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Abstract: Modeling of impurity diffusion processes in a multiphase randomly inhomoge-
neous body is performed using the Feynman diagram technique. The impurity diffusion
equations are formulated for each of the phases separately. Their random boundaries
are subject to non-ideal contact conditions for concentration. The contact mass transfer
problem is reduced to a partial differential equation describing diffusion in the body as
a whole, which accounts for jump discontinuities in the searched function as well as in
its derivative at the stochastic interfaces. The obtained problem is transformed into an
integro-differential equation involving a random kernel, whose solution is constructed as
a Neumann series. Averaging over the ensemble of phase configurations is performed.
The Feynman diagram technique is developed to investigate the processes described by
parabolic partial differential equations. The mass operator kernel is constructed as a sum
of strongly connected diagrams. An integro-differential Dyson equation is obtained for
the concentration field. In the Bourret approximation, the Dyson equation is specified for
a multiphase randomly inhomogeneous medium with uniform phase distribution. The
problem solution, obtained using Feynman diagrams, is compared with the solutions of
diffusion problems for a homogeneous layer, one having the coefficients of the base phase
and the other having the characteristics averaged over the body volume.

Keywords: diffusion; multiphase randomly inhomogeneous medium; averaging over the
ensemble of phase configurations; Feynman diagram; Dyson equation; mass operator
kernel; Bourret approximation; Neumann series

1. Introduction
Over the past few decades, Feynman diagrams have significantly contributed to the

formulation of various theoretical predictions. They emerged as an important tool in
quantum field theory calculations, but they have also contributed to the development of
computational methods for many other problems of mathematical modeling of physical
processes, with a special emphasis on their automation. A comprehensive overview of the
present state of algorithmic Feynman diagram evaluation from a theoretical perspective
is given in [1]. Two primary factors explain their high importance in modern science:
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an algorithmic framework developed by physicists for manipulating these diagrams and
efficient algebraic programs designed to perform Feynman diagram calculations.

Feynman diagrams are a powerful research tool arising in theoretical physics over
the past hundred years. Initially developed within quantum electrodynamics to compute
physical process amplitudes, they have evolved into a core mathematical concept in quan-
tum field theory. Owing to their abstract nature, they find use in areas extending beyond
physical applications. A detailed analysis of Feynman diagrams and their application in
scientific models as well as a description of other diagrammatic methods in mathematical
physics that are used when working with series are given in [2–5]. The example of applica-
tion of Feynman diagrams shows that models are understood as mathematical objects that
correspond to the axioms of a certain theory and correspond to the empirical phenomenon.

Diagrammatic approaches are used as a component in the theory of analogical rea-
soning in mathematics, where general conditions are formulated to determine when an
analogy can serve as legitimate inductive support for a mathematical hypothesis in empiri-
cal sciences [6]. The development of Feynman diagrams arose due to the ability to visualize
phenomena and processes, and such visualization contributed to the formation of well-
grounded mathematical modeling of many phenomena through physical interpretation [7].
Diagrammatic approaches have proven effective in computational biology and structural
bioinformatics problems [8,9].

The study of the properties of Feynman diagrams has also inspired mathematicians to
develop many new approaches to mathematical modeling. Utilizing response and corre-
lation functions, the relevant Feynman diagrams were constructed and analyzed, which
facilitated the formulation of a systematic perturbation theory applicable to stochastically
controlled nonlinear oscillators under Gaussian white noise excitation [10].

Research on singular partial differential equations using methods of theoretical physics,
in particular quantum field theory, such as Feynman diagrams, was carried out in [11].
In [12], moments of the Gaussian integral were found using the diagrammatic approach.
The development of the wave functions of a harmonic oscillator using the Feynman diagram
technique was found in [13]. In [14], a number of Feynman algorithmic rules enabling
analytical study of large fluctuations in stochastic systems are presented, which allows
for the calculation of multi-time correlation functions. Special diagram rules have been
developed to simplify transformation. Mellin–Barnes representations have been used to
obtain the systems of linear homogeneous differential equations corresponding to the
original Feynman diagrams without the need for integration by parts [15]. The authors
of [16] obtained the results of the summation of Euler series that appear in the calculations
of the Feynman diagram.

The above-described methods and approaches of the Feynman diagram theory occupy
a special place in the mathematical modeling of diffusion transfer processes and in con-
vection models. When analyzing the equations and structures of solutions of a stochastic
velocity field that obeys the Navier–Stokes equation describing incompressible fluid flow
under the action of both regular and random external forces, the Feynman wireframe
diagram method is used [17]. Using this equation, one can calculate multiple statistical
properties describing the velocity field, including the variance of velocity pulsations (pair
correlation function) or the average reaction of the velocity field under the influence of
external forces [18]. Using the Green’s function expansion, an exact expression is presented
in [19] for determining the number of distinct connected Feynman diagrams. In [20], the
Green’s function expansions under perturbations at time points far from the initial state,
which is formulated in terms of the Feynman diagram, are obtained. The work [21] is
dedicated to theoretical modeling of heat transfer in multiphase systems exhibiting random
structural inhomogeneity. The Feynman diagram technique is applied to analyze fields of
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temperature averaged over the ensemble of phase configurations in bodies with multiple
stochastic phases. The study of averaged diffusion fields in the physical and mathematical
modeling of mass transfer processes in multiphase stochastically inhomogeneous bodies
using the Feynman diagram technique was carried out in [22]. A method for improving the
convergence of Neumann integral series for diffusion processes has been developed. An
exact reaction–diffusion equation for describing chemical reactions occurring in polymer
systems was derived in [23] using diagrams similar to Feynman diagrams. It was found
that, when interactions between molecules are absent, the obtained equation reduces to the
classical reaction–diffusion equation, and the diagram approach can be used to obtain a
more precise dynamic equation in which diffusion and reaction manifest themselves more
deeply than the diffusion of small molecules.

The symmetrical properties of the diffusion process refer to the homogeneity and
balance in the movement of particles from areas of high concentration to areas of low
concentration. In a symmetric diffusion process, particles are distributed uniformly in all
directions, resulting in a homogeneous distribution over time. Key aspects of symmetry
in diffusion include diffusion isotropy. This occurs when the speed of diffusion is the
same in all directions and the medium within which the particles diffuse has no impact
on the speed, resulting in a symmetrical distribution. Mathematical models of diffusion
based on Fick’s laws assume symmetry to simplify the calculations, and the corresponding
solutions to the parabolic equations reflect homogeneous concentration changes in space
and time. In practical scenarios, symmetry may be affected by boundaries or constraints.
For example, in a closed medium, diffusion can be symmetric until it reaches the walls,
and after that point in time, the symmetry can be broken due to reflection or absorption.
Thus, symmetry in diffusion is an important concept that helps to analyze and predict the
behavior of particles as they move and propagate in different media.

Symmetry in diffusion and Feynman diagrams can be understood through various
contexts in physics. Many physical theories demonstrate symmetries that are represented
in Feynman diagrams. The results of this article can be used to analyze how diffusion
processes and the Feynman diagrams used to visualize them reflect the fundamental
symmetries that govern the behavior of systems in physics and to analyze the symmetry of
Green’s functions, being an important aspect in the context of field theory.

The analysis of applying diagrammatic approaches to the mathematical modeling of
processes of a probabilistic nature shows the effectiveness (in particular, computational)
of such methods. Therefore, the purpose of the research conducted in this paper is to
apply the Feynman diagram technique to the mathematical modeling of impurity diffusion
processes in a multiphase body with random inhomogeneities. To achieve this aim, we
follow the steps below:

• The problems for the impurity diffusion are formulated for each phase separately and
include non-ideal conditions for the concentration function at random phase contact
boundaries.

• The contact mass transfer problem, which takes into consideration the jumps of the
searched function and its derivative at stochastic interphases, is reduced to a parabolic
partial differential equation for the entire body domain.

• The obtained problem is reduced to an integro-differential equation with a random
kernel.

• The Feynman diagram technique is developed to study the mass transfer processes
described by such parabolic equations.

• The solution of the problem is constructed using Feynman diagrams.
• The Dyson equation is obtained in graphical and analytical forms.
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• The resulting solution under uniform distribution of the phases is compared with so-
lutions of mass transfer problems in a homogeneous layer with base phase coefficients
and in a homogeneous layer with characteristics averaged over the body volume.

2. Formulation of the Contact Initial-Boundary Value Problem of
Diffusion in a Multiphase Stochastically Inhomogeneous Body

Let us consider the diffusion of an impurity in a multiphase randomly inhomogeneous
body, which consists of N + 1 solid phases that are different in density and have different
diffusion coefficients, a matrix, and inclusions of arbitrary shape (Figure 1). At the same
time, the precise spatial configuration of the phases within the body region is unknown.
Then, the disposition of the inclusions is not known, but we assume that the law of their
probability distribution is known [24]. Furthermore, suppose that the matrix volume
fraction significantly exceeds that of the inclusion, vj << v0 (j = 1, . . . , N). The assumption
is made that the material density and diffusion coefficient are constant in each of the phases.

 

Figure 1. Sample elements of a multiphase body with a randomly inhomogeneous structure.

Note that it is possible that two inclusions, when in contact with each other, touch
along a line (curve) or at a point. Then, the total area (length) of such inclusion contacts is∣∣∣∣∣∣∣∣∣∣∣

∑
all contact
points

Γji

∣∣∣∣∣∣∣∣∣∣∣

= mes 0, and this quantity can be neglected.

To determine concentrations cj

(→
r , t

)
of the impurity in the matrix (region (V0)) and

the inclusions (regions (Vj), j = 1, . . . , N) at the absence of internal mass sources, the
diffusion equations [25,26] formulated for each phase separately are used:

ρj

∂cj

(→
r , t

)

∂t
= dj∆cj

(→
r , t

)
,
→
r ∈ (Vj), t ∈ [0, τ], τ < ∞. (1)

Here, ρj is the density of the matter in the random region (Vj); dj = ρjDj is the kinetic

coefficient of impurity transfer to (Vj); Dj is the diffusion coefficient;
→
r = (x, y, z) is the

radius vector of a moving point; and t denotes time.
Suppose that the inclusions are located exclusively in the body region, that is, the

matrix is located on the outer boundary of the body. Initial and boundary conditions are
prescribed as follows:

cj(
→
r , t)

∣∣∣
t=0

= ĉj(
→
r ) (j = 0, . . . , N ), c0(

→
r , t)

∣∣∣→
r ∈δV

= c̃(t). (2)

In otherwords, the initial distribution of the impurity concentration field is known, and the
concentration values on the body’s boundary are maintained.
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At the interfaces, e.g., the boundaries between the regions (V0) and (Vj)(j = 1, . . . , N),
the conditions of non-ideal mass contact with respect to concentration are imposed [27,28]:

k jcj(
→
r , t)

∣∣∣→
r ∈Γjl−0

= klcl(
→
r , t)

∣∣∣→
r ∈Γjl+0

; (3)

ρjdj
→
∇cj(

→
r , t)

∣∣∣∣→
r ∈Γjl−0

= ρldl
→
∇cl(

→
r , t)

∣∣∣∣→
r ∈Γjl+0

, j, l = 1, . . . , N, (4)

where ks (s = j, l) is the coefficient describing the concentrationdependence of the particles’
chemical potential in phase s [27], which determines the magnitude of the concentration-
field jump at the interfacial boundaries, and Γji is the boundary of the ith simply connected
region of the jth phase (Vji). Moreover,

Γ =
N∪

j=0

nj
∪

i=1
Γji, (5)

is the total phase contact boundary, and nj is the number of simply connected regions in the
phase j. In this problem’s statement, the random quantities are the contact surfaces, i.e., the
boundaries of the regions (Vji), which are internal for the body, which leads to stochasticity
of the concentration field of the diffusing matter.

3. Equation of Mass Transfer for the Entire Body
Let us reduce the contact problem of diffusion (1), (3), and (4) to the mass transfer

equation for a body in general. For this purpose, let us define a random function of the
spatial coordinate c(

→
r , t) that characterizes concentration field in the body as a whole:

c(
→
r , t) =

{
cj(

→
r , t),

→
r ∈ (Vj), j = 0, . . . , N;

contact conditions (3), (4),
→
r ∈ Γ.

(6)

Let us seek
→
∇c(

→
r , t), considering that the concentration field c(

→
r , t) has first kind

jump discontinuities (conditions (3), (4)) on the boundaries of contact between regions Γ.
Therefore, we obtain [29]

→
∇c(

→
r , t) =

{→
∇c(

→
r , t)

}
+ [c(

→
r , t)]Γδ(

→
r −→

r Γ), (7)

where
→
r Γ is the radius vector of the boundary Γ points; {. . .} are the regions of continuity

of the function; [. . .]Γ is the function jump at the boundary Γ; and δ(·) stands for the
delta function.

We observe that the jump [c(
→
r , t)]Γ =( c(

→
r , t)

∣∣∣
Γ−

·→n Γ) + (c(
→
r , t)

∣∣∣
Γ+

·→n Γ) (
→
n Γ) is unit

normal vector to the contact boundary) is in fact a vector quantity and varies with the
radius vector

→
r ∈ Γ.

The quantity ∆c(
→
r , t) is found in the same way as (7), considering that the function

→
∇c(

→
r , t) has first kind jump discontinuities on the surfaces of phase division (conditions

(4)). Then, we have

∆c(
→
r , t) =

{
∆c(

→
r , t)

}
+

[→
∇c(

→
r , t)

]

Γ
δ(

→
r −→

r Γ) + [c(
→
r , t)]Γ ·

→
∇δ(

→
r −→

r Γ). (8)
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Coefficients d(
→
r ) and ρ(

→
r ) are designated for open regions, namely

d(
→
r ) =

N

∑
j=0

{
dj
}
→
r ∈(Vj)\Γ

and ρ(
→
r ) =

N

∑
j=0

{
ρj
}
→
r ∈(Vj)\Γ

. (9)

At the same time, at the contact boundaries of
→
r ∈ Γ, a jump of these coefficients takes

place
[
ρ(

→
r )

]
→
r ∈Γji

,
[
d(

→
r )

]
→
r ∈Γji

.

Note that the relation for the stochastic field of impurity concentration in the whole
body (6) completely describes the function c

(→
r , t

)
for

→
r ∈ (V), t ∈ [0, τ].

Let us introduce the random operator ηij(
→
r ) as the “structure function”, which is

defined as follows:

ηji

(→
r
)
=

{
1, i f

→
r ∈ (Vji),

0, i f
→
r /∈ (Vji),

(10)

which satisfies the condition of body solidity

N

∑
j=0

nj

∑
i=1

ηji(
→
r ) = 1. (11)

Note that the probability law of the structural function ηij(
→
r ) matches the given

probability law for the distribution of phases in the body.
Then, the kinetic coefficient d(

→
r ) and the density ρ(

→
r ) can be represented using a

random structure function (10) as follows:

ρ(
→
r ) =

N

∑
j=0

nj

∑
i=1

ρjηji(
→
r ), d(

→
r ) =

N

∑
j=0

nj

∑
i=1

djηji(
→
r ). (12)

For the body as a whole, the mass balance equation holds

ρ
(→

r
)∂c

(→
r , t

)

∂t
= −

→
∇ ·

→
J
(→

r , t
)

, (13)

Here,
→
J
(→

r , t
)
= d

(→
r
)→
∇c

(→
r , t

)
is the impurity flow.

Let us take into consideration that d(
→
r ) is a piecewise-constant function and has first

kind jump discontinuities at the contact surfaces; then, the action of the nabla operator on
it leads to

→
∇d(

→
r ) =

{→
∇d(

→
r )

}
→
r ∈(Vji)

+
[
d(

→
r )

]
→
r ∈Γ

δ(
→
r −→

r Γ). (14)

Since we assumed the problem coefficients to be constant in each phase, Formula (14)
reduces to the form →

∇d(
→
r ) =

[
d(

→
r )

]
→
r ∈Γ

δ(
→
r −→

r Γ). (15)

Taking into account the ratios (7), (8), and (15), we present the Equation (13) as follows:

ρ(
→
r ) ∂c(

→
r ,t)

∂t =
{

d(
→
r )

}{
∆c(

→
r , t)

}
+

[
d(

→
r )

]
Γ

[→
∇c(

→
r , t)

]

Γ
δ(

→
r −→

r Γ)

+
[
d(

→
r )

]
Γ

[
c(

→
r , t)

]
Γ

→
∇δ(

→
r −→

r Γ) +
[
d(

→
r )

]
Γ

[
c(

→
r , t)

]
Γ
δ2(

→
r −→

r Γ).
(16)

It is taken into consideration here that the function c(
→
r , t) is a piecewise continuous

one in time together with the first derivative. It is also accepted that the regions of conti-
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nuity of the kinetic coefficient d(
→
r ) and the function c(

→
r , t) coincide:

{
d(

→
r )

}{
c(

→
r , t)

}
=

{
d(

→
r )c(

→
r , t)

}
.

Using the condition of body solidity (11) and representations (12), the equation for the
entire body is written as

L(
→
r , t)c(

→
r , t) ≡

N
∑

j=0

nj

∑
i=1

ρjηji(
→
r )

∂c
∂t

−
N
∑

j=0

nj

∑
i=1

djηji(
→
r )∆c(

→
r , t)

−1
2

N
∑

j=0

nj

∑
i=1

[
d(

→
r )

]
Γji

[→
∇c(

→
r , t)

]

Γji

δ(
→
r −→

r Γji )−
1
2

N
∑

j=0

nj

∑
i=1

[
d(

→
r )

]
Γji

[→
∇c(

→
r , t)

]

Γji

→
∇δ(

→
r −→

r Γji )

−1
2

N
∑

j=0

nj

∑
i=1

[
d(

→
r )

]
Γji

[
c(

→
r , t)

]
Γji
δ2(

→
r −→

r Γji ) = 0.

(17)

In Equation (17), let us add and subtract the deterministic operator L0(
→
r , t) with

coefficients that are characteristics of the base phase (matrix)

L0(
→
r , t) = ρ0

∂

∂t
− d0∆.

Then, we will obtain

L0(
→
r , t)c(

→
r , t) = Ls(

→
r , t)c(

→
r , t), (18)

Here, Ls(
→
r , t) is the following:

Ls(
→
r , t) =

N

∑
j=1

(ρ0 − ρj)

nj

∑
i=1

ηji(
→
r )

∂

∂t
−

N

∑
j=1

(d0 − dj)

nj

∑
i=1

ηji(
→
r )∆

+
1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji

[→
∇ . . .

]

Γji

δ
(→

r −→
r Γji

)
+

1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji
[. . .]Γji

→
∇δ

(→
r −→

r Γji

)

+
1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji
[. . .]Γji

δ2
(→

r −→
r Γji

)
. (19)

Thus, a stochastic differential equation of the mass transfer of an impurity for a
medium with randomly located inclusions was obtained in the form of (17), and a “per-
turbed” differential equation was obtained in the form of (18) with a random operator (19).

4. Integro-Differential Mass Transfer Equation:Neumann Series
Treating the right-hand side of Expression (18) as a source for the mass transfer process

in a stochastically non-homogeneous multiphase body, we construct an integro-differential
equation that is the equivalent of the contact-boundary problems (1)–(4) considered ini-
tially [27]:

c(
→
r , t) = ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)c(

→
r
′
, t′) d

→
r
′
dt′. (20)

with ch(
→
r , t) representing the solution of the homogeneous initial boundary value problem

L0(
→
r , t)ch(

→
r , t) = 0, (21)

ch(
→
r , t)

∣∣∣→
r ∈δV

= c̃(t), ch(
→
r , t)

∣∣∣
t=0

= ĉ0(
→
r ); (22)
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G(
→
r ,

⇀
r
′
, t, t′) is the Green’s function, which is obtained as the solution to a deterministic

initial boundary value problem that includes a point source

L0(
→
r , t)G(

→
r ,

→
r
′
, t, t′) = δ(t − t′)δ(

→
r −→

r
′
), (23)

G(
→
r ,

→
r
′
, t, t′)

∣∣∣→
r ∈δV

= 0, G(
→
r ,

→
r
′
, t, t′)

∣∣∣
t=0

= 0. (24)

The solution of the integro-differential Equation (20) is constructed as a Neumann
integral series expansion. This equation is satisfied for all the points (

→
r , t) in the field of

definition, in particular at the point (
→
r
′
, t′). Let us write an expression for the concentration

field c(
→
r , t) at the point (

→
r
′
, t′),

c(
→
r
′
, t′) = ch(

→
r
′
, t′) +

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )c(
→
r
′′

, t′′ ) d
→
r
′′

dt′′ , (25)

and substitute the obtained relation (25) into the integro-differential Equation (20):

c(
→
r , t) = ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)ch(

→
r
′
, t′) d

→
r
′
dt′

+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )c(
→
r
′′

, t′′ ) d
→
r
′′

dt′′ d
→
r
′
dt′. (26)

Equation (20) is true for all the points (
→
r , t) in the field of definition, in particular at

the point (
→
r
′′

, t′′ ).

c(
→
r
′′

, t′′ ) = ch(
→
r
′′

, t′′ ) +
t′′∫

0

∫

(V)

G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ )Ls(
→
r
′′′

, t′′′ )c(
→
r
′′′

, t′′′ ) d
→
r
′′′

dt′′′ . (27)

Let us substitute (27) in (26). We obtain

c(
→
r , t) = ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)ch(

→
r
′
, t′) d

→
r
′
dt′

+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )ch(
→
r
′′

, t′′ ) d
→
r
′′

dt′′ d
→
r
′
dt′

+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )

×
t′′∫

0

∫

(V)

G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ )Ls(
→
r
′′′

, t′′′ )c(
→
r
′′′

, t′′′ )d
→
r
′′′

dt′′′ d
→
r
′′

dt′′ d
→
r
′
dt′. (28)

As a result of an infinite iterative process, the Neumann series is obtained, namely

c(
→
r , t) = ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)ch(

→
r
′
, t′) d

→
r
′
dt′
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+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )ch(
→
r
′′

, t′′ ) d
→
r
′′

dt′′ d
→
r
′
dt′

+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Ls(

→
r
′
, t′)

t′∫

0

∫

(V)

G(
→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )

×
t′′∫

0

∫

(V)

G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ )Ls(
→
r
′′′

, t′′′ )ch(
→
r
′′′

, t′′′ )d
→
r
′′′

dt′′′ d
→
r
′′

dt′′ d
→
r
′
dt′ + . . . . (29)

Proposition 1. If the densities ρ0, ρj(j = 1, . . . , N) and the diffusion coefficients d0,
dj(j = 1, . . . , N) are bounded and ρ0 ̸= 0, d0 ̸= 0, the for bounded VNeumann integral
series (29) is absolutely and uniformly convergent.

The proof of this Proposition is given in Appendix A.
Moreover, the convergence of the Neumann series (29) does not depend on the values

of the coefficients k j (j = 0, . . . , N), which determine the magnitude of the jump of the
concentration function at the random interfacial boundaries. The proof also does not invoke
any condition on the existence of characteristic inclusion sizes. However, one must know
(as an input parameter of the problem) the number of inclusions nj (j = 0, . . . , N) or, at
least, that the number of inclusions in the body is finite and, for example, does not exceed
Nj: nj ≤ Nj < ∞.

We also note that, for t → ∞, in the stationary case, the Neumann series is divergent
under sufficiently weak constraints since, in the stationary case, the domain of convergence
of the series is significantly smaller than in the non-stationary case [30].

Since ch(
→
r , t) is a continuously differentiable function, then the jump discontinuities

of the function and its derivative across the boundary are equal to 0. Then,

Ls(
→
r , t)ch(

→
r , t) =

N

∑
j=1

(ρ0 − ρj)

nj

∑
i=1

ηji(
→
r )

∂ch(
→
r , t)

∂t

−
N

∑
j=1

(d0 − dj)

nj

∑
i=1

ηji(
→
r )∆ch(

→
r , t). (30)

The initial term of the Neumann series corresponds to the function ch(
→
r , t) in a

homogeneous body having the properties of the base phase. The second term represents
the sum of the concentration field perturbations that arise when inclusions are inserted into
the body one by one, the third one describes the pairwise influence of the inclusions on the
concentration field, etc. In this case, the effects of jumps in the diffusion coefficient at the
interphase boundaries are taken into account, which is ensured by the operator Ls.

5. Feynman Diagram Technique for Mass Transfer Problems in a
Stochastically Inhomogeneous Medium

The Neumann series (29) expresses the random concentration field as a series of
perturbations resulting from inclusions with diffusion characteristics distinct from those
of the matrix. To examine the structure of this series, a diagrammatic representation of its
terms based on R. Feynman diagrams [31] is introduced. Here, the typical notations are
used [32].
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Let us associate the Green’s function G(
→
r
′
,
→
r
′′

, t′, t′′ ) with a straight line segment, to

whose ends the points (
→
r
′
, t′) and (

→
r
′′

, t′′ ) are assigned [32]:

),( tr ),( tr 
  ~,,, ttrrG 


     

Let us associate the operator Ls(
→
r
′
, t′) with a vertical segment with dots at its ends:

),( tr 
  ~, trLs 


. 

Let us associate the functions of the random concentration field c(
→
r , t) and the con-

centration field in a homogeneous body ch(
→
r , t) with a tick and a wavy line, respectively:

~),( trch


. ~),( trc


, 

The space–time positions (
→
r
′
, t′), (

→
r
′′

, t′′ ), where the lines visualizing c(
→
r , t), ch(

→
r , t),

G(
→
r ,

→
r
′
, t, t′), and Ls(

→
r
′
, t′) merge together, are the vertices of a diagram. The integration

is performed over the internal vertices’ coordinates. The total number of such vertices in
the diagram determines its order. Such notations allow us to associate each term of the
series (29) with a Feynman diagram. The first right-hand side element of (29) is represented
by the diagram

 

and the second term of this formula corresponds to the diagram

),( tr 
 . 

In the general case, a term of the order n of the Neumann series for c(
→
r , t) has the form

t∫

0

∫

(V)

. . .
t(n−1)∫

0

∫

(V)︸ ︷︷ ︸
n

G(
→
r , t,

→
r
′
, t′)Ls(

→
r
′
, t′)G(

→
r
′
, t′,

→
r
′′

, t′′ ) . . .

×Ls(
→
r
(n)

, t(n))ch(
→
r
(n)

, t(n))d
→
r
(n)

dt(n) . . . d
→
r
′
dt′.

Therefore, the diagrams of the order n contain n lines of the Green’s function and n lines of

internal vertices (
→
r
′
, t′), . . ., (

→
r
(n)

, t(n)). At the same time, they always end in a wavy line
ch(

→
r ) [30]:

),( )()( nn tr
 . … 

),( )1()1(  nn tr
),( tr  ),( tr 

Then, the series (29) in diagrammatical form will take the following form:

=  +  +  +  + ),( tr  ),( tr  ),( tr  ),( tr  ),( tr  ),( tr 
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),( )()( nn tr
 . … 

),( )1()1(  nn tr
),( tr  ),( tr  (31)

Averaging the random concentration field (29) over the ensemble of phase configura-
tions yields the following analytical expression:

⟨c(→r , t)⟩ = ch(
→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)⟨Ls(

→
r ′, t′)⟩ch(

→
r ′, t′)d

→
r ′dt′

+

t∫

0

∫

(V)

t′∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)G(

→
r
′
,
→
r
′′

, t′, t′′ )Ls(
→
r
′′

, t′′ )
〉

ch(
→
r
′′

, t′′ )d
→
r
′′

dt′′ d
→
r
′
dt′

+

t∫

0

∫

(V)

t′∫

0

∫

(V)

t′′∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)G(

→
r
′
,
→
r
′′

, t′, t′′ )

×Ls(
→
r
′′

, t′′ )G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ )Ls(
→
r
′′′

, t′′′ )
〉

ch(
→
r
′′′

, t′′′ )d
→
r
′′′

dt′′′ d
→
r
′′

dt′′ d
→
r
′
dt′ + . . . . (32)

Considering the structure of the operator Ls(
→
r
′
, t′) (19), one needs to calculate the expres-

sions of the type
〈

ηij(
→
r
′
)
〉

,
〈
δ
(→

r
′ −→

r Γij

)〉
,
〈

ηij(
→
r
′
)ηkl(

→
r
′′
)
〉

,
〈
δ
(→

r
′ −→

r Γij

)
δ
(→

r
′′ −→

r Γkl

)〉
,

〈
ηij

(→
r
′)
δ
(→

r
′′ −→

r Γkl

)〉
, etc. That is, to calculate the averaged concentration field, it is required

to determine the moments
〈

ηij(
→
r
′
) . . . ηkl(

→
r
(n)

)

〉
,
〈
δ
(→

r
′ −→

r Γij

)
. . . δ

(
→
r
(n) −→

r Γkl

)〉
, and

〈
ηij

(→
r
′)

. . . δ
(
→
r
(n) −→

r Γkl

)〉
of all orders. With a general statistical distribution, this

becomes a complex problem, and additionally, the issue of choosing an appropriate method
for summing the averaged series arises. For example, in the case of a small volume fraction
of inclusions for small diffusion coefficients, one can limit oneself to the “Born approx-
imation” [33], i.e., considering only the first two terms of the Neumann series. Then,
the problem is reduced to the case of perturbation of concentration fields by specified
random sources.

In this case, the random field (first approximation) ⟨c⟩(1) is a linear functional of
fluctuations d̃(

→
r ) = d(

→
r )−

〈
d(

→
r )

〉
, ρ̃(

→
r ) = ρ(

→
r )−

〈
ρ(

→
r )

〉
. Therefore, each moment of

⟨c⟩(1) is expressed linearly through the moments d̃(
→
r ) and ρ̃(

→
r ), having the same order.

The field of the averaged concentration in the Born approximation is defined as
follows:

〈
c(

→
r , t)

〉(1)
= c(0)(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)

〉
c(0)(

→
r
′
, t′)d

→
r
′
dt′. (33)

In this case, c(0)(
→
r , t) = ch(

→
r , t).

The correlation function (also known as autocorrelation), by its definition, is [34]

ψc

(→
r 1,

→
r 2, t

)
≡

〈
c(

→
r 1, t)c(

→
r 2, t)

〉
−

〈
c(

→
r 1, t)

〉〈
c(

→
r 2, t)

〉
. (34)
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Here, if we use
→
r 1 =

→
r 2 =

→
r , then we will obtain the variance of the random field

D[c] at the point
→
r :

D[c] ≡ σ2
c (

→
r , t) ≡

〈∣∣∣c̃(→r , t)
∣∣∣
2
〉

=

〈[
c(

→
r , t)−

〈
c(

→
r , t)

〉]2
〉

.

Relation (34) together with analogous expressions for higher-order moments of the
field c(

→
r , t) yield a complete statistical solution of the problem. The statistical char-

acteristics are described by cumulant (or correlation) functions of arbitrary order. We
associate these functions with dashed lines, where the order of the cumulant function
ψk(

→
r 1,

→
r 2, . . . ,

→
r k) [34] matches the diagram order.

. r 

r 
 )(kr


~),...,,( )(k

k rrr


 . … 

Because the concentration field is time deterministic, time appears as a parameter in
cumulative functions.

In the general case, the moments from the operator Ls that contains fluctuations d̃(
→
r )

and ρ̃(
→
r ) can be written down as [35]

〈
Ls(

→
r
′
, t′) . . . Ls(

→
r
(k)

, t(k))
〉

= ψk(
→
r
′
, . . . ,

→
r
(k)

)

+
k

∑
l=1

〈
Ls(

→
r
(l)

, t(l))
〉〈

Ls(
→
r
′
, t′) . . . Ls(

→
r
(l−1)

, t(l−1))Ls(
→
r
(l+1)

, t(l+1)) . . . Ls(
→
r
(k)

, t(k))
〉
+ . . . (35)

or in the form of diagrams
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(36)

Note that expression (35) decomposes into the sum k! of terms, in which the arguments
→
r
′
,
→
r
′′

, . . .,
→
r
(k)

connected in every possible way. Therefore, at the time of averaging, we
obtain k! of diagrams of the k order, in which k vertices connect with each other in all

possible ways. Note that, since integration occurs over the coordinates
→
r
′
,
→
r
′′

, . . . ,
→
r
(k)

of
the interior vertices, the analytical expression represented by the diagram has no depen-
dency on the interior vertices’ coordinates. Thus, such coordinates are not indicated in the
subsequent diagrams.

Let us introduce a graphical representation for the averaged concentration field in an
inhomogeneous medium:
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→
r
(k)

, t(k))
〉

= ψk(
→
r
′
, . . . ,

→
r
(k)

)

+
k

∑
l=1

〈
Ls(

→
r
(l)

, t(l))
〉〈

Ls(
→
r
′
, t′) . . . Ls(

→
r
(l−1)

, t(l−1))Ls(
→
r
(l+1)

, t(l+1)) . . . Ls(
→
r
(k)

, t(k))
〉
+ . . . (35)

or in the form of diagrams

(36)
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′
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′
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, . . . ,
→
r
(k)
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the interior vertices, the analytical expression represented by the diagram has no depen-
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Here, in addition to the terms written in (32), seven fourth-order terms (diagrams with
four vertices) are also given.

Each Feynman diagram uniquely corresponds to an analytical expression and
vice versa.

Certain diagrams comprising (37) include lower-order diagrams as fragments. For
example, diagram 3 contains, as a fragment, diagram 2, and diagram 6 includes diagrams 2
and 4. This makes it possible to shorten the analytical expression.

Let us consider the physical interpretation of Feynman diagrams. Diagram 1 from
the series (37) describes the propagation of a concentration field from a source or from a
surface (depending on the boundary conditions and the presence of internal mass sources)
in a homogeneous medium. Diagram 2 describes the following process: the concentration

field propagates from the source to point
→
r
′

as in a homogeneous medium. At point
→
r
′
, the

concentration field is perturbed because this point belongs to the inclusion or its boundary
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→
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belonging to the inclusion is determined by the averaged operator
〈

Ls(
→
r
′
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〉

, otherwise

it is zero). Then, the perturbed field reaches point
→
r , where the observation takes place

(Figure 2a).
Let us now consider the second-order diagrams. Diagram 3 represents the spread of

the concentration field from the source to point
→
r
′′

, which is in the inclusion (operator〈
Ls(

→
r
′′
)
〉

), where it experiences a perturbation; then, the perturbation field extends to

point
→
r
′
, which belongs to another inclusion (operator

〈
Ls(

→
r
′
)
〉
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point
→
r
′
, which belongs to another inclusion (operator

〈
Ls(

→
r
′
)
〉

in analytical form) and
experiences a second perturbation, after which, the twice perturbation field extends to
the observation point

→
r (Figure 2b). Diagram 4 differs from diagram 3 by the presence

of the correlation function ψ2(
→
r
′
,
→
r
′′
), which indicates that the two perturbation points

→
r
′

and
→
r
′′

are correlated, i.e., both perturbations occurred in the same heterogeneity (Fig-
ure 2c). All third-order diagrams 5–9 contain the functions ch(

→
r
′′′

, t′′′ ), G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ ),

G(
→
r
′
,
→
r
′′

, t′, t′′ ), and G(
→
r ,

→
r
′
, t, t′). This means that the concentration field has spread to

the point
→
r after perturbation in point

→
r
′
, to point

→
r
′

after perturbation in point
→
r
′′

, and
so on. Therefore, all these diagrams describe a triple perturbation of the concentration field.
However, diagrams 5–9 are topologically different. Diagram 5 does not contain correla-
tion functions, that is, three perturbations of the concentration field occurred in different

inhomogeneities. Diagrams 6–8 contain correlation functions ψ2(
→
r
′′

,
→
r
′′′
), ψ2(

→
r
′
,
→
r
′′
),

and ψ2(
→
r
′
,
→
r
′′′
), respectively. This means that the field is perturbed three times in two

inhomogeneities (Figure 3a–e).

 

 

 

Figure 2. Single and double perturbations of the concentration field: (a) single perturbation in one
inclusion; (b) single perturbation in the first inclusion, single perturbation in the second inclusion;
(c) double perturbation in one inclusion.

Diagram 9 contains the cumulative function ψ3(
→
r
′
,
→
r
′′

,
→
r
′′′
), that is, all three concen-

tration field perturbations occur in a single inclusion.
Representing the solution of the initial-boundary value problem (17), (2), as a set of

diagrams (37),allows for the transformationof the Neumann series using the topological
features of the diagrams that contain solution.

The sum of series (32) can be represented as a sum involving a certain infinite subse-
quence of the same series. For this purpose, we classify the diagrams involved in (37) [31].

A diagram is termed weakly connected if, by breaking a certain one line G, it can
be split into two separate diagrams. In expression (37), diagrams 3, 5–7, 10–13, 15, and
17–20 are weakly connected. The other diagrams, i.e., 1, 2, 4, 8, 9, 14, 16, and 21, are
strongly connected. The diagrams obtained as a result of breaking G lines can, in turn,
be either strongly or weakly connected. If the set of “secondary” diagrams contains
weakly connected diagrams, they can be split down into simpler diagrams. Following this
procedure, we will end up with a certain number of strongly connected diagrams. The
quantity of strongly connected diagrams resulting from the decomposition of a weakly
connected diagram defines the “connectivity index” of the original diagram. Thus, in
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relation (37), the connectivity index of diagrams 3, 6, 7, 12, 13, 15, 19, and 20 is 2, and the
connectivity index of diagrams 5, 11, 17, and 18 is 3. Let us assign the connectivity index 1
to the strongly connected diagrams.

Figure 3. Triple perturbations of the concentration field. (a) single perturbation in each of the three
inclusions; (b) double perturbation in the first inclusion, single perturbation in the second inclusion;
(c) single perturbation in the first inclusion, double perturbation in the second inclusion; (d) double
perturbation in the first inclusion, single perturbation in the second inclusion, different arrangement
of inclusions; (e) triple perturbation in one inclusion.

From the series (37), we extract all strongly connected diagrams, i.e., those that cannot
be partitioned into two separate diagrams by cutting a single line G. As each diagram
begins with a straight line and terminates with a wavy ch line, the sum of all strongly
connected diagrams may be represented as

. ~),(.).( trc cs 
(38)

Analytically, we obtain

c(s.c.)(
→
r , t) =

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)ch(

→
r
′
, t′) d

→
r
′
dt′, (39)
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where Σ(
→
r , t) is the mass operator kernel:

Σ(
→
r , t) =

〈
Ls(

→
r , t)

〉
+

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)ψ2(

→
r ,

→
r
′
)d

→
r
′
dt′

+

t∫

0

t′∫

0

x

(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)

〉
G(

→
r
′
,
→
r
′′

, t′, t′′ )ψ2(
→
r
′
,
→
r
′′
)dr′′ d

→
r
′
dt′′ dt′

+

t∫

0

t′∫

0

x

(V)

G(
→
r ,

→
r
′
, t, t′)G(

→
r
′
,
→
r
′′

, t′, t′′ )ψ3(
→
r ,

→
r
′
,
→
r
′′
)dr′′ d

→
r
′
dt′′ dt′ + . . . . (40)

The mass operator kernel (40) can also be presented graphically:

=  . . +  +  + +  + 
(41)

Let us focus on the sum of all the strongly connected diagrams with connectivity
index = 1. Each of those diagrams possesses the following form:

21
,  (42)

where    
1

and    
2

denote arbitrary diagrams that are on the right side of (41).
Since, when the series (37) is being constructed, all variants of pairwise connection of

the vertices are considered, the sum of all possible terms of the form (42) is

, 

Here,     is the total sum of the mass operator kernel (40).
Similarly, the sum of all diagrams with a connectivity index of 3 has the form

. 

and so on. Thus, we can present the averaged concentration field as a diagrammatic series:

= +  … . +  +  +  (43)

Such a representation is distinct from the diagrammatic series (37), solely in the
rearrangement of its elements.

Let us verify that the series (41) is the solution of the following equation:

= +    ,  (44)
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which is called the Dyson equation. We present the Dyson Equation (44) in analytical form:

〈
c(

→
r , t)

〉
= ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)

〈
c(

→
r
′
, t′)

〉
d
→
r
′
dt′. (45)

Let us show that the series (43) is a solution of equation (45). Let us apply the method
of successive iterations. Relation (44) is substituted into the expression for the averaged
concentration field

〈
c(

→
r , t)

〉
into the right-hand side of (44). We obtain

= +   (  +  ) 

= +  +  . 

Again, by substituting the right-hand side of the resulting relation into the right side
of (44), we obtain

= +  +   (  +  ) 

+ +  +  . =

If we continue the iterations, we will obtain the series (43). Similar calculations can be
carried out in analytical form if we proceed from Equation (45). In this case, we will obtain
the expansion (43) in analytical form, namely

〈
c(

→
r , t)

〉
= ch(

→
r , t) +

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)ch(

→
r
′
, t′) d

→
r
′
dt′+

+

t∫

0

t′∫

0

x

(V)

G(
→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)G(

→
r
′
,
→
r
′′

, t′, t′′ )Σ(
→
r
′′

, t′′ )ch(
→
r
′′

, t′′ )d
→
r
′′

d
→
r
′
dt′′ dt′+

+

t∫

0

t′∫

0

t′′∫

0

y

(V)

G(
→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)G(

→
r
′
,
→
r
′′

, t′, t′′ )Σ(
→
r
′′

, t′′ )G(
→
r
′′

,
→
r
′′′

, t′′ , t′′′ )×

×Σ(
→
r
′′′

, t′′′ )ch(
→
r
′′′

, t′′′ )d
→
r
′′′

d
→
r
′′

d
→
r
′
dt′′′ dt′′ dt′. (46)

Equation (45), assuming Σ(
→
r , t) is known, is an integral equation in relation to〈

c(
→
r , t)

〉
, which can be solved in some cases. At that, we will obtain an explicit ex-

pression of the averaged concentration field
〈

c(
→
r , t)

〉
through the mass operator kernel

Σ(
→
r , t), i.e., the sum of the series (32) is given using the quantity c(s.c.)(

→
r , t) (39), which is a

certain subsequence of the same series.
Σ(

→
r , t), as the operator in the general case and as the function in a given instance,

is not known exactly. In the approximate case, for example, the sum of the first few
terms of the series (46) can be used as this operator (function). In the case of the Bourret
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approximation [31],representing the first-order term in the series expansion of the mass
operator, we have

),( tr 
     . 

),( trLs 


 1

(47)

Considering the structure of the operator Ls(
→
r , t) (19), the expression for

〈
Ls(

→
r , t)

〉

can be presented at non-ideal mass contact conditions as

〈
Ls(

→
r , t)

〉
=

N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉[
(ρ0 − ρj)

∂

∂t
− (d0 − dj)∆

]

+
1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji

[→
∇ . . .

]

Γji

〈
δ
(→

r −→
r Γji

)〉
+

1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji
[. . .]Γji

〈→
∇δ

(→
r −→

r Γji

)〉

+
1
2

N

∑
j=0

nj

∑
i=1

[
d(

→
r )

]
Γji
[. . .]Γji

〈
δ2
(→

r −→
r Γji

)〉
, (48)

and at ideal contact conditions as

〈
Ls(

→
r , t)

〉
=

N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉[
(ρ0 − ρj)

∂

∂t
− (d0 − dj)∆

]
. (49)

The Bourret approximation for the averaged concentration field
〈

c(
→
r , t)

〉
is graphi-

cally designated as

. 
B

trc ),(


(50)

If, in the diagrammatic Formula (43), we put diagram (47) instead of Σ(
→
r , t), this leads

to the diagrammatic representation of
〈

c(
→
r , t)

〉
B

as

=  +  +  +  + … . 

and the analytical form as

〈
c(

→
r , t)

〉
B
= ch(

→
r , t) +

t∫
0

∫
(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)

〉
ch(

→
r
′
, t′)d

→
r
′
dt′

+
t∫

0

t′∫
0

s

(V)

G(
→
r ,

→
r
′
, t, t′)

〈
Ls(

→
r
′
, t′)

〉
G(

→
r
′
,
→
r
′′

, t′, t′′ )
〈

Ls(
→
r
′′

, t′′ )
〉

ch(
→
r
′′

, t′′ )d
→
r
′′

d
→
r
′
dt′′ dt′ + . . .

(51)

If a randomly inhomogeneous medium is not only statistically homogeneous but also
statistically isotropic, then Formula (51) can be simplified by transitioning to spherical
coordinates and performing integration over angular variables [31].

6. Equation for the Averaged Concentration Field in a Multiphase
Randomly Inhomogeneous Medium

Now, let us obtain an equation whose solution is the averaged concentration field〈
c(

→
r , t)

〉
.
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Let us apply operator L0(
→
r , t) = ρ0

∂
∂t − d0∆ to Dyson Equation (45). We obtain

[
ρ0

∂

∂t
− d0∆

]〈
c(

→
r , t)

〉
=

[
ρ0

∂

∂t
− d0∆

]
ch(

→
r , t)

+
t∫

0

∫
(V)

[
ρ0

∂

∂t
− d0∆→

r

]
G(

→
r ,

→
r
′
, t, t′)Σ(

→
r
′
, t′)

〈
c(

→
r
′
, t′)

〉
d
→
r
′
dt′.

(52)

According to Formula (21), the first term of Equation (52) is L0(
→
r , t)ch(

→
r , t) = 0, and

from relation (23), we conclude that L0(
→
r , t)G(

→
r ,

→
r
′
, t, t′) = δ(t − t′)δ(

→
r −→

r
′
).

Considering the properties of the delta function, after integration, we arrive at

[
ρ0

∂

∂t
− d0∆ − Σ(

→
r , t)

]〈
c(

→
r , t)

〉
= 0. (53)

The obtained equation is a partial differential equation with respect to the averaged
random field of impurity concentration.

For the Bourret approximation (47), Equation (53) can be written as

ρ0

∂
〈

c(
→
r , t)

〉
B

∂t
− d0∆

〈
c(

→
r , t)

〉
B
−

〈
Ls(

→
r , t)

〉〈
c(

→
r , t)

〉
B
= 0. (54)

Let us take into account that the averaged concentration field is a continuous function
in all spatial coordinates. Accordingly, we obtain

〈
Ls(

→
r , t)

〉〈
c(

→
r , t)

〉
B
=

N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉

(ρ0 − ρj)

∂
〈

c(
→
r , t)

〉
B

∂t
− (d0 − dj)∆

〈
c(

→
r , t)

〉
B




+
1
2

N

∑
j=0

nj

∑
i=1

[→
∇
〈

c(
→
r , t)

〉
B

]

Γji

〈[
d(

→
r )

]
Γji
δ
(→

r −→
r Γji

)〉
. (55)

If, in addition, the first derivatives with respect to
→
r
′

do not have jumps, then we
obtain

〈
Ls(

→
r , t)

〉〈
c(

→
r , t)

〉
B
=

N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉

(ρ0 − ρj)

∂
〈

c(
→
r , t)

〉
B

∂t
− (d0 − dj)∆

〈
c(

→
r , t)

〉
B


. (56)

After substituting relation (56) into Equation (55), we have

ρ0

∂
〈

c(
→
r , t)

〉
B

∂t
− d0∆

〈
c(

→
r , t)

〉
B

−
N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉

(ρ0 − ρj)

∂
〈

c(
→
r , t)

〉
B

∂t
− (d0 − dj)∆

〈
c(

→
r , t)

〉
B


 = 0. (57)

The resulting equation (57) is a second-order partial differential equation with respect
to the concentration field

〈
c(

→
r , t)

〉
B

averaged over the ensemble of phase configurations
for the Bourret approximation. Moreover, the coefficients near the first two terms are the
characteristics of the matrix, and the coefficients near the last term of the equation are the
deviations of the corresponding coefficients of phase j from the characteristics of the matrix.
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Equation (57) can be rewritten as

[
ρ0 −

N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉
(ρ0 − ρj)

]
∂
〈

c(
→
r , t)

〉
B

∂t

−
[

d0 −
N

∑
j=1

nj

∑
i=1

〈
ηji(

→
r )

〉
(d0 − dj)

]
∆
〈

c(
→
r , t)

〉
B
= 0. (58)

Let the phases be uniformly distributed within the body. Then, after averaging the
structure function (10), we obtain

nj

∑
i=1

〈
ηji(

→
r )

〉
=

Vj

V
= vj. (59)

As a result, Equation (58) will take the following form:

[
ρ0 −

N

∑
j=1

vj(ρ0 − ρj)

]
∂
〈

c(
→
r , t)

〉
B

∂t
−
[

d0 −
N

∑
j=1

vj(d0 − dj)

]
∆
〈

c(
→
r , t)

〉
B
= 0. (60)

In a specific case, for a two-phase body, (60) is equivalent to

[ρ0 − v1(ρ0 − ρ1)]
∂
〈

c(
→
r , t)

〉
B

∂t
−[d0 − v1(d0 − d1)]∆

〈
c(

→
r , t)

〉
B
= 0, (61)

and in the case of a three-phase body, it is equivalent to

[ρ0 − v1(ρ0 − ρ1)− v2(ρ0 − ρ2)]
∂
〈

c(
→
r , t)

〉
B

∂t

−[d0 − v1(d0 − d1)− v2(d0 − d2)]∆
〈

c(
→
r , t)

〉
B
= 0. (62)

Equations (60)–(62) together with the original boundary conditions can be solved
analytically.

7. Impurity Diffusion in a Two-Phase Randomly Inhomogeneous Layer
To study the influence of inhomogeneities on the behavior and the values of the

averaged concentration field, we consider the case of impurity mass transfer in a two-
phase randomly inhomogeneous layer. The phases in the body are arranged according
to a uniform probability distribution. The obtained averaged concentration field will be
compared with solutions of similar problems of impurity diffusion in a homogeneous layer
with matrix characteristics and in a homogeneous layer with parameters averaged over the
body volume.

The diffusion of impurity in a layer of thickness z0 is described by an initial-boundary
value problem based on Equation (61) in the one-dimensional case, i.e.,

[ρ0 − v1(ρ0 − ρ1)]
∂⟨c(z, t)⟩B

∂t
−[d0 − v1(d0 − d1)]

∂2⟨c(z, t)⟩B
∂z2 = 0, (63)

⟨c(z, t)⟩B|t=0 = 0, ⟨c(z, t)⟩B|z=0 = c̃1 ≡ const, ⟨c(z, t)⟩B|z=z0
= c̃2 ≡ const. (64)
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The diffusion of an impurity in a layer with volume-averaged characteristics is gov-
erned by the following equation:

ρ
∂c(z, t)

∂t
−d

∂2c(z, t)
∂z2 = 0 (65)

with the boundary conditions (64). Here, ρ = v0ρ0 + v1ρ1, d = v0d0 + v1d1.
The equation of the diffusion of an impurity in a homogeneous layer with matrix

characteristics has the form

ρ0
∂ch(z, t)

∂t
−d0

∂2ch(z, t)
∂z2 = 0. (66)

Boundary conditions remain the same.
Note that the partial differential equation for the averaged concentration (63) can be

considered as a certain homogenized diffusion equation, the coefficients of which differ
significantly from the averaged ones of Equation (65). At the same time, the operators of
these equations have the same structure.

Let us investigate the solution to the problem (63) and (64) and compare it with the
solutions of the initial-boundary value problems (64), (65) and (60), (64).

The solution to the problem (63) and (64) is the following [25]:

⟨c(z, t)⟩B = c̃1

(
1 − z

z0

)
+ c̃2

z
z0
−

− 2
ρ0z0

∞

∑
n=1

1
zn

(
c̃1 + (−1)n+1 c̃2

)
e
−
[d0 − v1(d0 − d1)]z2

nt
ρ0 − v1(ρ0 − ρ1) sin(znz), (67)

where zn = nπ/z0, n = 1, 2, . . ..
Let us show the graphs of the average concentration of impurity migrating in a layer.

Numerical calculations were carried out in dimensionless variables

ξ = z/z0, τ = dt/ρz2
0. (68)

The following parameter values were used as baselines: ρ0 = 1, ρ1 = 1.1, d0 = 1,
d1 = 0.5 and 1.5, v1 = 0.1, ξ0 = 1, c̃1 = 1, and c̃2 = 0.05. Calculations were carried out
using Formula (67). The accuracy when summing rows in formulas was 10−12. Along the
ordinate axis, the function ⟨c(ξ, τ)⟩/c̃1, that is the concentration function normalized to its
boundary value ξ = 0 (64), was laid down.

Figure 4 illustrates the distributions of concentration ⟨c(ξ, τ)⟩/c̃1 averaged over the
ensemble of phase configurations (curves a, solid lines), concentrations in a layer with
volume-averaged characteristics (curves b, dash-dotted lines), and concentrations in a
homogeneous layer with matrix characteristics (c curves, dashed lines) at the moments of
time τ = 0.01 (curves 1), τ = 0.05 (curves 2), and τ = 0.25 (curves 3). Here, Figure 4a is
constructed for d1 = 0.5 and Figure 4b for d1 = 1.5. The same applies to the figures a and b
below unless stated otherwise.
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Figure 4. Concentration distributions of diffusing particles for various model variants at different
moments of time for d1 = 0.5 (a) and d1 = 1.5; (b) Curves 1–3 correspond to τ = 0.01, 0.05, 0.25.

Figure 5 presents the graphs of the average particle concentration for different values
of the kinetic coefficient in inclusions d1 = 0.01, 0.5, 1.5, 5, and 20 (curves 1–5, respectively)
for τ = 0.05 (Figure 5a) and τ = 0.25 (Figure 5b). Here, and further on, the dashed lines
correspond to the impurity concentration in the body possessing the characteristics of the
base phase.

Figure 5. Distributions of the averaged impurity concentration for different values of the diffusion
coefficient in inclusions for τ = 0.05 (a) and τ = 0.25; (b) Curves 1–5 correspond to d1 = 0.01, 0.5, 1.5,
5, 20.

Figure 6 demonstrates the behavior of the function ⟨c(ξ, τ)⟩/c̃1 depending on different
values of the inclusion’s volume fraction of v1 =0.01, 0.05, 0.1, 0.2, and 0.3 (curves 1–5)
for d1 = 0.5 (Figure 6a) and d1 = 1.5 (Figure 6b). Figure 7 illustrates the graphs of the
averaged concentration ⟨c(ξ, τ)⟩/c̃1 and particle concentrations in the matrix c(0)(ξ, τ)/c̃1

for different values of the searched function on the bottom surface of the layer c̃2 = 0.01,
0.05, 0.25, and 0.5 (curves 1–4), d1 = 0.5 (Figure 7a), and d1 = 1.5 (Figure 7b).

Figure 6. Distributions of the averaged particle concentration for various values of the volume
fraction of inclusions for d1 = 0.5 (a) and d1 = 1.5; (b) Curves 1–5 correspond to v1 = 0.01, 0.05, 0.1,
0.2, 0.3.
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Figure 7. Distributions of the averaged concentration and the particle concentration in the base phase
for various values of c̃2 for d1 = 0.5 (a) and d1 = 1.5; (b) Curves 1–5 correspond to c̃2 = 0.01, 0.05,
0.25, 0.5.

It should be noted that the use of the impurity diffusion model to calculate the
concentration averaged over the ensemble of phase configurations in a two-phase layer in
which the phases are uniformly distributed leads to results that are significantly different
from those obtained using diffusion models with volume-averaged characteristics and with
matrix characteristics (Figure 4). At the same time, the difference between the solutions of
problems, (64), (65) and (64), (66) is insignificant and amounts to 7% for the time moment
τ = 0.05. With increasing diffusion time, the concentration functions in all models increase
until they reach a steady state (curves 3b, c in Figure 4a and curves 3a in Figure 4b),
and the difference between them is decreasing. If the values of the diffusion coefficient
in inclusions are smaller than in the matrix, i.e., d1 < d0, the values of the function
⟨c(ξ, τ)⟩ are always smaller than those of the concentration functions calculated using other
models (Figure 4a,b). For d1 > d0, the opposite situation is observed—the values of the
concentration averaged over the ensemble of phase configurations are always higher than
the solutions of problems (64), (65) and (64), (66) (Figure 4b).

Let us also remark that the greater the ratio d1/d0, the faster the function ⟨c(ξ, τ)⟩
reaches a steady state (Figure 5). Thus, the time needed to reach the steady state regime of
the concentration function for d1/d0 = 20 is τst = 0.02 and for d1/d0 = 0.5 is τst = 1.1.

Changing the volume fraction of inclusions has a negligible effect on the value of
the function ⟨c(ξ, τ)⟩ (Figure 6). Therefore, the difference between ⟨c(ξ, τ)⟩|v1=0.01 and
⟨c(ξ, τ)⟩|v1=0.3, that is, when v1 is increased by 30 times, reaches 25%. The value of
the concentration function c̃2 at the bottom surface of the layer affects its behavior in
the lower half of the body (Figure 7).The largest differences between the average impu-
rity concentration in the layer and the matrix characteristics are observed in the interval
ξ ∈ [0.6, 0.7] (Figure 7).

As an example of a real diffusion process that can be simulated by the methods
developed in this article, we present graphs of the averaged hydrogen concentration
field in a two-phase iron–copper body. Consider the problem of hydrogen migration
in the composite material Fe − Cu, taking iron as the base phase. The diffusion coeffi-
cients of hydrogen were assumed as [36,37]: in iron dFe = 1.8 × 10−11 m2/s, in copper
dCu = 4.34 × 10−10 m2/s; the densities of iron ρFe = 7.8 × 103 kg/m3 and copper
ρCu = 8.39 × 103 kg/m3 From these values, one obtains the dimensionless parameters
d̂1 = dCu/dFe = 24.11 and ρ̂1 = ρCu/ρFe = 1.145.

Illustrated in Figure 8 is the behavior of the averaged hydrogen-concentration field
for vCu = 0.05 (Figure 8a) and vCu = 0.15 (Figure 8b) in the composite material Fe − Cu.
Curves 1–3 correspond to the dimensionless times τ = 0.01, 0.05, 0.25, respectively.
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Figure 8. Distributions of the averaged concentration of H in Fe − Cu structure and the concentration
of H in Fe at different times for vCu = 0.05 (a) and vCu = 0.15; (b) Curves 1–3 correspond to
τ = 0.01, 0.05, 0.25.

It should be noted that, as the volume fraction of copper increases, the averaged
hydrogen-concentration field reaches its steady-state regime more rapidly (Figure 8).

8. Conclusions
The modeling of the process of impurity particle diffusion in a multiphase randomly

inhomogeneous body is presented in this paper. The diffusion process is described with the
help of mass balance equations for components of a thermodynamic system. Non-ideal con-
tact conditions in terms of impurity concentration are set at interphase boundaries. Based
on the mass balance equation for the entire body, a stochastic partial differential equation of
the impurity mass transfer for the entire body is obtained. The equation operator contains
jump discontinuities of the searched function and its derivative at random interfaces.

The resulting boundary value problem is assigned an integro-differential equation
featuring a random kernel, the solution of which is obtained as an integral Neumann series.
To study its structure, a graphical representation of the series elements in the form of R.
Feynman diagrams is introduced. The physical interpretation of these diagrams is given.

The random concentration field is averaged over an ensemble of phase configura-
tions. Employing the topological properties of diagrams, the averaged Neumann series
is expressed as the sum of a certain infinite subsequence of the same series. A classi-
fication of diagrams is proposed, with grouping into two types: strongly and weakly
connected. The kernel of the mass operator is constructed based on the sum of all strongly
connected diagrams.

Usage of the Feynman diagram technique enabled us to obtain the Dyson integro-
differential equation for the averaged concentration field in graphical and analytical forms.
A simplified operator of the Dyson equation in the case of the Bourret approximation was
constructed. However, for a more accurate description of the processes, it is advisable
to consider the case with two terms in the mass operator kernel approximation. This
approach will allow for corrections of the results that consider a more complex structure of
interactions and can provide higher accuracy of calculations.

A partial differential equation for the averaged concentration field is specified for the
case of N phases uniformly distributed in the body region. The differential equation of
mass transfer is detailed for two- and three-phase bodies.

The behavior of the averaged impurity concentration in a two-phase stochastically
inhomogeneous layer with a uniform distribution of phases under initial and boundary
conditions of the first kind is investigated. The found averaged concentration field was
compared with solutions of similar mass transfer problems in a homogeneous layer with
base phase coefficients and in a homogeneous layer with characteristics averaged over
the body volume. It is shown that the values of the averaged concentration field differ



Symmetry 2025, 17, 920 25 of 27

significantly from the solutions to homogeneous initial-boundary value problems, but
this difference decreases over time as the diffusion process progresses. It has been found
that, if the inclusions’ kinetic diffusion coefficient is greater than in the base phase, the
values of the concentration averaged over the ensemble of phase configurations are always
higher than the solutions of homogeneous problems. Otherwise, the values of the averaged
concentration field are always lower than the concentrations calculated using other models.

It is advisable to use this approach in the future to investigate the correlations of
stochastic concentration fields, obtain nonlocal equations for coherence functions, and
investigate mass transfer processes in stochastically inhomogeneous bodies under the
theory of binary systems for different probability distributions of phases. This will allow
for an assessmentof the sensitivity of the obtained results to assumptions regarding the
distribution of parameters and make the model more general and suitable for a wide class
of problems.

Author Contributions: Conceptualization, P.P., Y.B. and O.C.; methodology, O.C. and Y.C.; software,
Y.C. and Y.B.; validation, P.P., O.C., M.V. and Y.C.; investigation, O.C.; data curation, Y.C.; writing—
original draft preparation, Y.B. and Y.C.; writing—review and editing, P.P. and M.V.; visualization,
Y.C. and Y.B.; supervision, P.P.; project administration, P.P. and M.V.; funding acquisition, P.P. and
M.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education and Science of Ukraine, as part of
the state budget research project № DR 0123U101691.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
Proof of the Proposition 1.

We construct the solution of the integro-differential Equation (20) using the method of
successive approximations, taking c(0)(

→
r , t) = ch(

→
r , t) as the zeroth and introducing the

parameter λ. Then, the pth iteration has the form

c(p)(
→
r , t) = ch(

→
r , t) + λ

t∫

0

∫

(V)

G(
→
r ,

→
r
′
, t, t′)

1
λ

Ls(
→
r
′
, t′)c(p−1)(

→
r
′
, t′) d

→
r
′
dt′. (A1)

Let us denote
Q(p)

(
c(p)(

→
r
′
, t′)

)
= Ls(

→
r
′
, t′)c(p)(

→
r
′
, t′)

and
K(

→
r ,

→
r
′
, t, t′) =

1
λ

G(
→
r ,

→
r
′
, t, t′). (A2)

We now represent the concentration field for the first layer using the notation intro-
duced in (A2):

c(p)(
→
r , t) = ch(

→
r , t) + λ

t∫

0

∫

(V)

K(
→
r ,

→
r
′
, t, t′)Q(p−1)

(
c(p−1)(

→
r
′
, t′)

)
d
→
r
′
dt′

= ch(
→
r , t) + λ

(
KQ(p−1)

)
(
→
r , t), p = 1, 2 , . . .,

where
(

KQ(p−1)

)
(
→
r , t) is operator notation for the double integral [38,39] over the domain

[0, t]× (V).
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We then write the following relation:

c(p)(
→
r , t) = ch(

→
r , t) +

p

∑
k=1

λp(KpQh)(
→
r , t), p = 1, 2 , . . . , . (A3)

where Qh = Lsch, which we will prove by mathematical induction.
If we set p = 1 and use the zeroth approximation, we arrive at Formula (A1); hence,

the proposition for the first iteration is valid. Now, assume that the proposition (A3) holds
for pth iteration; we will show that the corresponding proposition for the (p + 1)th iteration
is also true. Therefore,

c(p+1)(
→
r , t) = ch(

→
r , t) +

p

∑
k=1

λp(KpQh)(
→
r , t) + λp+1

(
Kp+1Qh

)
(
→
r , t)

= c(p)(
→
r , t) + λp+1

(
Kp+1Qh

)
(
→
r , t).

Let us show that, for the bounded ρj, dj and ρ0 ̸= 0, d0 ̸= 0, all iterations of

(KpQh)(
→
r , t) are continuous and bounded over the domain [0, t]× (V):

∥KpQh∥C =
∥∥∥K

(
Kp−1Qh

)∥∥∥
C
≤ M mes{[0, t]× (V)}

∥∥∥Kp−1Qh

∥∥∥
C

≤ . . . ≤ (M mes{[0, t]× (V)})p∥Qh∥C, (A4)

where M = max
B

K(
→
r ,

→
r
′
, t, t′), B = [0, t] × [0, t] × (V) × (V), mes{[0, t]× (V)} =

tVmes{[0, t]× (V)} = tV, ∥ · ∥C denotes the norm in the space of continuous functions.
It follows from estimate (A5) that the series (A4) is bounded above by the numeri-

cal series

∥Qh∥C

∞

∑
k=0

|λ|k(MtV)k =
∥Qh∥C

1 − |λ|MtV
, (A5)

which converges in the circle

|λ| < 1
MtV

. (A6)

Therefore, under assumption (A6), the Neumann series (A5) converges absolutely and
uniformly. Consequently, the sequence of successive approximations c(p)(

→
r , t) defined in

(A3) converges uniformly to the desired function c(
→
r , t) as p → ∞.
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