 276 80
GunPoint 26/24 50 74/76 150 150
FashionMNIST (0–1) 500/500 1000 6500/6500 13000 784
MNIST (0–1) 468/533 1001 6435/7344 13779 784

2.4.3. Parameter Settings

The LR algorithms have varying numbers of parameters: LR has none, LR-L2 and LR-
L1 each have one parameter, LR-ElasticNet and LR-GraphNet each have two parameters,
while LR-SS1 and LR-SS2 each have four parameters. These parameters are the sparse
regularization parameter λ1, the smooth regularization parameter λ2, and two parameters
δ and ε used for constructing the smooth matrices. In the grid search experiments for
parameter optimization, both λ1 and λ2 were selected from the range [10−6, 106], with
lg(λ1) and lg(λ2) ranging from -6 to 6 with a step size of 0.1.

The parameter δ plays a role in normalizing the distance between features and adjust-
ing the size of the non-zero elements in the adjacency matrix. Since the construction of the
smooth matrix mainly focuses on the relationship between the weights of adjacent features,
it is appropriate to select δ near 1.

The parameter ε adjusts the sparsity of the adjacency matrix. When ε = 1, the algorithm
only considers the correlation between the weights of adjacent features. When ε > 1, the
algorithm also considers the correlation between the weights of non-adjacent features,
which can extract richer spatial structural information. However, the correlation between
feature weights decays rapidly with increasing distance. Therefore, it is appropriate to
select ε as 3. Further increasing ε has negligible impact on classification accuracy in practice.

2.4.4. Evaluation Metrics

To comprehensively evaluate the classification performance, we employed five widely
used metrics: accuracy, precision, recall, F1 score, and area under the receiver operating
characteristic curve (ROC-AUC). Let TP, TN, FP, and FN denote true positives, true nega-
tives, false positives, and false negatives, respectively. The metrics are defined as follows.
Accuracy measures the overall proportion of correct predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
. (39)

Precision quantifies the proportion of correct positive predictions among all positive predictions:

Precision =
TP

TP + FP
. (40)

Recall (also known as sensitivity) measures the proportion of actual positives correctly
identified:

Recall =
TP

TP + FN
. (41)

The F1 score is the harmonic mean of precision and recall, providing a balanced measure
between them:

F1 = 2× Precision× Recall
Precision + Recall

. (42)

The ROC-AUC score measures the model’s ability to distinguish between classes across
different classification thresholds. It is calculated as the area under the curve created by
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plotting the true positive rate against the false positive rate at various threshold settings. A
perfect classifier has an ROC-AUC of 1, while random guessing yields 0.5. These metrics
provide a comprehensive evaluation of binary classification performance.

To quantitatively evaluate the sparsity and smoothness properties of the weight vectors
obtained by different methods, we calculated two key metrics, sparsity and smoothness.
The first metric is sparsity, which measures how many elements in the weight vector are
exactly zero. Let w ∈ Rd denote the weight vector. The sparsity metric is calculated as the
percentage of zero elements:

Sparsity =
∥{wi : wi = 0}∥

d
× 100%, (43)

where ∥ · ∥ denotes the cardinality of a set. Higher sparsity values indicate that more
features have been effectively eliminated from the model.

The second metric is smoothness, which quantifies how gradually the weights change
across adjacent features. To ensure a fair comparison across methods with different weight
value ranges, we first normalize each weight vector by dividing all weights by the maximum
absolute weight. The smoothness metric is then defined as the total squared difference
between adjacent normalized weights. For vector w, the smoothness metric is calculated as

Smoothness =
1

maxj |wj|2
d−1

∑
i=1

(wi − wi+1)
2. (44)

Lower smoothness values indicate more gradual transitions between adjacent weights,
with perfectly smooth solutions approaching zero.

3. Results
In this section, we present comprehensive experimental results evaluating our pro-

posed methods on both simulated and real-world datasets. Our analysis proceeds in three
stages. First, we conduct extensive evaluations of the classification and feature extrac-
tion capabilities of various LR algorithms on our primary simulated dataset, using grid
search to optimize model parameters. Second, to assess robustness across different noise
conditions, we evaluate classification performance on four additional simulated datasets
with varying signal-to-noise ratios, employing Bayesian optimization for parameter tuning.
Finally, we validate the practical utility of these algorithms by evaluating their classi-
fication performance on real-world datasets, again utilizing Bayesian optimization for
parameter selection.

3.1. Results on the Simulated Dataset

In the first experiment, we divided the simulated dataset into equal training and
testing sets using stratified sampling, ensuring that the proportion of samples from each
class remained consistent between the sets. That is, each set contained 1000 samples, with
500 samples from each class. The training set was used to train the LR-SS model and com-
parative algorithms, while the testing set was reserved for evaluating their performance.

We employed a grid search method to optimize the model parameters for algorithms
with one or two parameters. For LR-SS1 and LR-SS2, given the prohibtive computational
burden of simultaneously tuning four parameters, we adopted a two-step optimization
strategy instead. In the first step, we fixed δ = 1 and ε = 3 based on prior empirical
knowledge, while conducting a grid search over λ1 and λ2 to identify their optimal values
that maximize classification accuracy. In the second step, using these optimal values of
λ1 and λ2, we performed a focused search over δ and ε to further enhance the model’s
performance. For each algorithm and each parameter combination, we trained the model
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on the training samples and tested it on the test samples. The resulting classification
accuracies and weight vectors were recorded to evaluate the classification and feature
extraction performance of each algorithm.

3.1.1. Classification Performance on the Simulated Dataset

Figure 4 illustrates the relationship between classification accuracy and the parameters
lg(λ1) and lg(λ2) across different algorithms. The visualizations reveal distinct patterns
in how the accuracy responds to parameter variations, providing insights into each algo-
rithm’s sensitivity to its regularization parameters.

-6 -4 -2 0 2 4 6

lg(62)

0.78

0.8

0.82

0.84

0.86

0.88

A
cc

ur
ac

y

(a) LR-L2

-6 -4 -2 0 2 4 6

lg(61)

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(b) LR-L1 (c) LR-ElasticNet

-6 -4 -2 0 2 4 6

lg(61)

-6

-4

-2

0

2

4

6

lg
(6

2)

(d) LR-GraphNet

-6 -4 -2 0 2 4 6

lg(61)

-6

-4

-2

0

2

4

6

lg
(6

2)

(e) LR-SS1

-6 -4 -2 0 2 4 6

lg(61)

-6

-4

-2

0

2

4

6

lg
(6

2)

(f) LR-SS2

-6 -4 -2 0 2 4 6

lg(61)

-6

-4

-2

0

2

4

6

lg
(6

2)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Figure 4. Classification accuracy versus parameters for different algorithms: (a) LR-L2, (b) LR-L1,
(c) LR-ElasticNet, (d) LR-GraphNet, (e) LR-SS1, (f) LR-SS2. For LR-SS1 and LR-SS2, the parameters δ

and ε are fixed at 1 and 3, respectively.

For LR-L2 (Figure 4a), we observe three distinct regions in the accuracy curve. When
lg(λ2) ≤ −0.3, the accuracy plateaus at approximately 0.801, indicating a minimal impact
of L2 regularization. As lg(λ2) increases beyond this threshold, the accuracy shows a
consistent upward trend, demonstrating the beneficial effect of stronger L2 regularization.
Finally, when lg(λ2) ≥ 3.9, the accuracy stabilizes around 0.865, suggesting that further
increasing the regularization strength yields diminishing returns. The optimal performance
is achieved at lg(λ2) = 4.9, with an accuracy of 0.866.

For LR-L1 (Figure 4b), the accuracy exhibits a more complex pattern. When
lg(λ1) ≤ −0.4, the accuracy remains constant at approximately 0.801, similar to the unreg-
ularized case. As lg(λ1) increases, the accuracy follows an inverted U-shaped curve, first
improving as the L1 regularization encourages sparsity, then declining as excessive sparsity
begins to degrade performance. The accuracy reaches its peak of 0.867 at lg(λ1) = 1.3,
before eventually stabilizing around 0.500 when lg(λ1) ≥ 2.2, where the strong L1 regular-
ization forces most coefficients to zero.

For the algorithms with two parameters (Figure 4c–f), we can observe that when
lg(λ1) ≥ 2.2, the classification accuracy is consistently low, aligning with the results shown
in Figure 4b. When lg(λ1) takes a relatively small value, e.g., −6 ≤ lg(λ1) ≤ 0, the weight
of sparse regularization becomes very low, and LR-ElasticNet approximates LR-L2. As
shown in Figure 4c, under these circumstances, the trend of classification accuracy with
respect to lg(λ2) is consistent with the results in Figure 4a.

However, for the other three algorithms, i.e., LR-GraphNet, LR-SS1, and LR-SS2, when
lg(λ1) is very small and sparse regularization has minimal effect, what remains is not L2-
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norm regularization but rather smooth regularization with different types. In these cases,
the trend of classification accuracy with respect to lg(λ2) no longer aligns with the results
shown in Figure 4a,c. For LR-GraphNet and LR-SS1, when lg(λ2) ≥ 4.5, the classification
accuracy is generally low in most cases. However, there are exceptions: when lg(λ2) ≥ 4.5
and 0 < lg(λ1) < 2, some parameter combinations can achieve relatively high classification
accuracy. For LR-SS2, when lg(λ2) ≥ −1.1, the classification accuracy is generally low
in most cases. Similarly, there are exceptions: when lg(λ2) ≥ −1.1 and 0 < lg(λ1) < 2,
some parameter combinations can achieve relatively high classification accuracy. These
differences primarily arise from the use of different smooth regularizations.

Among the algorithms with two or more parameters, LR-ElasticNet achieves a classifi-
cation accuracy of 0.875 at its optimal parameter values of lg(λ1) = 1.3 and lg(λ2) = 2.1.
LR-GraphNet shows improved performance, with an accuracy of 0.881, when lg(λ1) = 0.7
and lg(λ2) = 2.7. For the more complex algorithms LR-SS1 and LR-SS2, which each incor-
porate four tuning parameters (λ1, λ2, δ, and ε), we fixed δ = 1 and ε = 3 while optimizing
the remaining parameters. Under these conditions, LR-SS1 achieves the highest overall
accuracy of 0.882 with lg(λ1) = 1.6 and lg(λ2) = 4.0, while LR-SS2 reaches an accuracy of
0.868 with lg(λ1) = 1.3 and lg(λ2) = −0.6.

Table 5 shows the highest classification accuracies of the seven comparative algorithms
and their corresponding optimal parameters.

Table 5. Highest classification accuracy and optimal parameters for different algorithms.

Algorithm Accuracy lg(λ1) lg(λ2) δ ε

LR 0.801
LR-L2 0.866 4.9
LR-L1 0.867 1.3
LR-ElasticNet 0.875 1.3 2.1
LR-GraphNet 0.881 0.7 2.7
LR-SS1 0.882 1.6 4.0 1 3
LR-SS2 0.868 1.3 −0.6 1 3

Values in bold indicate the highest classification accuracy across all methods.

The classification accuracy of LR is the lowest (0.801) among all methods, demonstrat-
ing that regularization techniques, whether L2-norm, sparsity, or smoothness constraints,
effectively prevent overfitting and enhance the generalization performance of the algo-
rithms. This aligns with statistical learning theory, where regularization helps control
model complexity and reduces variance in predictions.

Comparing LR-L2 and LR-L1, which each contain only one regularization term, LR-L1
achieves a slightly higher classification accuracy (0.867) than LR-L2 (0.866). This sug-
gests that the sparsity constraint (L1-norm) is marginally more effective than the L2-norm
regularization in this case.

LR-ElasticNet combines L1-norm and L2-norm regularization, achieving a higher
classification accuracy (0.875) than both LR-L1 and LR-L2. This improvement demonstrates
the benefits of combining different types of regularization. LR-GraphNet further improves
upon this by incorporating spatial smoothness constraints, reaching an even higher accuracy
of 0.881.

LR-SS1 achieves the highest classification accuracy (0.882) among all methods, showing
the effectiveness of combining sparsity with the proposed smooth regularization. However,
it is noteworthy that LR-SS2 achieves a lower accuracy (0.868) than LR-SS1, and when
LR-SS2 reaches its optimal accuracy, the value of λ2 is relatively small (lg(λ2) = −0.6).
This suggests that for this particular dataset, the specific form of smooth regularization
used in LR-SS2 may not provide as much benefit as the form used in LR-SS1.
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To investigate the impact of parameters δ and ε on the performance of LR-SS1 and
LR-SS2, we fixed lg(λ1) and lg(λ2) at their optimal values from Table 5 and varied δ from
0.1 to 10 in increments of 0.1, and ε from 1 to 10 in integer steps. Since we are dealing with
one-dimensional signals where the distances between features are integers, ε is restricted to
positive integer values. No such restriction applies to δ, allowing it to take decimal values.

These results, shown in Figure 5, indicate reasonable parameter ranges for both
algorithms. For LR-SS1, the classification accuracy remains close to the highest accuracy
of 0.882 when ε = 1, 2, or 3, or when δ ≤ 2.7. For LR-SS2, the classification accuracy stays
close to its peak value of 0.868 when δ ≥ 0.5 for most cases. These patterns suggest that
both algorithms exhibit robustness across certain ranges of parameter values.
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Figure 5. Classification accuracy of (a) LR-SS1 and (b) LR-SS2 with varying δ and ε, where lg(λ1) and
lg(λ2) are fixed at their optimal values from Table 5.

It is worth noting that potentially higher classification accuracies could be achieved for
LR-SS1 and LR-SS2 through comprehensive optimization of all parameters simultaneously.
However, such exhaustive parameter tuning was not conducted in our experiments due to
computational constraints. A complete grid search across the four-dimensional parameter
space (λ1, λ2, δ, and ε) would be prohibitively expensive. Instead, we employed the above
two-step optimization approach. While this approach may not guarantee a global optimum,
it offers an effective compromise between computational efficiency and model performance,
enabling us to systematically analyze the influence of each parameter pair.

3.1.2. Feature Extraction Performance on the Simulated Dataset

Figure 6 presents the weight vectors obtained using optimal parameters from Table 5
for each LR algorithm. The weight vectors from LR and LR-L2 lack both smoothness
and sparsity, exhibiting noisy, non-zero values throughout the feature space. In contrast,
LR-L1, LR-ElasticNet, LR-GraphNet, LR-SS1, and LR-SS2 demonstrate effective sparsity
by reducing numerous weights to zero. Among these sparse solutions, LR-GraphNet
and LR-SS1 are particularly noteworthy for their excellent smoothness properties. LR-SS1
proves to be the most effective method, producing weight vectors that closely resemble
ideal sinusoidal signals by successfully zeroing out irrelevant regions while maintaining
smooth transitions in the sinusoidal regions. This demonstrates an optimal balance between
sparsity and smoothness constraints. LR-GraphNet achieves the second-best performance,
exhibiting good sparsity and smoothness characteristics, although it retains some non-zero
values outside the sinusoidal regions and shows slightly less smooth patterns compared
to LR-SS1.
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Figure 6. The weight vectors obtained with the optimal parameters from Table 5 for (a) LR, (b) LR-L2,
(c) LR-L1, (d) LR-ElasticNet, (e) LR-GraphNet, (f) LR-SS1, and (g) LR-SS2.

The remaining algorithms, namely LR-L1, LR-ElasticNet, and LR-SS2, exhibit compa-
rable sparsity characteristics, demonstrating successful identification and preservation of
specific patterns while effectively eliminating irrelevant features. The weight pattern ob-
tained by LR-ElasticNet bears a strong resemblance to that of LR-L1, which can be attributed
to the dominance of the sparsity regularization over the L2-norm regularization. Similarly,
LR-SS2 produces results analogous to LR-L1, primarily due to its small optimal λ2 value,
which substantially reduces the influence of smooth regularization while preserving robust
sparsity constraints. However, the patterns extracted through these algorithms lack the
refined smoothness characteristics exhibited by LR-SS1 and LR-GraphNet, highlighting the
critical role of effective smoothness regularization in accurately capturing the underlying
signal structure.

Table 6 presents the sparsity and smoothness metrics for each method. LR and LR-L2
show no sparsity (0%), with all elements being non-zero. Among the sparse methods,
LR-SS2 achieves the highest sparsity (80.5%), followed closely by LR-L1 (80.0%), LR-SS1
(79.5%), and LR-ElasticNet (77.0%). LR-GraphNet shows notably lower sparsity (31.5%),
indicating it retains more non-zero elements than other sparse methods.
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Table 6. Sparsity and smoothness statistics of weight vectors.

Method Sparsity (%) Smoothness

LR 0.0 13.1
LR-L2 0.0 4.8
LR-L1 80.0 1.2
LR-ElasticNet 77.0 1.2
LR-GraphNet 31.5 0.5
LR-SS1 79.5 0.4
LR-SS2 80.5 1.2

Values in bold indicate the best performance: highest sparsity and lowest smoothness values across all methods.

Examining the relationship between sparsity from Table 6 and regularization param-
eters from Table 5, we observe that sparsity is strongly correlated with the magnitude
of λ1. Generally, larger values of λ1 lead to increased sparsity in the weight vector. In
contrast, the relationship between sparsity and λ2 is more nuanced. While the impact
of λ2 is considerably less significant compared to that of λ1, it still influences sparsity to
some extent. A notable example is LR-SS1. Despite having the largest λ1 value among all
methods, its relatively large λ2 value results in a sparsity level that is slightly lower than
both LR-SS2 and LR-L1. This suggests that strong smoothness regularization can partially
counteract the sparsifying effect of λ1, leading to solutions that maintain more non-zero
elements to achieve smoother transitions in the weight vector.

Regarding smoothness, LR-SS1 demonstrates superior performance, with the low-
est smoothness value (0.4), closely followed by LR-GraphNet (0.5). This aligns with the
core objectives of these methods, which explicitly incorporate smoothness regularization
terms. The enhanced smoothness of LR-SS1 can be attributed to its larger λ2 parameter
compared to LR-GraphNet, resulting in more aggressive smoothness regularization. LR-
L1, LR-ElasticNet, and LR-SS2 exhibit moderate smoothness values (all 1.2), with their
sparsity-inducing regularization terms effectively zeroing many weights, leading to im-
proved smoothness compared to LR-L2. In the case of LR-SS2, its relatively small λ2 value
limits the impact of the smoothness regularization term, resulting in smoothness charac-
teristics similar to LR-L1 and LR-ElasticNet. The unregularized LR method shows the
highest smoothness value (13.1), indicating sharp transitions between adjacent weights and
highlighting how any form of regularization tends to improve weight vector smoothness.

The smoothness analysis clearly demonstrates the value of incorporating symmetric
smoothness regularization terms. Methods employing explicit smoothness regularizations
(especially LR-SS1 and LR-GraphNet) achieve markedly lower smoothness values com-
pared to methods using only sparsity regularization (LR-L1) or no regularization (LR).
This indicates that symmetric smoothness regularization terms effectively promote gradual
transitions between adjacent weights, contributing to models that are potentially more
interpretable and robust. The results suggest that when smooth weight patterns are desired,
methods with symmetric smoothness regularization terms should be preferred over those
focusing solely on sparsity or using no regularization.

3.2. Classification Performance on Simulated Datasets with Various Signal-to-Noise Ratios

To provide a more rigorous evaluation of the LR algorithms’ performance, we con-
ducted additional experiments addressing two key limitations of our previous analysis:
the use of a fixed dataset and the separate optimization of parameters for algorithms with
four parameters (LR-SS1 and LR-SS2). We employed Bayesian optimization [53,54] for
simultaneous parameter tuning and evaluated performance across multiple randomly
generated datasets with varying signal-to-noise ratios.
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Specifically, we generated four distinct synthetic datasets, each containing two classes
with 1000 samples per class. For all datasets, Class 0 samples consisted of pure Gaussian
noise (mean 0, variance 1). Class 1 samples were generated by superimposing a sinusoidal
signal onto Gaussian noise (mean 0, variance 1). To systematically evaluate algorithm
robustness across varying signal-to-noise ratios, we created the four datasets by setting the
sinusoidal signal amplitudes to 1, 1/2, 1/4, and 1/8, respectively. The sinusoidal signal was
present between time points 80 and 120, consistent with our earlier experiments. For clarity,
we refer to these four datasets as Dataset 1 (amplitude = 1), Dataset 2 (amplitude = 1/2),
Dataset 3 (amplitude = 1/4), and Dataset 4 (amplitude = 1/8) in order of decreasing signal
strength. This systematic variation in signal amplitude allows us to evaluate how each
method performs as the classification task becomes increasingly challenging.

For each dataset, we first employed stratified sampling to split the 2000 samples
evenly into training and test sets of 1000 samples each. The training set was then further
divided using stratified sampling, with 80% used for training and 20% for validation. We
used Bayesian optimization [53,54] to tune the parameters, with parameter ranges defined
as follows: λ1 and λ2 were searched in [1 × 10−3, 1 × 103] on a logarithmic scale, δ in
[0.1, 2.0], and ϵ in [1, 5] as integer values. The number of optimization iterations varied
based on algorithm complexity: 50 iterations for single-parameter algorithms (LR-L2,
LR-L1), 100 iterations for two-parameter algorithms (LR-ElasticNet, LR-GraphNet), and
200 iterations for four-parameter algorithms (LR-SS1 and LR-SS2). After obtaining the
optimal parameters, we retrained the models using the combined training and validation
sets and evaluated their performance on the test set. To ensure robust statistical results, we
repeated this entire process 100 times.

Table 7 presents comprehensive performance metrics across the four synthetic datasets,
with signal amplitudes decreasing from 1 to 1/8 (Datasets 1–4). For each method and
metric, we report the mean and standard deviation over 100 iterations. The results re-
veal several important patterns. LR-SS1 and LR-GraphNet consistently outperform other
methods across all signal amplitudes, with nearly identical performance metrics. Their
advantage is particularly evident as signal strength decreases. Specifically, for Dataset
4 (amplitude = 1/8), LR-SS1 and LR-GraphNet achieve accuracies of (0.605± 0.013) and
(0.604± 0.012), respectively, while all other methods fall below 0.585. The small standard
deviations (generally ≤ 0.015) across metrics demonstrate robust performance across dif-
ferent data splits and initializations. As expected, classification performance declines with
decreasing signal amplitude, from approximately 0.985 accuracy in Dataset 1 to 0.605 in
Dataset 4. However, the relative superiority of LR-SS1 and LR-GraphNet persists across all
signal levels.

Figure 7 illustrates these trends in classification accuracy across datasets. The plot
reveals excellent performance by all methods on Dataset 1 (accuracy > 0.96), with increasing
differentiation as signal strength decreases. Error bars (one standard deviation) demon-
strate result consistency across iterations. The visualization emphasizes the sustained
performance advantage of LR-SS1 and LR-GraphNet, which becomes more pronounced at
lower signal amplitudes. Their narrow error bars further highlight their stability relative to
other approaches.
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Table 7. Classification performance metrics for different signal amplitudes (mean ± std).

Dataset Method Accuracy Precision Recall F1 Score AUC

1

LR 0.961 ± 0.001 0.966 ± 0.000 0.955 ± 0.002 0.960 ± 0.001 0.993 ± 0.000
LR-L2 0.983 ± 0.002 0.979 ± 0.002 0.986 ± 0.003 0.983 ± 0.002 0.999 ± 0.000
LR-L1 0.981 ± 0.008 0.982 ± 0.005 0.979 ± 0.013 0.981 ± 0.009 0.998 ± 0.002
LR-ElasticNet 0.984 ± 0.002 0.981 ± 0.002 0.986 ± 0.003 0.984 ± 0.002 0.999 ± 0.000
LR-GraphNet 0.985 ± 0.003 0.983 ± 0.002 0.986 ± 0.005 0.985 ± 0.003 0.999 ± 0.001
LR-SS1 0.985 ± 0.003 0.983 ± 0.002 0.986 ± 0.005 0.985 ± 0.003 0.999 ± 0.001
LR-SS2 0.974 ± 0.025 0.977 ± 0.024 0.972 ± 0.029 0.974 ± 0.026 0.995 ± 0.014

2

LR 0.801 ± 0.000 0.794 ± 0.000 0.812 ± 0.001 0.803 ± 0.000 0.886 ± 0.000
LR-L2 0.853 ± 0.013 0.842 ± 0.013 0.867 ± 0.013 0.855 ± 0.013 0.928 ± 0.011
LR-L1 0.853 ± 0.014 0.844 ± 0.015 0.866 ± 0.013 0.855 ± 0.013 0.930 ± 0.010
LR-ElasticNet 0.861 ± 0.009 0.852 ± 0.011 0.873 ± 0.008 0.863 ± 0.008 0.936 ± 0.007
LR-GraphNet 0.871 ± 0.009 0.861 ± 0.011 0.886 ± 0.009 0.873 ± 0.009 0.940 ± 0.006
LR-SS1 0.870 ± 0.009 0.859 ± 0.010 0.885 ± 0.009 0.872 ± 0.009 0.940 ± 0.006
LR-SS2 0.856 ± 0.010 0.847 ± 0.011 0.868 ± 0.009 0.857 ± 0.009 0.932 ± 0.007

3

LR 0.646 ± 0.000 0.645 ± 0.000 0.650 ± 0.000 0.647 ± 0.000 0.701 ± 0.000
LR-L2 0.658 ± 0.007 0.652 ± 0.005 0.675 ± 0.015 0.663 ± 0.009 0.718 ± 0.007
LR-L1 0.659 ± 0.010 0.655 ± 0.009 0.670 ± 0.016 0.663 ± 0.012 0.721 ± 0.014
LR-ElasticNet 0.663 ± 0.010 0.658 ± 0.010 0.678 ± 0.016 0.668 ± 0.011 0.727 ± 0.014
LR-GraphNet 0.690 ± 0.008 0.686 ± 0.010 0.700 ± 0.008 0.693 ± 0.007 0.767 ± 0.010
LR-SS1 0.689 ± 0.008 0.684 ± 0.010 0.700 ± 0.008 0.692 ± 0.007 0.768 ± 0.011
LR-SS2 0.659 ± 0.011 0.656 ± 0.010 0.670 ± 0.017 0.663 ± 0.013 0.722 ± 0.015

4

LR 0.575 ± 0.000 0.578 ± 0.000 0.554 ± 0.000 0.566 ± 0.000 0.611 ± 0.000
LR-L2 0.568 ± 0.004 0.569 ± 0.006 0.561 ± 0.011 0.565 ± 0.004 0.614 ± 0.001
LR-L1 0.583 ± 0.009 0.584 ± 0.009 0.575 ± 0.015 0.579 ± 0.011 0.618 ± 0.007
LR-ElasticNet 0.580 ± 0.012 0.581 ± 0.012 0.575 ± 0.019 0.578 ± 0.014 0.617 ± 0.009
LR-GraphNet 0.604 ± 0.012 0.607 ± 0.012 0.592 ± 0.018 0.599 ± 0.014 0.646 ± 0.012
LR-SS1 0.605 ± 0.013 0.607 ± 0.014 0.594 ± 0.017 0.601 ± 0.015 0.649 ± 0.014
LR-SS2 0.573 ± 0.028 0.574 ± 0.028 0.566 ± 0.030 0.570 ± 0.028 0.604 ± 0.037

Values in bold denote the highest performance across all methods for each metric within each dataset.

From Table 7 and Figure 7, we can observe that the classification accuracy of LR-SS2
is generally comparable to algorithms without smooth regularizations, including LR-L2,
LR-L1, and LR-ElasticNet. These algorithms all show notably lower performance compared
to the other two algorithms that incorporate smooth regularizations, namely LR-GraphNet
and LR-SS1. Similar conclusions can be drawn from the weight matrices shown in Figure 6.
Therefore, the smooth matrix Q(2) in LR-SS2 is less effective in capturing the temporal or
spatial structure of the data for classification and feature extraction purposes, as compared
to the smooth matrix Q(1) in LR-GraphNet and LR-SS1.

When comparing LR-GraphNet and LR-SS1, an interesting observation emerges.
While LR-SS1 is theoretically a generalized form of LR-GraphNet and should achieve
equal or better classification accuracy with optimal parameter tuning, our experimental re-
sults show that their performances are remarkably similar, with LR-GraphNet occasionally
achieving marginally better results. This observation warrants discussion from two per-
spectives. First, it demonstrates the robust performance of the simpler LR-GraphNet model,
suggesting that its more constrained parameter space may actually be advantageous in
some scenarios. Second, despite employing extensive Bayesian optimization (100 iterations
for LR-GraphNet and 200 for LR-SS1), the challenge of simultaneously optimizing four
parameters in LR-SS1 versus two in LR-GraphNet highlights the practical limitations of
parameter optimization in higher-dimensional spaces, even with sophisticated techniques.
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Figure 7. Classification accuracy across datasets with varying signal amplitudes (1, 1/2, 1/4, and 1/8).
Results show mean accuracy over 100 iterations, with error bars indicating one standard deviation.

In total, these findings strongly support the effectiveness and robustness of the LR-SS
framework, especially LR-GraphNet and LR-SS1, under varying noise conditions. The
thorough parameter optimization via Bayesian optimization ensures a fair comparison of
each method’s capabilities, strengthening our conclusions about their relative performance.

3.3. Classification Performance on Real-World Datasets

Next, we evaluated the classification performance of the LR algorithms on the four
real-world datasets. Following our experimental protocol from the synthetic datasets,
we split the original training set of each real-world dataset into 80% training and 20%
validation data, then utilized Bayesian optimization for parameter tuning. The parameter
search ranges and the number of optimization iteration counts remain consistent with those
in the synthetic data experiments. Once optimal parameters were determined, we retrained
each model on the combined training and validation data with optimal parameters, and
then evaluated on the test set. To ensure robust results, we conducted 30 repetitions of
this process for the one-dimensional datasets (DistalPhalanxOutlineCorrect and GunPoint).
For the computationally intensive image datasets (FashionMNIST and MNIST), which
have larger sample sizes and higher dimensionality, we only performed 10 repetitions.
Table 8 presents the comprehensive classification performance metrics for all four real-
world datasets. Figure 8 illustrates the classification accuracy across the four real-world
datasets, with error bars indicating one standard deviation.

The results in Table 8 and Figure 8 reveal several interesting patterns across the
four real-world datasets. For the DistalPhalanxOutlineCorrect dataset, LR-GraphNet
achieves the best overall performance with the highest accuracy (0.567 ± 0.110), recall
(0.701 ± 0.208), F1 score (0.641 ± 0.132), and AUC (0.584 ± 0.098), while LR-SS2 leads
in precision (0.606 ± 0.063). The performance advantage of LR-GraphNet and LR-SS1
over traditional methods is particularly notable, suggesting that incorporating structural
information is beneficial for bone outline classification.
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Table 8. Classification performance metrics for different datasets (mean ± std): (a) DistalPhalanxOut-
lineCorrect, (b) GunPoint, (c) FashionMNIST, (d) MNIST.

Dataset Method Accuracy Precision Recall F1 Score AUC

(a)

LR 0.516 ± 0.090 0.576 ± 0.074 0.567 ± 0.159 0.568 ± 0.120 0.544 ± 0.061
LR-L2 0.508 ± 0.085 0.571 ± 0.069 0.556 ± 0.148 0.560 ± 0.111 0.534 ± 0.058
LR-L1 0.513 ± 0.093 0.573 ± 0.078 0.565 ± 0.166 0.565 ± 0.125 0.539 ± 0.065
LR-ElasticNet 0.520 ± 0.072 0.582 ± 0.059 0.584 ± 0.130 0.580 ± 0.096 0.541 ± 0.052
LR-GraphNet 0.567 ± 0.110 0.600 ± 0.072 0.701 ± 0.208 0.641 ± 0.132 0.584 ± 0.098
LR-SS1 0.563 ± 0.108 0.600 ± 0.071 0.684 ± 0.196 0.634 ± 0.129 0.580 ± 0.102
LR-SS2 0.544 ± 0.078 0.606 ± 0.063 0.599 ± 0.119 0.600 ± 0.092 0.558 ± 0.055

(b)

LR 0.757 ± 0.012 0.754 ± 0.012 0.772 ± 0.017 0.763 ± 0.012 0.824 ± 0.008
LR-L2 0.741 ± 0.058 0.735 ± 0.057 0.767 ± 0.070 0.750 ± 0.057 0.800 ± 0.083
LR-L1 0.770 ± 0.064 0.752 ± 0.065 0.821 ± 0.067 0.784 ± 0.056 0.821 ± 0.084
LR-ElasticNet 0.756 ± 0.067 0.746 ± 0.066 0.793 ± 0.097 0.766 ± 0.066 0.808 ± 0.090
LR-GraphNet 0.773 ± 0.059 0.768 ± 0.064 0.797 ± 0.091 0.779 ± 0.064 0.834 ± 0.059
LR-SS1 0.786 ± 0.051 0.777 ± 0.058 0.819 ± 0.074 0.795 ± 0.048 0.848 ± 0.072
LR-SS2 0.776 ± 0.066 0.761 ± 0.059 0.817 ± 0.077 0.787 ± 0.061 0.835 ± 0.078

(c)

LR 0.973 ± 0.001 0.972 ± 0.003 0.975 ± 0.001 0.973 ± 0.001 0.992 ± 0.001
LR-L2 0.978 ± 0.004 0.980 ± 0.007 0.976 ± 0.002 0.978 ± 0.004 0.995 ± 0.003
LR-L1 0.977 ± 0.003 0.979 ± 0.007 0.974 ± 0.002 0.977 ± 0.003 0.993 ± 0.002
LR-ElasticNet 0.974 ± 0.010 0.981 ± 0.010 0.967 ± 0.013 0.974 ± 0.011 0.993 ± 0.006
LR-GraphNet 0.977 ± 0.005 0.981 ± 0.009 0.974 ± 0.006 0.977 ± 0.005 0.995 ± 0.003
LR-SS1 0.978 ± 0.004 0.979 ± 0.007 0.977 ± 0.002 0.978 ± 0.004 0.994 ± 0.003
LR-SS2 0.974 ± 0.004 0.979 ± 0.007 0.969 ± 0.008 0.974 ± 0.004 0.994 ± 0.002

(d)

LR 0.991 ± 0.001 0.985 ± 0.002 0.999 ± 0.000 0.992 ± 0.001 0.993 ± 0.001
LR-L2 0.997 ± 0.002 0.996 ± 0.004 0.998 ± 0.001 0.997 ± 0.002 0.998 ± 0.003
LR-L1 0.994 ± 0.003 0.992 ± 0.006 0.997 ± 0.003 0.994 ± 0.003 0.997 ± 0.003
LR-ElasticNet 0.996 ± 0.003 0.994 ± 0.005 0.998 ± 0.001 0.996 ± 0.002 0.998 ± 0.003
LR-GraphNet 0.996 ± 0.003 0.995 ± 0.005 0.999 ± 0.001 0.997 ± 0.003 0.998 ± 0.003
LR-SS1 0.996 ± 0.003 0.995 ± 0.005 0.999 ± 0.001 0.997 ± 0.002 0.998 ± 0.003
LR-SS2 0.992 ± 0.005 0.991 ± 0.005 0.994 ± 0.008 0.992 ± 0.004 0.996 ± 0.003

Values in bold denote the highest performance across all methods for each metric within each dataset.

For the GunPoint dataset, LR-SS1 demonstrates superior performance across all
metrics, achieving the highest accuracy (0.786 ± 0.051), precision (0.777 ± 0.058), recall
(0.819 ± 0.074), F1 score (0.795 ± 0.048), and AUC (0.848 ± 0.072). This consistent dominance
indicates that LR-SS1’s ability to capture temporal dependencies is particularly effective for
motion classification tasks.

For the FashionMNIST dataset, both LR-L2 and LR-SS1 share the highest accu-
racy (0.978 ± 0.004) and F1 score (0.978 ± 0.004), while LR-ElasticNet leads in precision
(0.981 ± 0.010) and LR-SS1 in recall (0.977 ± 0.002). LR-L2, LR-GraphNet, and LR-SS1
achieve comparable AUC scores (0.995 ± 0.003, 0.995 ± 0.003, and 0.994 ± 0.003, respec-
tively), suggesting that for this relatively simple binary classification task, i.e., T-shirts vs.
trousers, even traditional regularization methods perform well.

For the MNIST dataset, LR-L2 achieves the highest accuracy (0.997 ± 0.002) and preci-
sion (0.996 ± 0.004), while LR-GraphNet and LR-SS1 share the highest recall (0.999 ± 0.001).
The AUC scores are consistently high (0.998 ± 0.003) across LR-L2, LR-ElasticNet, LR-
GraphNet, and LR-SS1, indicating that distinguishing between digits 0 and 1 is a relatively
straightforward task where most methods perform exceptionally well.

Overall, these results demonstrate that the LR-SS framework, particularly LR-
GraphNet and LR-SS1, performs competitively or superiorly across diverse real-world ap-
plications. Its effectiveness is most pronounced in tasks with clear structural dependencies,
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such as the temporal patterns in GunPoint and the spatial patterns in DistalPhalanxOut-
lineCorrect. For simpler classification tasks like binary FashionMNIST and MNIST, the
performance differences between methods become less pronounced, though the LR-SS
variants still maintain competitive performance.

DistalPhalanxOutlineCorrect GunPoint FashionMNIST MNIST
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Figure 8. Classification accuracy across four real-world datasets. Results show mean accuracy over
30 iterations for the DistalPhalanxOutlineCorrect and GunPoint datasets and 10 iterations for the
FashionMNIST and MNIST datasets, with error bars indicating one standard deviation.

4. Discussion
In this study, we have introduced logistic regression with sparse and smooth reg-

ularizations (LR-SS), a novel framework that enhances traditional logistic regression by
incorporating both sparsity and smoothness regularizations. The ability to capture tempo-
ral and spatial patterns while maintaining sparsity makes LR-SS especially powerful for
applications requiring both accurate prediction and interpretable results.

Through parameter adjustment, the proposed framework naturally encompasses
several existing algorithms as special cases. Two main variants include LR-SS1, which
utilizes the Laplacian-based smooth matrix Q(1) with extended neighborhood influence,
and LR-SS2, which employs the inverse matrix-based smooth matrix Q(2). LR-GraphNet
emerges as a special case of LR-SS1 when ε = 1, representing the scenario where only
immediate neighbors are considered in the smoothness constraint.

A significant technical contribution of this study lies in our development of an efficient
vectorized iterative solution within the MM framework. The symmetry of our smooth reg-
ularization matrices is crucial, ensuring positive semi-definiteness and enabling simplified
iterative solutions for both identity matrix and Laplacian matrix-based approaches. This ad-
vancement substantially reduces computational overhead while guaranteeing convergence
to a local optimum, providing both practical efficiency and theoretical rigor.

4.1. Advantages and Limitations

Our extensive experimental results consistently demonstrate the superior performance
of LR-SS variants, particularly LR-SS1 and LR-GraphNet, across both simulated and real-
world datasets. The experiments on simulated data were conducted under two different
parameter tuning strategies. Using grid search for parameter optimization, LR-SS1 achieved
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the highest classification accuracy (0.882), relatively high sparsity (79.5%), and the best
smoothness effect (0.4). Most notably, LR-SS1 demonstrated the strongest feature extraction
capability by recovering patterns that most closely matched the underlying patterns in
the original dataset, followed by LR-GraphNet. When employing Bayesian optimization
for parameter tuning, both LR-SS1 and LR-GraphNet consistently outperformed other
methods across all signal amplitudes, with nearly identical performance metrics. On
real-world datasets, LR-GraphNet achieved the highest accuracy (0.567 ± 0.110) on the chal-
lenging DistalPhalanxOutlineCorrect dataset, and LR-SS1 delivered the best performance
(0.786 ± 0.051) on the temporal GunPoint dataset. These results validate the framework’s
effectiveness in balancing sparsity and smoothness constraints while maintaining strong
predictive power across diverse application domains.

When comparing LR-GraphNet and LR-SS1, we observe that while both methods
achieve comparable classification accuracies, LR-SS1 demonstrates superior feature extrac-
tion capabilities in terms of both sparsity and smoothness. Despite its advantages in feature
extraction over LR-GraphNet, LR-SS1 has notable limitations that warrant consideration.
The computational overhead introduced by the smooth matrix Q can be substantial, partic-
ularly when dealing with large-scale datasets or dense smooth matrices. This increased
computational complexity compared to standard sparse logistic regression may impact
scalability in resource-constrained environments. Additionally, the framework requires
careful tuning of multiple parameters, including the regularization parameters λ1 and
λ2, as well as the smooth matrix parameters δ and ε. This multi-parameter optimization
process is inherently more complex than tuning simpler models, potentially requiring
more extensive cross-validation or sophisticated parameter search strategies to achieve
optimal performance.

As for LR-SS2 and its corresponding smooth matrix Q(2), their limitations are evident
in both theoretical and empirical analyses. While Q(2) maintains symmetry, it lacks two
crucial properties: the tridiagonal structure that effectively enforces smoothness between
adjacent features, and the positive semi-definiteness that guarantees the convexity of
the optimization problem. These theoretical shortcomings manifest in practice through
consistently inferior classification accuracy and feature extraction quality compared to
both LR-GraphNet and LR-SS1, as demonstrated across all experimental datasets. The
combination of weaker theoretical properties and poorer empirical performance suggests
that LR-SS2 has limited practical utility in real-world applications.

4.2. Implementation Strategy in Practice

Our comparative analysis reveals important practical considerations in choosing
between LR-GraphNet and LR-SS1. LR-GraphNet emerges as a robust choice for general
applications, offering an excellent balance between model performance and complexity.
With only two parameters to tune, it provides competitive classification accuracy while
maintaining reasonable computational efficiency. This makes it particularly suitable for
scenarios where computational resources are limited.

On the other hand, LR-SS1 represents a more sophisticated approach that can achieve
superior performance when computational resources permit. By constructing more com-
plex smoothness models and allowing for finer parameter tuning through its additional
parameters (δ and ε), LR-SS1 can match or exceed LR-GraphNet’s performance in both
classification accuracy and feature extraction quality. The enhanced flexibility in modeling
structural relationships comes at the cost of increased computational complexity and more
challenging parameter optimization.

This trade-off between model complexity and performance improvement suggests a
practical implementation strategy: start with LR-GraphNet as a baseline approach, and if
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the application demands higher performance and resources allow, consider upgrading to
LR-SS1 for potential gains in both classification and feature extraction capabilities.

4.3. Implications of Model Interpretability

The proposed framework excels in producing interpretable feature vectors through
its sparse and smooth characteristics, which is particularly valuable in fields like
medicine [2–4] and finance [7] where pattern understanding is crucial. Domain experts can
leverage the interpretability of the framework to gain insights that enhance decision-making
and practical application.

In the medical field, interpretable models, such as those utilizing sparse and smooth
representations, can identify critical features like lesions [2], genes [12,13], brain net-
works [21], brain regions [31], or other features [16] associated with specific diseases.
This not only helps in understanding disease mechanisms but also aids in developing
biomarkers for personalized treatment and drug discovery. For instance, by analyzing the
factors influencing disease risk, such as age, medical history, or genetic predispositions,
physicians can tailor interventions to high-risk patients, thus improving patient outcomes
and resource allocation.

In the financial domain, model interpretability facilitates the understanding of complex
market patterns and the development of robust investment strategies [7]. Similar features
among stocks within the same sector, identified by interpretable coefficients, can reveal
sector-wide trends or risks [55]. This clarity enables financial experts to optimize portfolio
management and mitigate systemic risks. Furthermore, transparency in applications like
credit scoring helps meet regulatory requirements by explaining decisions to stakeholders,
thereby fostering trust and reducing legal risks [56].

The impact of interpretability extends beyond improved insights—it drives informed
decision-making. By visualizing the relationships between key features and predictions,
experts can validate model outputs against domain knowledge, increasing trust in the
system. In healthcare, this might involve adjusting treatment plans based on model-driven
explanations rather than blind reliance on predictions. In finance, it might involve refining
risk management strategies by identifying high-risk customer characteristics. Ultimately,
interpretable models not only enhance the effectiveness of domain-specific applications
but also promote ethical and transparent use of machine learning or artificial intelligence
across industries.

In summary, the LR-SS framework’s unique combination of sparsity and smoothness
regularization makes it particularly well suited for applications requiring interpretable
results. Its ability to produce sparse feature vectors while maintaining smoothness between
related features enables clear visualization and understanding of patterns in both medical
and financial domains. The framework’s interpretability characteristics align well with the
growing demand for explainable AI solutions in regulated industries, where transparency
and accountability are paramount. Through its balanced approach to feature selection and
pattern preservation, LR-SS provides a powerful tool for domain experts to make informed,
evidence-based decisions while maintaining compliance with regulatory requirements.

4.4. Future Directions

Future research directions could include the following: 1. Extending the application
of LR-SS to additional fields, such as social science [5], finance [7], genomics [12,13], and
neuroscience [15,19,21,31], to evaluate its versatility across different types of data. 2. Ex-
tending the framework to handle multi-class classification problems [9] or other machine
learning paradigms [57]. 3. Developing distributed computing solutions for large-scale
applications [10]. 4. Integrating the framework with deep learning architectures [36–39]
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to construct interpretable neural networks. 5. Introducing Lp-norm [58,59] into both
the sparse and smooth regularization terms to improve the algorithms’ classification and
feature extraction performance. 6. Investigating advanced metaheuristic optimization
techniques for hyperparameter tuning [60,61].

5. Conclusions
In this paper, we have presented LR-SS, a novel framework that advances regularized

logistic regression by effectively integrating sparsity and symmetric smoothness constraints.
Our framework achieves superior classification performance while maintaining feature
interpretability through carefully designed symmetric smoothness regularizations that pro-
vide both theoretical guarantees and computational advantages. Through comprehensive
experimental evaluation across diverse datasets, we have demonstrated that LR-SS vari-
ants, particularly LR-GraphNet and LR-SS1, significantly outperform traditional methods,
with especially strong results on data exhibiting temporal or spatial dependencies. The
framework’s ability to extract meaningful, interpretable features while delivering consis-
tently high predictive accuracy makes it particularly valuable for real-world applications
requiring both model performance and explainability.

A key technical contribution is our proposed vectorized iterative solution within the
MM framework, which provides both computational efficiency and theoretical soundness.
This optimization approach, coupled with the framework’s flexibility in handling various
types of structural information, establishes LR-SS as a valuable addition to the machine
learning toolkit. The methodological principles developed in this work lay a foundation
for addressing complex classification challenges across numerous domains.

Looking forward, LR-SS’s demonstrated ability to effectively balance sparsity, smooth-
ness, and accuracy while maintaining computational efficiency positions it as a promis-
ing approach for future research in machine learning, bioinformatics, neuroscience, and
related fields. The framework’s success in combining these crucial aspects of modern
machine learning suggests its potential for broader impact across the spectrum of data
science applications.

Author Contributions: Conceptualization, J.W.; methodology, J.W., P.W., J.S., Y.L. and L.Z.; validation,
X.X. and P.W.; writing—original draft preparation, J.W. and P.W.; writing—review and editing, X.X.,
J.S., Y.L. and L.Z.; visualization, X.X. and L.Z.; funding acquisition, J.W., J.S., Y.L. and L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 31900710, Grant 62403405, and Grant 31600862; in part by the Key Scientific Research
Projects of Higher Education Institutions in Henan Province under Grant 25A520020; and in part by
the Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Data Availability Statement: The datasets used in this study are publicly available: (1) the Dis-
talPhalanxOutlineCorrect database can be downloaded from https://www.timeseriesclassification.
com/description.php?Dataset=DistalPhalanxOutlineCorrect (accessed on 25 November 2024); (2) the
GunPoint database can be downloaded from https://timeseriesclassification.com/description.php?
Dataset=GunPoint (accessed on 25 November 2024); (3) the FashionMNIST database can be down-
loaded from https://github.com/zalandoresearch/fashion-mnist (accessed on 4 December 2024); and
(4) the MNIST database can be downloaded from https://yann.lecun.com/exdb/mnist/ (accessed
on 4 December 2024). The complete source code used in this study has been made publicly available
at https://github.com/yuzhounh/LR-SS (released on 17 January 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.timeseriesclassification.com/description.php?Dataset=DistalPhalanxOutlineCorrect
https://www.timeseriesclassification.com/description.php?Dataset=DistalPhalanxOutlineCorrect
https://timeseriesclassification.com/description.php?Dataset=GunPoint
https://timeseriesclassification.com/description.php?Dataset=GunPoint
https://github.com/zalandoresearch/fashion-mnist
https://yann.lecun.com/exdb/mnist/
https://github.com/yuzhounh/LR-SS


Symmetry 2025, 17, 151 34 of 36

References
1. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013.
2. Abdalrada, A.S.; Yahya, O.H.; Alaidi, A.H.M.; Hussein, N.A.; Alrikabi, H.T.; Al-Quraishi, T.A.Q. A Predictive Model for Liver

Disease Progression Based on Logistic Regression Algorithm. Period. Eng. Nat. Sci. (PEN) 2019, 7, 1255–1264.
3. Shipe, M.E.; Deppen, S.A.; Farjah, F.; Grogan, E.L. Developing Prediction Models for Clinical Use Using Logistic Regression: An

Overview. J. Thorac. Dis. 2019, 11, S574. [CrossRef] [PubMed]
4. Cowling, T.E.; Cromwell, D.A.; Bellot, A.; Sharples, L.D.; van der Meulen, J. Logistic Regression and Machine Learning Predicted

Patient Mortality from Large Sets of Diagnosis Codes Comparably. J. Clin. Epidemiol. 2021, 133, 43–52. [CrossRef]
5. Goldstone, J.A.; Bates, R.H.; Epstein, D.L.; Gurr, T.R.; Lustik, M.B.; Marshall, M.G.; Ulfelder, J.; Woodward, M. A Global Model

for Forecasting Political Instability. Am. J. Political Sci. 2010, 54, 190–208. [CrossRef]
6. Bhattacharjee, P.; Dey, V.; Mandal, U. Risk Assessment by Failure Mode and Effects Analysis (FMEA) Using an Interval Number

Based Logistic Regression Model. Saf. Sci. 2020, 132, 104967. [CrossRef]
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