
����������
�������

Citation: Neureiter, C.; Binder, C.

A Domain-Specific, Model Based

Systems Engineering Approach for

Cyber-Physical Systems. Systems

2022, 10, 42. https://doi.org/

10.3390/systems10020042

Academic Editor: William T.

Scherer

Received: 17 February 2022

Accepted: 24 March 2022

Published: 26 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

A Domain-Specific, Model Based Systems Engineering
Approach for Cyber-Physical Systems
Christian Neureiter * and Christoph Binder

Josef Ressel Centre for Dependable System-of-Systems Engineering, Salzburg University of Applied Sciences,
Urstein Sued 1, A-5412 Puch, Austria; christoph.binder@fh-salzburg.ac.at
* Correspondence: christian.neureiter@fh-salzburg.ac.at

Abstract: Model Based Systems Engineering as a scientific discipline tries to address the increasing
complexity of today’s cyber-physical systems by utilizing different kinds of models. In practical
application, however, this approach is often constrained to SysML-based object modeling. Even
though this appears to be a suitable approach for dealing with complexity, various restrictions
limit stakeholder acceptance. Considering scientific discussions in the context of modeling shows
two different schools of thought. On the one hand, arguments for more formalized and rigorous
concepts can be found, where on the other hand, the need for more stakeholder-oriented and easier-
to-understand concepts is postulated. As both are reasonable, the question of integration arises. To
address this aspect, we developed the concept of Domain Specific Systems Engineering. Our research
in this field lasted for nearly a decade, and different aspects have been investigated. This paper
contributes a summary of the overall approach that integrates the various aspects investigated so
far. Thus, the underlying concepts are explained, and the corresponding modeling stack and tool-
chain are described in more detail. Further, the practical experiences from various case studies are
summarized, and identified shortcomings are discussed.

Keywords: Model Based Systems Engineering; System-of-Systems; complex systems; cyber-physical
systems

1. Introduction

Development and deployment of cyber-physical systems (CPS) as integrations of
computation and physical processes where embedded computers and networks monitor
and control the physical process [1] proceed at a fast pace. Aside from the increasing
availability of affordable hardware, software-related technologies (e.g., Artificial Intelli-
gence (AI)) and increasing connectivity (e.g., 5G) can be identified as drivers. As these
emerging technologies—and especially their integration—represent a promising potential
for new products and services, the application field for CPS is vast. Typical application
domains are Automotive Engineering, Industry 4.0, Smart Grid, or Smart Cities.

Development of CPS, however, is challenged by the inherent complexity of individual
systems and their integration in a superordinated application scenario. The classification
as complex systems in that sense relies on a qualitative classification scheme proposed
by Haberfellner et al. [2]. This classification scheme is based on the two dimensions
diversity/variety/scale and dynamic/alterability and considers systems as either simple,
complicated, dynamic, or complex. Even though the Haberfellner concept is rather a thought
model, it can be a valuable starting point for identifying suitable engineering approaches.

To take the aspect of cooperative behavior between systems into account, the term
System-of-Systems (SoS) is used. A frequently used definition in literature (original author
not verifiable) defines a SoS as “a collection of task-oriented or dedicated systems that pool
their resources and capabilities together to create a new, more complex system that offers more
functionality and performance than simply the sum of the constituent systems“. Even though

Systems 2022, 10, 42. https://doi.org/10.3390/systems10020042 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems10020042
https://doi.org/10.3390/systems10020042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0001-7509-7597
https://orcid.org/0000-0002-0241-4077
https://doi.org/10.3390/systems10020042
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems10020042?type=check_update&version=2

Systems 2022, 10, 42 2 of 27

alternative definitions exist (e.g., [3–8]), broad consent exists on the characterization of
SoS on basis of the Maier-DeLaurentis criteria (operational and managerial independence,
evolutionary development, emergent behavior, geographical distribution, interdisciplinary,
heterogeneity, networks of systems) [9,10]. These criteria do not only indicate a close
relation between CPS and SoS; rather, they already highlight some particular challenges in
the development of CPS.

Asides the promising capabilities of CPS, some critical aspects need to be taken into
account. From a control systems perspective, the ongoing trend towards “fully automated”
represents closed-loop scenarios with no human control instance as fall-back scenario any-
more. Consequently such CPS are challenged by the need for fulfilling strict dependability
requirements [11]. Countless publications have been considering aspects such as resilience,
robustness, safety, security and others in different application domains such as the Smart
Grid [12–16], Smart Cities [17–21], Automotive [22–27], or Industry 4.0 [28–32].

A widely used taxonomy in that context has been proposed by Avizienis et al. where
dependability is interpreted as an umbrella term for the individual characteristics Reliability,
Availability, Maintainability, Safety, and Security [33]. In context of CPS where personal data
can be involved (e.g., Electric Vehicle charging) Neureiter et al. suggest to also consider
Privacy in this context [34].

The integration of dependability is severely challenged by the increasing complexity of
CPS as outlined before. In context of Security for instance, Schumacher highlights complex-
ity as the enemy of security [35]. Though this statement relates to security it appears valid
to extend this conclusion to the whole spectra of dependability.

As dependability characteristics are observed on system-level, consent exists that they
need to be considered by design, or as stated by Avizienis, through the combination of fault
prevention, fault tolerance, fault removal, or fault forecasting techniques [36]. The ability to
establish a holistic and shared understanding of a system among all involved stakeholders
from all disciplines is imperative in that case. A significant barrier for this, however, is
the lack of concepts for establishing a common, interdisciplinary system understanding
in the field of CPS. Thus, today System-of-Systems Engineering (SoSE) (with its apparent
relation to CPS) is considered a critical research discipline for which—as stated by Popper—
frames of reference, thought processes, quantitative analysis, tools, and design methods are
incomplete [37]. A similar conclusion, in that case, has further been drawn by Edward Lee,
who summarizes the challenges to be addressed as follows [38]:

1. Determinate CPS models;
2. Open minds about languages and tools;
3. A semantics of time;
4. Discipline of “model engineering”.

Based on the ongoing discussion, it appears safe to conclude that today’s engineering
approaches require improvement for enabling a holistic understanding of CPS that antici-
pates all involved stakeholder perspectives. This aspect is deemed crucial to further allow
for the integration of dependability by design.

The quest for holistic engineering approaches is mainly pursued by the Systems Engi-
neering (SE) community. Main focus in SE, however, lies on the process perspective as de-
scribed by International Council on Systems Engineering (INCOSE) [39] or ISO 15288 [40].

For managing the complexity of CPS the utilization of models appears to be a feasible
approach. Several authors argue that SE goes hand in hand with Model-Driven Engineering
(MDE) [41–44]. Unfortunately, the terminology in the context of model-driven approaches
is ambiguous as this topic evolved, mainly driven by the field of Software Engineering. A
clarification of the terminology can be found, for example, in [45].

To give better guidance for SE, INCOSE ultimately defined the term Model Based
Systems Engineering (MBSE) as “The formalized application of modeling to support system
requirements, design, analysis, verification and validation activities beginning in the conceptual
design phase and continuing throughout development and later life cycle phases.” [46].

Systems 2022, 10, 42 3 of 27

Although the need for modeling is consented to within the SE community, conceptual
descriptions stay rather vague and lack guidelines for application. Thus, the application of
MBSE is often constrained to object modelling by means of Systems Modeling Language
(SysML) [47].

Even though the utilization of Object Models for decomposing complex systems is a
common concept in Software Engineering, the practical application in Systems Engineering
stays behind expectations. One explanation can be found in the Software Engineering
background of this concept. Especially the utilization of concepts such as Object Oriented
Analysis or the usage of General Purpose Languages (GPL) such as SysML are identified as
significant barriers for engineers with no Software background. Another limitation can be
found when it comes to integrating particular design models, such as a schematic of an
electric power grid, which is not considered a straightforward task.

The ongoing discursus in the context of CPS development shows consent on the need
for enforced anticipation of models. Still, significant discussions take place on the question
of which models are to be used. Literature research yields two different schools of thought
in that debate. In the context of MDE, for example, Favre criticizes that though MDE is
supposed to be about precise modeling, MDE core concepts are not defined through precise models.
One can find plenty of metamodels in the literature to describe particular technologies or tools, but
we are not aware of a single one that fully captures the MDE notions at a global level [44]. Even
though stated for MDE, this statement appears valid for MBSE as well.

A statement from Edward Lee contrasts the given criticism. The latter argues that “the
role that models play in engineering is different from the role they play in science, and that this
difference should direct us to use a different class of models, where simplicity and clarity of semantics
dominate over accuracy and detail” [48].

Reflecting these two points of view, one can conclude that both have their justification.
On the one hand, precise and formal models could contribute to engineering dependability
by design but probably would pose a high entry barrier for several stakeholders. On
the other hand, models putting simplicity and clarity in the foreground would lower the
entry barrier but the suitability for engineering dependability by design could be limited.
Thus, the question is rather not about one or the other; instead, it is about a combination
of both approaches to establish a holistic system understanding as a basis for engineering
dependability by design.

Concerning the outlined discussion, the main goal of the proposed Domain Specific
Systems Engineering (DSSE) approach can be postulated: DSSE envisions a holistic MBSE
approach for CPS that enables the establishment of a holistic system understanding as
a basis for engineering dependability by design. To do so, similar to the concept of
Domain Driven Design (DDD) [49] known from Software Engineering, this approach
fosters a polarized perspective by separating a domain perspective from a staged technical
perspective. In this context, the domain perspective is related to a particular application
domain (e.g., Smart Grid) and aims at establishing a common understanding among all
involved stakeholders. Complementary, the technical perspective aims at structuring and
integrating all involved engineering disciplines such as electrical engineering, mechanical
engineering, software engineering, and others.

The envisioned approach consists of several bits and pieces targeting different aspects.
Exemplary artifacts are a modeling stack, several Domain-Specific Languages (DSLs),
process models, modeling tools, or concepts for tool-chain integration. Since 2012 different
aspects of DSSE have been investigated in detail. The goal and contribution of this paper are
to integrate all the individual bits and pieces of DSSE and to outline how their integration
contributes to the realization of the DSSE vision.

Thus, the remainder of this paper is structured as follows. Section 2 discusses estab-
lished approaches and outlines how DSSE addresses existing shortcomings. In addition,
Section 3 illustrates the research design and validation strategy our work is based on.
The key concepts of DSSE and the integration of the main building blocks are outlined
in Section 4, followed by a more detailed description of the developed modelling stack

Systems 2022, 10, 42 4 of 27

(Section 5), the Domain Specific Language (DSL) (Section 6), and the established tool chain
(Section 7). A critical reflection on the proposed concept is further provided in Section 8,
followed by a summarizing conclusion in Section 9.

2. Background and Own Contribution

For interdisciplinary development of dependable cyber-physical systems (CPS), the
utilization of models is inevitable. As discussed in Section 1, different schools of thought
argue in favor of different strategies. Formalization and the need for a certain rigor are
demanded by the one side, simplicity and understandability by the other.

Thus, in the following popular modeling approaches from the field of MBSE are
outlined, followed by complementary concepts focusing on understandability and clarity.
Further, the DSSE approach is put in this context, and its contribution is highlighted.

2.1. Modeling Approaches

In context of architecture development the utilization of object models is common with
SysML as predominant modeling language. Designed as General Purpose Language (GPL),
SysML provides a variety of diagram types to model any system, yet its scope does not
cover strategies for model development or their organization.

Related process concepts, as proposed for example by ISO 15288 [40], are rather
generic. As depicted in Figure 1, ISO 15288 summarizes several processes to be considered
in Systems Engineering but does not deliver a detailed process model. Rather, in respect to
the varying nature of different systems, it is suggested to taylor this framework according
to the individual needs.

Enterprise Processes

Project Processes

Agreement Processes

Technical Processes

«Enterprise Proce...
Enterprise

Management Process

«Enterprise Proce...
Investment

Management Process

«Enterprise Proce...
System Life Cycle

Management Process

«Enterprise Proce...
Resource Management

Process

«Agreement Processes»
Acquisition Process

«Agreement Processes»
Supply Process

«Project Processes»
Planning Process

«Project Processes»
Assessment Process

«Project Processes»
Control Process

«Project Processes»
Decision Management

«Project Processes»
Risk Management

«Project Processes»
Configuration Management

«Project Processes»
Quality Management

«Technical Processes»
Verification Process

«Technical Processes»
Architectural Design Process

«Technical Processes»
Disposal Process

«Technical Processes»
Implementation Process

«Technical Processes»
Integration Process

«Technical Processes»
Operation Process

«Technical Processes»
Requirements Analysis Process

«Technical Processes»
Stakeholder Needs Definition Process

«Technical Processes»
Transition Process

«Technical Processes»
Validation Process

«Enterprise Proce...
Quality Management

Process

«Technical Processes»
Maintenance Process

Figure 1. ISO 15288 Process Framework.

For the particular aspect of modeling, different approaches are known that help struc-
turing and organizing both the process of architecture development and the organization

Systems 2022, 10, 42 5 of 27

of models. Some popular proponents are for example the Twin-Peaks pattern proposed by
Nuseibeh [50], Weilkiens’s SYSMOD approach [51], or the SPES 2020 methodology [52,53]
that gained momentum in the recent past.

The mentioned approaches vary in focus and granularity. Twin-Peaks, for example,
introduces a fundamental pattern for simultaneous development of problem and solution
space. This pattern is further extended by the SYSMOD approach (“SYSMOD Zigzag
Pattern”) and embedded within a more holistic yet pragmatic modeling approach.

A more recent approach is the SPES 2020 methodology introducing a more sophis-
ticated modeling concept for embedded systems. The mission of SPES 2020 has been
described as the development of “A model-driven, and tool-supported approach that is
based on a strong mathematical foundation [that] allows for the efficient development of
embedded systems, starting with initial customer requirements, through specification of
architectures, through implementation, to system verification and certification” [52] (p. 9).

The main aspect of SPES 2020 is the approach to structure architecture development
on basis of four individual viewpoints and on different abstraction levels as depicted in
Figure 2. Further, every viewpoint comprises different model kinds used to describe particu-
lar artifacts. For example, the Requirements Viewpoint could involve User Stories, Use Cases,
or SysML Requirements models, the Function Viewpoint typically consists of a functional
decomposition, whereas the Logical Viewpoint and the Technical Viewpoint model the logical
respectively the physical structure of a system.

Requirements
Viewpoint

Functional
Viewpoint

Logical
Viewpoint

Technical
Viewpoint

Model
Kind 1

Model
Kind 2

Model
Kind 2

Func 1

Func 1.1 Func 1.2

F 1.1 F 1.2

Ab
st

ra
ct

io
n

La
ye

rs

Viewpoints

Figure 2. Overview on the SPES 2020 Framework.

All outlined approaches have to be acknowledged as significant contributions to
the field of MBSE. However, it must be mentioned that the utilization of these concepts
comes with the prerequisite of a basic understanding of the underlying concepts of MBSE.
Thus, application is mainly driven by System Architects, and acceptance among other
stakeholders poses a significant challenge. This aspect is a severe limitation, especially
during the early stages of system analysis or SoS design.

2.2. Domain Specific Architecture Frameworks

The outlined, formalized concepts originating from MBSE are contrasted by different
attempts aiming at understandability and clarity. A popular case in that context can be
found, for example, in the Smart Grids application domain. Development of Smart Grids,
as the integration of power grids with Information and Communication Technologies (ICT),

Systems 2022, 10, 42 6 of 27

raises the need for alignment of concepts from both disciplines, electrical engineering and
telecommunication.

An initial attempt for establishing an integrated perspective has been made by the stan-
dardization bodies European Committee for Electrotechnical Standardization (CENELEC)
and European Telecommunications Standards Institute (ETSI). Following the intention
of aligning electrotechnical and ICT related standards, in 2012, the Smart Grid Architec-
ture Model (SGAM) has been proposed as a tool for reference designation in the Smart
Grid [54]. The SGAM can be interpreted as an architecture framework that allows for a
structured representation of Smart Grid components and functionalities covering both the
electrotechnical and ICT dimension.

As depicted in Figure 3, the SGAM consists of five layers with a grid pattern structure.
The grid pattern of every layer is built upon Domains that are decomposing the problem
domain (electrical power chain) on the one hand, and the automation of the power grid
(Zones) on the other hand. The resulting structure can be seen as a coordinate system for
locating different elements within the overall Smart Grid. Complementary to this structure,
the individual layers allow for consideration of various aspects such as the regulatory
envelope (Business Layer), functionality (Function Layer), or different technical aspects
(Information, Communication, and Component Layer).

Figure 3. Smart Grid Architecture Model (SGAM).

The concept of SGAM has turned out to be of value in terms of understandability,
especially when it comes to interdisciplinary cooperation. Thus, it exceeded its origi-
nal scope and has been used as a basis for architecture development on a higher level
in numerous scientific and industrial projects. A recently published overview on the
application and impact of SGAM can be found, for example, in [55]. Furthermore, the
ideas of SGAM have been anticipated and transferred to several complementary domains.
Examples are the Reference Architecture Model Industry 4.0 (RAMI 4.0) [56], Reference Ar-
chitecture Model Automotive (RAMA) [57], Maritime Architecture Framework (MAF) [58],
Generic Smart City Architecture Model (GSCAM) [59], or the Electric Mobility Architecture
Model (EMAM) [60].

All concepts mentioned above, especially those originating from standardization
bodies (SGAM, RAMI 4.0), are distinct by their understandability for domain stakeholders
and, thus, find a certain acceptance. However, it has to be admitted that these concepts are

Systems 2022, 10, 42 7 of 27

not grounded on a formal basis, which limits their applicability in a holistic engineering
process, covering all stages of architecture development.

2.3. Contribution of DSSE

In the development of dependable CPS, the need for formalization arises to achieve a
seamless and holistic design, development, and validation process. This approach comes
at the price that all involved stakeholders need to be familiar with MBSE in general and
modeling in particular.

By reflecting the benefits and broad acceptance of informal, yet domain-specific ar-
chitecture frameworks, the DSSE approach strives for a shift in paradigms. Instead of
requiring all stakeholders to familiarize with MBSE, DSSE raises the plea for modeling
approaches to adapt to the stakeholder’s perspective. To be more precise, formalized mod-
eling should be enabled in the stakeholder’s lingua franca instead of forcing stakeholders
to learn modeling languages such as SysML. Thus, DSSE provides a formalized modeling
approach that is grounded on the application domain, as the name suggests.

The contribution of the DSSE approach as a whole can be considered in two aspects, as
delineated in Table 1. The first aspect is the philosophy that modeling approaches should
not be driven by the systems to be developed but by the stakeholders being involved. The
second aspect is the contribution of different bits and pieces such as a modeling stack, a
DSL, several elements of a holistic tool-chain, validation concepts, and others that help to
realize this philosophy.

Our research on DSSE lasted for nearly ten years and various elements have been
studied in detail. The paper at hand is intended to integrate all these aspects and outline
the overall picture. It is designed to be the umbrella showing how the individual elements
of our past research fit together and serve the realization of the DSSE modeling philosophy.

Table 1. Comparison of different approaches.

Approach Scope and Focus

Object Modeling • (Semi-) formal decomposition of systems
• Mainly done by System Architects
• Object Modeling languages (e.g., SysML)

Domain Specific Architecture
Frameworks

• Establishment of common understanding
• All stakeholders involved
• No formal grounding

Domain Specific Systems Engi-
neering

• Integration of both concepts
• Domain Specific Language based on Domain

Architecture Frameworks

3. Research Design and Validation Strategy

The validation of engineering approaches is a challenging task. For sound results,
industrial long-term field studies of significant scale would be required. When it comes
to developing yet-to-come systems such as the Smart Grid, things become even more
complicated. Due to the novelty of these systems, no such thing as a “ground truth” for
comparison exists. Research in this context is characterized by simultaneous learning in
both the problem space and the solution domain.

A reasonable attempt for dealing with this challenge can be found with the Agile
Design Science Research Methodology (ADSRM) as proposed by Conboy et al. [61]. In
this approach, Conboy extends the widespread Design Science Research Process (DSRP)
from Pfeffers et al. [62] with concepts from agile software development. It intends to
combine the flexibility from agile concepts with the necessary level of rigor as required by
design science.

Systems 2022, 10, 42 8 of 27

As depicted in Figure 4, the primary research paradigm of ADSRM is a staged ap-
proach with different entry points. Contrasting to the classic DSRP, the individual sub-
processes are intended to be executed in a fast and iterative manner (“sprints”), which
enables incremental learning and development. Instead of trying to fix all research objec-
tives initially, it emphasizes starting with a rather vague research topic that is refined into
particular research goals during the execution of iterative sprints. Further, new challenges
identified can be added to the “Problem Backlog” for later investigations.

Process Iteration

Problem-
Centered

Objective
Centered

Design &
Dev. -

Centered

Client/
Context-
Centered

Possible Research Entry Points

PROBLEM
BACKLOG

IDENTIFY
PROBLEM &
MOTIVATE

DEFINE
OBJECTIVES OF

A SOLUTION

DESIGN &
DEVELOPMENT DEMONSTR. EVALUATION COMMUNIC.

Hardening Sprint

Figure 4. Agile Design Science Research Model (ADSRM).

After achieving a certain level of understanding of the problem on the one hand, and
ideas for possible solution artifacts on the other hand, ADSRM integrates the necessary
level of rigor employing so-called “hardening sprints”. During these hardening sprints,
(1) the problem and (2) the process are frozen, and (3) additional rigor-driven parts such
as extra measures or changes of the existing measures shall be added to the process [61].
Evaluation of particular artifacts finally can be done by application of classic design science
concepts such as the evaluation methods (observational, analytical, experimental, testing,
descriptive) proposed by Hevner et al. [63].

With the ADSRM concepts for agile research in mind, our research on the DSSE
approach can be separated into three stages that are executed in an iterative manner as
depicted in Figure 5 and described in the following.

Case Study

Observations

Application of DSSE
Artifacts to Case Study

Objectives
SpecificationProblem

Definition

Artifact Design &
Implementation

Main Artifacts for DSSE
• DSSE Modeling Stack
• Domain Specific Language (DSL)
• SGAM Toolbox
• Tool-Chain Integration

Case Study
Model

Stage (1)
Problem Exploration

Stage (2)
Artifact Development

Stage (3)
Evaluation and Validation

Figure 5. Application of ADSRM.

Systems 2022, 10, 42 9 of 27

Problem Exploration: This stage strives for the establishment of a better problem
understanding and is rather a continuous task than a strictly limited phase. In general,
exploratory case studies (e.g., in the context of different research projects) are used to identify
particular challenges on a higher level. These challenges are further collected and structured
within the Problem Backlog as input for more focused research. Elements of the backlog
are, for example, “How to foster a better stakeholder participation during architecture
development?” or “How to enable System-of-Systems (SoS) validation in electric vehicle
charging scenarios?”.

Artifact Development: During this stage, particular research items from the backlog
are isolated, research questions and objectives are postulated, and particular artifacts are
designed and implemented. Objectives specified during this phase are for example "enable
a seamless model development that integrates (1) SGAM concepts and (2) established archi-
tecture frameworks" or "enable the integration of architectural models with Co-Simulation
frameworks". On this basis, subsequently individual artifacts such as the DSS modeling
stack, a corresponding DSL, the SGAM Toolbox implementation, or an integrated tool-chain
are designed and implemented. At this point it has to be mentioned that every iteration
does not necessarily yield a new artifact, rather every iteration contributes to the refinement
of the main artifacts. For example, the already existing DSL is adopted by altering its
integrated viewpoints and model kinds.

Evaluation and Validation: The third stage aims at the evaluation of the previously
developed artifacts. Thus, the modeling concepts (implemented artifacts) from the DSSE
Approach are used to create a model of the specified case study and the suitability of the
individual artifacts is evaluated in respect to the previously specified objectives. Identified
shortcomings during the application are observed and contribute to an extension of the
problem backlog. Further, these observations can be used to drive adaptations of the
utilized case study for further investigations.

The chosen research approach comes with two risks. First, as development and
evaluation (hardening sprints) are done on basis of the same case study, the risk of a bias
exists, e.g., developed solutions are only suitable for the particular case study. Second, as
the research subject is related to engineering methods, validation by engineers different
from the developers of the concepts needs to be considered.

To limit the impact of these aspects, an evaluation strategy is maintained that rests on
five pillars:

• Implicit evaluation: The hardening sprints of ADSRM are considered as “implicit”
evaluation indicated by the chosen research design;

• Complementary case studies: Developed artifacts are applied to case studies of a
complementary application domain. E.g., Co-Simulation related artifacts developed
in the application domain Smart Grid are applied to case studies from the application
domain Industry 4.0;

• Third party application: To gain feedback of the developed concepts, the main artifacts
(e.g., SGAM Toolbox: www.sgam-toolbox.org (accessed on 16 February 2022), RAMI
Toolbox: www.rami-toolbox.org (accessed on 16 February 2022)) have been made
publicly available. Furthermore, extensive support has been provided that in return
delivered insights on the applicability of our concepts for third party engineers;

• (Quantitative) Impact Evaluation: For the application of the developed artifacts, dif-
ferent video tutorials were created. The viewer statistics (e.g., viewers, time, location)
have been tracked and evaluated as an indicator for the significance of the developed
DSSE approach;

• Scientific Publications: Publishing of peer-reviewed articles provides detailed feedback
from reviewers and indicates the significance based on citations. At present, around
30 peer-reviewed articles in the context of DSSE have been published.

A more detailed discussion on the validation strategy with additional information
(e.g., quantitative analysis and interpretation of the video tutorial statistics) is presented
in [64].

www.sgam-toolbox.org
www.rami-toolbox.org

Systems 2022, 10, 42 10 of 27

The described research design outlines how the overall DSSE research is drilled down
into separate research items that have been investigated individually. At this point, it has
to be stressed again that the intention of the paper at hand is to summarize and generalize
the main building blocks (individual research items) and to illustrate the integration of these
particular items for the purpose of realizing the overall DSSE philosophy.

4. The Domain Specific Systems Engineering Approach

As outlined in Section 1, the DSSE approach aims at providing a modeling concept
that is both easily accessible for heterogeneous stakeholders and precise enough to enable
rigorous development. For this purpose a modeling stack is developed that separates
Domain Architecture, Technical Architecture and Design Models. Further, this modeling stack is
accompanied by a process model and a modeling environment.

The present section gives an overview of these building blocks and their interrelations.

4.1. Modeling Stack

The modeling stack comprises a 3 + 1 layer architecture reflecting the structure of
Model-Driven Architecture (MDA), which has been proposed by Object Management
Group (OMG) [65]. The software-originated MDA approach focuses on a separation of
functionality and technology which is done by introducing four abstraction layers. The top-
level layer, entitled as Computational Independent Model (CIM) focuses on a functional
analysis of a system that is subsequently mapped onto a technical yet technology-neutral
layer (Platform Independent Model (PIM)). Next, elements from the PIM are allocated to
particular technology on the level of the Platform Specific Model (PSM) which ultimately
defines the implementation (Platform Specific Implementation (PSI)). The interrelation
between the individual modelling layers requires a more differentiated discussion as
the type of interrelation depends on the nature of the corresponding levels. A detailed
discussion on the modeling stack, its individual layers and interrelations is presented in
Section 5.

Contrasting to MDA, the DSSE approach does not concentrate on (semi-) automatic
model transformations, rather it reflects its intention for separation of concerns. Thus, four
layers are defined and for every layer a certain set of viewpoints is specified in accordance
with the concepts of ISO 42010 [66]. As depicted in Figure 6, every viewpoint is intended
to address particular concerns of certain stakeholders. Further, for every viewpoint a set of
corresponding model kinds is specified. This specification finally governs the particular
views and models created within a particular architecture description.

An overview of the modeling stack, built upon the four layers of MDA and the
concepts of ISO 42010 is depicted in Figure 7.

4.2. Modeling Environment

To enable a practical application of the theoretical DSSE concepts, a certain modeling
environment has been established. The critical element of this modeling environment is the
specification and implementation of a DSL, taking the viewpoints and model kinds from
the modeling stack into account. This DSL enables a seamless development of the Domain
Architecture Model with the Technical Architecture Model. Further, concepts are provided
for the hand-over to the Detailed Design Model.

The described DSL is implemented as SysML profile to exploit the fundamental con-
cepts of object modeling. To compensate for the profile mechanism’s limitations, Add-Ins
have been implemented for different commercial modeling tools. These Add-Ins integrate
the DSL and add additional functionality such as semi-automatic model transformations.
Furthermore, import and export mechanisms are realized that enable, for example, the
integration with co-simulation environments for validation.

A more detailled discussion on both, the DSL and the modeling environment is
presented in Section 6 respectively Section 7.

Systems 2022, 10, 42 11 of 27

System-of-
Interest

Stakeholder

Concern

Architecture
Viewpoint

Model Kind

Architecture

Architecture
Description

Architecture
View

Architecture
Model

Architecture
Rationale

Correspondence

Correspondence
Rule

addresses

identifies
expresses

frames

governs

exhibits

identifies

identifies

has

governs

has interests in

Figure 6. ISO 42010 based identification of viewpoints and model kinds.

System Model

System Implementation

Domain Architecture Model

Technical Architecture Model

Detailed Design Model

Software Hardware ...

«Domain VP»
Viewpoint a

«Domain VP»
Viewpoint b

«Domain VP»
Viewpoint x

«Architecture VP»
VP m

«Architecture VP»
VP n

«Architecture VP»
VP y

Computation
Independent
Model (CIM)

Platform
Specific
Model
(PSM)

Platform
Independent
Model (PIM)

Platform
Specific

Implementation
(PSI)

«Design VP»
Software

«Design VP»
...

«Design VP»
Hardware

«Model Transformation»

«trace»

«trace»«trace» «trace»

Figure 7. DSSE Modeling Stack.

Systems 2022, 10, 42 12 of 27

4.3. Process Model

To give guidance for modeling, the DSSE approach proposes a process model com-
prising the three primary phases System Analysis, System Architecture, and Design and
Development. The System Analysis phase aims at understanding the system to be built and
yields the Domain Architecture Model. This phase is typically driven by a requirements
engineer and involves all stakeholders. Subsequently, the System Architecture phase is
intended to decompose particular systems into their individual design elements. Finally,
these design elements are handed over to engineers from various disciplines who create
the Detailed Design Model and implementation.

The identified primary phases aim at aligning the overall engineering process with
the DSSE modeling stack. A more detailed discussion on detailing of these phases with the
technical processes defined in the context of the ISO 15288 process model [40] can be found
in [64,67].

5. The DSSE Modeling Stack

The modeling stack of the DSSE approach consists of the three layers Domain Architec-
ture, Technical Architecture, and Detailed Design. Every layer addresses different concerns
and consists of several viewpoints. Moreover, every viewpoint is associated with particular
model kinds. For the upper two layers, a DSL is specified and implemented, which will be
discussed in the subsequent section.

5.1. Domain Architecture Model

The Domain Architecture Model is intended to identify the overall system topology and
its functionality on a high level. As this task involves various stakeholders with heteroge-
neous backgrounds, the main challenge is establishing a common modeling language. The
least common denominator between all stakeholders is the particular application domain
of a system, such as Industry 4.0 or Smart Grid. For this reason, in the first step, the lingua
franca of a specific application domain needs to be identified before, in a second step,
particular viewpoints and model kinds can be derived.

To increase the chance of acceptance, the DSSE approach tries to utilize existing
Reference Architecture Models such SGAM, RAMI 4.0, and others (see Section 2).

For developing the Domain Architecture Model, three viewpoints have been estab-
lished. The Enterprise viewpoint addresses business-related aspects such as identification of
business goals, description of business processes, or identification of the legal envelope. The
functionality of a system is considered by the Function viewpoint, and technical concerns
can be addressed within the Technical Concept viewpoint.

As suggested by ISO 42010, every viewpoint is further associated with particular model
kinds which can be understood as the “language” being used to populate a viewpoint.
At this point, domain-specific concepts (stakeholder’s lingua franca) can be utilized. An
example for the application domain Smart Grid is illustrated in Figure 8. As can be seen,
the individual layers of the SGAM are interpreted as model kinds that are used to populate
the previously defined viewpoints.

At this point, however, it needs to be mentioned that the original intention of SGAM
was to help to identify gaps in standardization. It was not developed as a framework for
architecture development. Thus, aspects such as requirements have not been considered,
making it necessary to integrate additional viewpoints and model kinds regarding a
project’s specific character.

In early attempts, the SGAM layers were considered as individual viewpoints. This
attempt had to be reconsidered to better reflect the evolution of the used model elements
as depicted in the lower part of Figure 8. As can be seen, in a first step Business Actors are
used to analyze enterprise concerns [64]. These actors are subsequently allocated to Logical
Actors for the specification of functionality. The allocation relation clarifies the responsibility
for every Logical Actor. Finally, Logical Actors are allocated to particular Components. Here

Systems 2022, 10, 42 13 of 27

it is important to notice that the same model elements (“Components”) are being used in
all three model kinds of the Technical Concept viewpoint.

Modelling Elements

«Viewpoint»
Enterprise

«ModelKind»
SGAM Business Layer

«Viewpoint»
Function

«Viewpoint»
Techncial Concept

«ModelKind»
SGAM Function Layer

«ModelKind»
SGAM Information Layer

«ModelKind»
SGAM Communication Layer

«ModelKind»
SGAM Component Layer

«Logical Actor»<<Business Actor>> <<Physical Component>>

«allocation» «allocation»

Figure 8. Domain Architecture Model.

A central question of this approach is the question of which model kinds to be used.
For different aspects such as business process modeling or physical (electrical) composi-
tion, standardized concepts (e.g., Business Process Modelling Notation (BPMN), electric
schematics,...) exist. Other aspects (e.g., network topology) are less standardized, but
iconic representations are widespread. The strategy of DSSE in that case is to introduce a
limited set of modeling elements as an umbrella and link those elements to commonly used
concepts. For example, the elements Business Process and High Level Use Case are introduced.
For a more detailed description of these elements, integration is provided with BPMN or
the IEC 62559 Use Case template [68].

The definition of the discussed model kinds has been done by developing a DSL which
is discussed in the following section in detail. However, the specification of modeling
elements, their semantic meaning, and iconic representation remains a critical aspect that
would benefit from a consolidated concept, preferably proposed by standardization bodies.

5.2. Technical Architecture Model

The outcome of the Domain Specific Model is the identification of particular components
with well-defined ownership, functionality, and technical interfaces. Subsequently, these
components can be decomposed into their design elements within the Technical Architecture
Model. This task is typically executed by a system architect.

In context of DSSE the application of the Software Platform Embedded Systems (SPES)
methodology [52,53] is suggested which gained momentum in the recent past. As already
introduced in Section 2, the backbone of the SPES methodology is the specification of the
four viewpoints Requirements, Function, Logical Architecture, and Technical Architecture. In
context of these viewpoints, an iterative and incremental decomposition of the component
can take place that specifies requirements, functionality, and structure on different levels
(Figure 2).

As the task of system decomposition reflects the object-oriented paradigm, the appli-
cation of SysML as dominant systems modeling language appears natural. Before applying
SysML, however, the aspect of function development needs to be considered as SysML today
lacks a concept for developing and modeling functions - a central element of SPES.

A suitable approach to deal with this aspect is delivered by the Functional Architecture
for Systems (FAS) methodology proposed by Lamm and Weilkiens [69]. This approach

Systems 2022, 10, 42 14 of 27

introduces a concept for developing and modeling particular system functions based
on different Use Cases. For this purpose, FAS combines standard SysML elements (e.g.,
Use Cases or Activities) with additional ones such as function or function groups. The
specification of these additional elements is done by a metamodel, complemented with a
publicly available SysML profile (http://fas-method.org/ (accessed on 16 February 2022)).

5.3. Detailed Design Model and Implementation

The iterative decomposition of components ultimately yields particular design elements
such as electric circuits, software, or mechanical parts. These elements are intended to
be passed to engineers from the corresponding discipline for creating the detailed design
(Detailed Design Model) and implementation.

An important aspect, in that case, is to enable traceability between different elements.
A simplified example shall illustrate this aspect. It’s assumed that a charging station is
decomposed into a mechanical design element (housing) and an electrical design element
(main circuit). Both elements are considered to be developed individually by a mechanical
and electrical engineer. The electrical design element is further characterized by attributes
such as power and efficiency coefficient. However, changes in the efficiency coefficient during
development could affect the thermal behavior, which should be reflected by the housing’s
mechanical design.

A common difficulty in engineering is the communication between engineers from
different disciplines. Often, this aspect solely relies on personal relations and experi-
ence. For the outlined example, the correlation is obvious, but considering factors such
as Noise/Vibration/Harshness (NVH), privacy, or maintainability illuminates the need
for more rigorous concepts. To address this aspect, the DSSE approach introduces the
two specialized model elements Design Element and Design Parameter. As illustrated in
Figure 9, the last stage of decomposition consists of Design Elements, which further com-
prise different Design Parameters specified by a specific value (or a bandwidth). Further,
interdependencies between individual Design Parameters and other Design Elements can
be modeled using a trace relation.

The architect who maintains the system-wide perspective can now hand over individ-
ual Design Elements (together with the predefined Design Parameters) to the corresponding
engineers. When changes or deviations from these Design Parameters are required, possible
interdependencies can be analyzed and handled accordingly on the architectural level.

Design Model

Discipline A

Architecture Model

Component X

Design Element A Design Element B

Discipline B

hand-overhand-over

«trace»

Figure 9. Traceability.

http://fas-method.org/

Systems 2022, 10, 42 15 of 27

5.4. Interrelations between the Different Layers

The interrelations between the different layers of the modeling stack require a more
differentiated discussion as they depend on the nature of the individual layers. As depicted
in Figure 10, the top layer (Domain Architecture) is created by means of a specific DSL (see
Section 6) and implemented as SysML Profile. Thus, elements on this level basically are
SysML Blocks extended by a specific stereotype.

Domain Architecture Model

Technical Architecture Model

SysML Block

Detailed Design Model

Physical Artifacts

Physical Component

Domain Specific Model
Element, e.g. Stereotyped
SysML Block

Standard SysML Elements

Specific Design Elements,
e.g., Schematics, CAD
Model, or Software
Design

Product Physical Elements, e.g.
Hardware, Printed Circuit
Board, Source Code

Object Modeling
Tool

Design Tools

Trace

Model Transformation

Trace

Figure 10. Interelations between different layers of the modeling stack.

As the Technical Architecture Model is built upon SysML as well, the upper two layers
can be created within one single modeling tool, or within one particular model. From a
technical point of view the decomposition task could be performed directly on basis of
the modeling element from the Domain Architecture Model. In this scenario, however, the
question occurs in which of these two layers the component should be located.

To maintain a strict separation between the Domain Architecture Model and the Technical
Architecture Model it is suggested to include an explicit model-to-model transformation.
Technically, this implies the integration of one component (Stereotyped SysML Block)
within the Domain Architecture Model, a second component (plain SysML Block) within the
Technical Architecture Model, and a Model Transformation relation in between.

For the interrelations between the Technical Architecture Model, the Detailed Design
Model, and the physical artifacts some more project specific considerations are necessary.
As previously illustrated in Figure 9 at this stage a hand-over between a System Architect
and different Design Engineers with individual tools (e.g., schematic editor, CAD tool,
Software Development) takes place. The focus here is to maintain traceability between
architectural models and design models. As this typically involves multiple tools with
different interfaces, this task needs to be considered individually within the particular
project and tool-chain configuration management.

Systems 2022, 10, 42 16 of 27

6. Domain Specific Language

To enable the application of the DSSE modeling stack, a DSL has been developed
covering the Domain Architecture Model and the Technical Architecture Model. The DSL
has been specified using a metamodel and implemented as a SysML profile with additional,
tool-specific extensions.

6.1. Metamodel

The metamodel of the DSSE approach is structured according the modeling stack. For
every model kind an Abstract Syntax Model (ASM), a Concrete Syntax Model (CSM), and
a Semantic Model (SEM) are defined as exemplarily depicted in Figure 11.

Figure 11. Excerpt of the Metamodel.

The ASM represents the backbone of the metamodel and declares (1) modeling ele-
ments, (2) relations, and (3) constraints. It is specified as directed type graph and modeled as
UML class diagram by utilization of the mapping proposed by Kleppe [70]. Thus, the type
graph’s nodes (“model elements”) are specified as classes and edges (“model relations”) as
directed associations.

The definition of constraints differs between relation-specific constraints and element-
specific constraints. Relation-specific constraints are being described as attributes of the
association relations (e.g., multiplicities). Element-specific constraints (e.g., invariants)
are described in natural language by now. The textual description, however, is intended
to be replaced with a more formal, Object Constraint Language (OCL) based notation in
the future.

Considering the excerpt of the SGAM Business Layer ASM depicted in the upper part
of Figure 11, the definition of three elements (Business Actor, Business Goal, and Business
Case) and their relations can be seen. All elements further comprise individual attributes
which are not depicted in the image. Additionally, all elements are specializations from the
generic element “SGAM ModelElement” and inherit its properties.

In the lower left part of the ASM further the mechanism for allocating elements from
one model kind to another model kind is visible. In particular, the model element Business
Actor (from the model kind SGAM Business Layer) is allocated onto the model element Logical
Actor (from the model kind SGAM Function Layer).

Systems 2022, 10, 42 17 of 27

The declaration of all elements and relations is further complemented with an iconic
representation and a semantic description, defined within the CSM and SEM, respectively
(visible in the lower part of Figure 11).

On the level of the Domain Architecture, the metamodel covers all previously described
Model Kinds. For the Technical Architecture, only those elements are defined that are not
covered by standard SysML. In particular, the previously described concepts for function
modeling and design model traceability were considered.

6.2. DSL Implementation

The implementation of the DSL is done by utilization of the SysML profile mecha-
nism which comes with two benefits. First, existing modeling tools can be used, and
second, an inherent integration with SysML based language implementations such as
BPMN is enabled.

A drawback, however, is the limited capability of profiles that do not allow for integrat-
ing more sophisticated concepts such as matrix layouts, extended graphical representations,
and others. Furthermore, the profile mechanism does not provide capabilities for defining
individual toolboxes for individual diagrams, which is deemed crucial for user acceptance.

These shortcomings are often compensated by tool vendors providing tool-specific
mechanisms for further extensions. At this point, an architectural decision had to be made,
and the initially intended tool-independence had to be sacrificed in favor of higher usability.
Thus, the profile is complemented with tool-specific concepts for every considered tool.

An exemplarily implementation of the DSL for the Enterprise Architect (EA) (www.
sparxsystems.com (accessed on 16 February 2022)) modeling tool is depicted in Figure 12
and shows the utilization of the two EA specific concepts MDG Technology and Reference
Data.

In that case, MDG Technology is used to extend profiles with a similar mechanism
to integrate individual diagram types and toolboxes. Further, it enables the integration
of design patterns which have been used, for example, to integrate patterns for particular
security requirements [71].

The Reference Data concept covers several graphical and tool-specific elements such
as Diagram Matrix Profiles to cover the representation of the grid-pattern used in SGAM.
Further, ModelImages represents a collection of all images being used within the CSM. The
final element, Comma Separated Values (CSV) enables the integration of a simple data
structure for exchanging model elements with external repositories.

«EAModel»
SGAMToolbox.DSL

MD G Technology

«ReferenceData»
ModelImagesUML Profile Diagram Types

Toolboxes

«ReferenceData»
Diagram Matrix

Profiles

Patterns
«ReferenceData»

CSV

Reference D ata

Figure 12. DSL Architecture for Enterprise Architect.

7. Modeling Environment and Toolchain Integration

To enable the application of the described DSLs, a concept for integration with com-
mercial modeling tools has been developed that provides additional capabilities such as a
Graphical User Interface (GUI), semi-automatic model transformations, or integration with

www.sparxsystems.com
www.sparxsystems.com

Systems 2022, 10, 42 18 of 27

external repositories. For integration with different tools, a modular architecture has been
developed as illustrated exemplarily in the upper part of Figure 13.

Object Model

SGAM Toolbox

«C# Project»
SGAMToolbox.AddIn

«C# Project»
Toolbox.Core

«EAModel»
SGAMToolbox.DSL

«ModellingTool»
Enterprise Architect

Build Process

Domain Architecture Model Technical Architecture Model

Detailed Design Model

Model
Repositories

External
Validation

Visualization

Toolbox
FunctionalityToolbox

Core IF

MDG
Technology

EA AddIn IF

develop

Reference
Data

Figure 13. Toolbox Implementation.

In this example, the DSSE approach is applied for modeling Smart Grid architectures
by utilizing the Enterprise Architect (EA) modeling tool. The corresponding modeling
environment is developed as Add-In for EA and denoted as SGAM Toolbox. It comprises the
three building blocks SGAMToolbox.DSL, Toolbox.Core, and SGAMToolbox.AddIn. A common
build process integrates the building blocks and yields a setup file for installation.

The SGAMToolbox.DSL building block summarizes the implementation of the DSL
as described before. This building block needs to be developed specifically for a targeted
modeling environment, and its integration with the modeling tool is realized during the
execution of the setup routine.

The functionality of the Add-In is covered by the two building blocks SGAMTool-
box.AddIn and SGAMToolbox.Core. These two components were initially realized as one
monolithic project. Meanwhile, it has been refactored into these two separate components
to enhance reusability across different modeling tools and different application domains.
After refactoring, core functionality and tool-specific interfaces are covered by the Tool-
box.Core module, whereas application domain-specific aspects are realized within the
SGAMToolbox.AddIn module.

It must be mentioned that the goal of comprehensive module reusability has not been
completely achieved. Even though all implementations reflect this architecture, interoper-
ability only exists for implementations addressing the same modeling tool. Attempts to
reach a tool-independent integration did not succeed by now, mainly caused by different
programming languages being used. However, work on this attempt has been postponed
until the upcoming SysML V2 specification is released that is expected to provide a stan-
dardized, tool-independent Application Programming Interface (API) for SysML models.

Systems 2022, 10, 42 19 of 27

The described modeling environment allows for the establishment and development
of domain-specific models according to the DSSE approach. As illustrated in Figure 13 this
addresses the Domain Architecture Model and the Technical Architecture Model.

To enable a holistic approach, the integration within a broader tool-chain is of relevance
as well. The vertical integration of the individual layers from the modeling stack has already
been discussed in the previous sections. The horizontal integration—which is of particular
importance for architectural work—is considered in the following.

In this context, horizontal integration refers to the integration of artifacts from an
external repository (lower-left corner of Figure 13) on the one hand, and the suitability
of the model to be exploited by external tools on the other hand (lower right corner of
Figure 13).

External artifacts’ integration covers a bandwidth from individual elements to more
significant parts of a model, such as reference solutions for particular scenarios. The
simplest case is the direct import of individual elements, such as components from an
internal product catalog or standardized elements. In our research, this aspect has been
considered based on Smart Grid Use Cases.

In parallel to the creation of SGAM, the Smart Grid Coordination Group established
a set of consolidated High Level Use Case (HLUC) for the Smart Grid [72] which were
documented based on the IEC 62559 Use Case Template [73]. This template provides a
profound structure for the description of Use Cases and has also been taken into account by
the SGAM based DSL. To enable accessing these Use Cases, a digital Use Case Management
Repository (UCMR) has further been developed [74].

For the technical integration of the UCMR with the DSSE modeling environment
different concepts have been demonstrated (e.g., XML interface, CSV import/export) [64,75].
Even though this integration is not ground-breaking, it serves as a good showcase for the
possibilities enabled by a consolidated repository based on a well-defined description concept.

A bit more interesting is the question of how to integrate more significant parts of a
model. To analyze this aspect in detail, the NIST Logical Reference Model (NIST LRM) [76]
has been selected as a case study. Considering various security aspects in detail, the
NIST LRM proposes several reference solutions for common scenarios. Thus, in the first
step, a mapping of the NIST LRM with SGAM has been established before a publicly
available (www.en-trust.at/NISTIR (accessed on 16 February 2022)), digital model was
created by utilization of the SGAM Toolbox [77,78]. The intention behind this task was to
provide a reference solution that can be integrated with individual models.

From a technical perspective, the resulting reference model is represented as a straight-
forward UML/SysML model with stereotyped elements. Thus, model import and export
should be enabled by existing UML/SysML mechanisms such as the XML Metadata Inter-
change (XMI) standard. In practical application, however, varying implementations of the
XMI standard from different vendors surfaced, limiting the accessibility of the reference
model. Moreover, even when sticking to one tool, the integration of reference solutions is
difficult. For illustration, let us assume a model that integrates the component “Charging
Station”. For this element, a reference solution (e.g., a set of security requirements) shall
be integrated from a repository. Importing the reference charging station with all attached
security requirements yields a model where both the original charging station and the im-
ported one (with all requirements) exist, and consolidation needs to be done manually. For
a single element, this is an achievable task, but when it comes to interconnected constructs
(e.g., integration of an Advanced Metering Infrastructure (AMI) solution), this can turn out
to be a challenge.

The experiences made during this case study yielded in the integration of Design
Patterns as described in Section 6. This concept enables the extension of individual elements
from the model with a particular pattern provided by the DSL. Thus, the outlined problems
are avoided. As these patterns are part of the DSL, this approach is feasible for relatively
static reference solutions. When it comes to integration with more frequently updated
models, this approach might find its limits. A scenario for that case can be envisioned easily

www.en-trust.at/NISTIR

Systems 2022, 10, 42 20 of 27

when it comes to cooperation between various parties or in the context of SoS. Thus, to
enable such a scenario, asides from the conceptual compatibility, the technical integration
(e.g., model slicing) requires further considerations.

Another aspect of horizontal integration is the integration of the architectural model
with external tools. In our research, especially the concern of model validation has been
considered and studied in three different scenarios.

For visual inspection purposes, a 3D visualization tool has been developed by OFFIS
(www.offis.de (accessed on 16 February 2022)) and utilized in Smart Grid and Industry 4.0
scenarios [55,74,75,79]. The integration with our modeling environment has been realized
similarly to integrating with the UCMR described earlier. Again, this integration rather
served the purpose of demonstration than the contribution of ground-breaking research.

The visual inspection has further been complemented with more formal considerations
for both, static and dynamic validation. To investigate the capabilities of static validation, two
concepts were analyzed. The first concept considered the evaluation of specific attributes
of the model, such as Capital Expenditure (CAPEX) or Operational Expenditure (OPEX)
attributes associated with particular components. This mechanism is implemented as part
of the model environment and does not involve external tools. The second concept tried
to apply external validation and has been studied in the context of privacy in Smart Grid
scenarios. In particular, based on the SGAM Information Layer model kind, a data-flow
graph has been generated and exported as XML structure. This structure has further been
evaluated by an external, ontology-based privacy assessment tool that analyzes the impact
of data aggregation. A detailed description of this attempt can be found, for example,
in [80,81]

For dynamic validation, especially the integration with co-simulation infrastructure
such as the MOSAIK framework (http://mosaik.offis.de/, (accessed on 16 February 2022))
has been considered. Even though MOSAIK originates from the application domain Smart
Grids, it could have been utilized successfully for Industry 4.0 scenarios as well.

For integration with MOSAIK, a code-generation capability has been realized within
the modeling environment. In that case, particular simulators for MOSAIK are gener-
ated based on behavioral models. For evaluation of the capabilities, different scenarios
were considered. In the context of Industry 4.0, a simplified production environment has
been modeled where a classic production belt is replaced by “production islands” that
are approached by individual production units. Unique simulators were generated for all
production units (self-propelled robot cars carrying the individual workpieces) and ma-
chines. These simulators are further combined within MOSAIK to observe varying timing
behavior about different parameters. The results of this case study have been submitted for
publication but are still in the review process.

In the application field Smart Grid an Electric Vehicle (EV) charging case study has
been constructed that addresses different aspects. First, it combines architectural models
from two complementary domains (Smart Grid, Automotive) and thus has been used to
study the characteristic of model compatibility in detail. Second, this scenario assumes a
price-based charging behavior of vehicles, leading to emergent behavior (oscillation of the
power grid) caused by simultaneous charging behavior changes.

For a simulation of emergent behavior, a limited model of a distribution grid has been
created. This model comprises the electric topology and the dynamic pricing behavior.
Complementary, an electric vehicle model was developed considering the electric load
and a reaction to the price changes. Based on these models, generators for MOSAIK were
generated where vehicles’ instances were further complemented with random aspects. A
detailed description of this (evolving) case study can be found in [82–84].

8. Discussion

As discussed in Section 1, our research on DSSE has spanned more than ten years.
Different aspects have been investigated, various artifacts have been implemented, and val-
idation of the different bits and pieces took place based on the validation strategy discussed

www.offis.de
http://mosaik.offis.de/

Systems 2022, 10, 42 21 of 27

in Section 3. A dedicated review on the approach as a whole, identified shortcomings and
open aspects for research has been published recently [85].

For the sake of completeness a summary of the main findings made during validation
is provided in the following. This discussion is structured in respect to the individual
artifacts developed in context of DSSE. To enable a better orientation, the integration of
these artifacts is further depicted in Figure 14.

DS SE Modelling EnvironmentDS SE Modelling F rameworkModel D riven Architecture
(MDA)

Model D riven Architecture
(MDA)

Process Model

Implementation Artefacts

Commercial Modeling Tools

DSSE Toolbox

Design Models

DSSE Toolbox

Viewpoint A

Analysis Model

Architectural Model

Design Model

Domain Specific Viewpoints & Model-Kinds

F1

F1.1 F1.2

B1

B1.1 B1.2

Viewpoint B

DM1 DM2 DM3 ...

System Analysis

System
Architecture

Design &
Development

Enterprise
Architect

Rhapsody

Integration Layer

Toolbox Core

Graphical User Interface

DSL
Implementation

ElectronicsCode Mechanics ...

Computation
Independent Model (CIM)

Platform Independent
Model (PIM)

Platform Specific Model
(PSM)

Platform Specific
Implementation (PSI)

Commercial Design Tools

Model Transformation

Process Flow

Legend

implements

«trace»

«trace»

implements

«trace»

«trace»

«trace» «trace»

«trace»

«trace»

Figure 14. Integration of the DSSE artifacts.

8.1. Process Model

To give guidance for the application of DSSE it was intended to complement the mod-
eling stack with a corresponding process model. This process model is separated into three
phases and aligned with the concept of MDA, the layers of the modeling stack, and the
corresponding tools being used for development. The fist two phases (System Analysis and
System Architecture) are aligned with the upper two layers of the modeling stack which is
created by utilization of the developed modeling environment. The outcome of the Archi-
tecture Model is a specification of particular components which are subsequently handed
over to different design engineers for creating a detailed design and implementation.

The character of the Design and Development phase is dominated by the particular
design artefacts and will be specified individually depending on the components being
realized. For the System Analysis and System Architecture phase, in contrast, the original
intention was to provide a detailed process model that is clearly linked with specific artifacts
from the upper two layers of the modeling stack.

During practical application in industrial settings it became apparent that the suit-
ability of process models strongly depends on (1) the corresponding organization (and its
maturity) and (2) the nature of a system to be developed. Thus, the attempt of finding a
one-fits-all process model appears not feasible.

To address this challenge we are currently working on the development of different
process model templates on basis of the ISO 15299 process framework (Figure 1) [40]. These
templates are intended to be more specific for particular application domains on the one
hand and more flexible for different maturity levels on the other hand.

8.2. Modeling Framework

Domain Architecture Frameworks: The philosophy of DSSE proposes that modeling should
utilize the stakeholder’s language rather than requiring all stakeholders to learn particular mod-
eling languages. The question of "what is the stakeholder’s language?" has been answered
by relying on established reference concepts from standardization bodies. This approach

Systems 2022, 10, 42 22 of 27

has turned out to be of value as it provides a common starting point based on concepts
familiar to the involved stakeholders.

The utilization of existing reference concepts in context of DSSE revealed different
shortcomings during validation. First of all, Domain Architecture frameworks from stan-
dardization bodies such as SGAM or RAMI 4.0 do not exist for all application domains.
Second, the suitability of existing concepts for architecture development is not guaranteed,
not to say limited. SGAM for instance, has been proposed to identify gaps in standard-
ization and does not provide ideas for integrating requirements, modeling cross-cutting
concerns, or give guidance on the utilization for modeling. Consequently, reference con-
cepts need to be embedded into an engineering framework individually. This is a significant
amount of work and limits interoperability between models from different domains such
as Automotive or Smart Grids.

The limited capabilities of today’s Domain Architecture frameworks for application
in engineering requires reconsideration from a more holistic perspective. Instead of just
extending existing frameworks (what has been done in context of DSSE) a broader discus-
sion is necessary on how to design Domain Architecture frameworks in general. A special
focus in that case should be the question on how to allow for a seamless integration with
engineering approaches on the one hand whilst maintaining the easy understandability on
the other hand.
Domain Architecture Model Kinds: Another topic that became appearant during appli-
cation of DSSE is the demand for suitable model kinds within the Domain Architecture.
Many concepts exist for different aspects, but they strongly differ in maturity, granularity,
and understandability. In our research we involved, for example, the IEC 62559 Use Case
Template for the description of Use Cases, or particular languages such as BPMN to detail
individual business processes. To foster acceptance and usability, it is necessary to (1)
identify possible model kinds, (2) align the individual concepts with each other and (3)
identify gaps in between to be closed in the following.
Technical Architecture: On level of the Technical Architecture a particular question is the
definition of viewpoints and the selection of model kinds. After several iterations and
different attempts, we ended up following a structure as proposed by SPES (Section 5). The
organization of all models within the four SPES viewpoints turned out to provide a good
balance between formalism and practicability.

Two aspects, however, need to be addressed. First, a common "base set" of model
kinds on the level of the Technical Architecture would be useful to enable compatibility
between different models (e.g., for consideration of SoS scenarios). Second, a mapping
between viewpoints from the Domain Model and Architecture Model is needed to provide
consistency and vertical traceability.
Unified Modelling Stack: As discussed in Section 1, the operation of cyber-physical
systems (CPS) in System-of-Systems (SoS) is a common scenario. To validate the suitability
for architecting and understanding SoS scenarios, DSSE has been applied for developing
(1) models of Electric Vehicles and (2) models of a Smart Grid. Further, these models have
been integrated to simulate the influence of multiple electric vehicles to the Smart Grid [84].
To enable such an integration, interoperability and compatibility between the models from
different domains (in that case Automotive and Smart Grid) need to be ensured. The simple
thesis is that when systems need to be interoperable, the models need to be compatible
as well.

An excellent example on how to achieve interoperability is the ISO/OSI Reference
Model [86] as the internet’s backbone. It describes how different communication aspects
are handled on different abstraction layers and how the interactions take place.

In analogy to this stack, we propose the call for a Unified Modelling Stack (UMS) that
separates different aspects on different model levels and provides a unified set of viewpoints
for them. Further, common model kinds should be identified, and their integration should
be structured.

Systems 2022, 10, 42 23 of 27

The proposed DSSE Modelling Stack can be seen as the first attempt towards this
direction. However, for a broader application, the outlined work needs to be put on a more
solid and common basis.
Enterprise Architecture Integration: Application of the DSSE Approach in industrial
applications revealed a very relevant aspect. It is a common case that CPS are operated
in respect to superordinated enterprise or business processes. For example, flexible EV
charging could be conducted in reference to actual prices on the energy spot market. In
that case, an integration of the CPS with the Enterprise Architecture of a Distribution System
Operator (DSO) is necessary. This aspect is often denoted as "IT/OT" integration.

Enterprise Architectures are often designed and implemented in reference to specific
Enterprise Architecture Frameworks such as the Zachman Framework [87], or The Open Group
Architecture Framework (TOGAF) [88]. Consequently, concepts are required that integrate
Domain Architecture frameworks with existing Enterprise Architecture frameworks. At
present, frameworks such as SGAM or RAMI 4.0 are developed with a technical focus in
mind and only rudimentary guidance for enterprise and business modeling is provided [89].

The lacking capability for integration between theses concepts poses a significant
barrier for practical application and further research on this topic is necessary. First analysis
have already been made in the application domain Industry 4.0 [90], but this topic is still
considered as open and discussion on a broader basis is required.

8.3. Modeling Environment

Horizontal Integration: In context of DSSE the horizontal integration denotes tool- and
model-compatibility on the same level of the modeling stack. This can be, for instance, the
interoperability between an architecture modeling tool and a Co-Simulation framework
such as MOSAIK, or simply the exchange of architectural models between different tools
from different vendors.

Today, interfacing with existing SysML models is not a straightforward task due
to shortcomings in standardization and different interpretations from different vendors.
Consequently, SysML models are difficult to manipulate by a tool different from the one
used to create the model. Thus, modeling extensions such as the SGAM Toolbox need to
be implemented individually for different modeling tools. The lack of interoperability has
already been identified by standardization bodies and is expected to be addressed in the
upcoming SysML V2 standard.
Vertical Integration: With vertical integration the interrelation between the different layers
of the DSSE stack is referenced. As our research is concentrating on the establishment of
holistic understanding, focus has been put on the link between Domain Architecture and
technical architecture by now.

Despite not being in our focus so far, the integration of architectural models (e.g., de-
veloped in SysML) with design models (e.g., schematics of a power grid’s topology) is of
urgent importance as well. It has to be mentioned that this is not only a matter of tooling but
also a conceptual question. For instance, SGAM-based architecture models are suitable to
model the integration of components such as an EV charging station and the corresponding
power grid. This integration can further be considered in different views, highlighting
aspects such as functional interactions. Following the object-oriented idea, this description
can be interpreted as type model.

When it comes to the design of a particular power grid segment, the topology of this
segment (e.g., how many charging stations, physical attributes of the power line, etc.) is
of interest—an aspect that is not in the scope of SGAM. The topology of the power grid
usually would be specified utilizing an electric schematic editor and can be interpreted as
instance model.

9. Conclusions

The ongoing evolution of cyber-physical systems (CPS) and their application in critical
environments drives the need for more enhanced engineering methods. Modeling as such

Systems 2022, 10, 42 24 of 27

is a feasible approach for dealing with complexity. For a broad and holistic application,
however, different aspects need to be considered. On the one hand, models should be
accessible for stakeholders with diverse backgrounds, and on the other hand, they must
convey an absolute rigor for formal assessment.

The Domain Specific Systems Engineering (DSSE) approach investigated this topic
over the past years in different application domains. Based on this research, suggestions
are proposed for an entire modeling stack with particular viewpoints and model kinds,
accompanied by a fundamental modeling process. For practical application and validation,
different toolboxes were implemented. Further, various concepts such as integration with
Co-Simulation were investigated.

Even though this approach appears to be a step in the right direction, a broader
discussion within the community—especially on the structure of the modeling stack, the
utilized viewpoints, and model kinds—is required. Further, this discussion should not
only occur within the Systems Engineering community but should also be shared with
corresponding communities from different application domains. This aspect appears
crucial for enabling different reference architectures’ alignment as a common ground for
model compatibility.

Author Contributions: C.N. and C.B. contributed equally in conducting the study, discussing the
results and writing the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the “Christian Doppler Forschungsgesellschaft”, the “Aus-
trian Federal Ministry for Digital and Economic Affairs”, the “National Foundation for Research,
Technology and Development” and the “Federal State of Salzburg”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development and the Christian
Doppler Research Association as well as the Federal State of Salzburg is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the 2008 11th IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; pp. 363–369.
2. Haberfellner, R.; de Weck, O.L.; Fricke, E.; Vössner, S. Systems Engineering. Grundlagen und Anwendung; Orell Füssli: Zurich,

Switzerland, 2012.
3. DeLaurentis, D. System of Systems Definition and Vocabulary; Technical Report; School of Aeronautics and Astronautics, Purdue

University: West Lafayette, IN, USA, 2007.
4. Carlock, P.G.; Fenton, R.E. System of Systems (SoS) enterprise systems engineering for information-intensive organizations. Syst.

Eng. 2001, 4, 242–261. [CrossRef]
5. Pei, R.S. Systems of Systems Integration—A Smart Way of Acquiring Army C412WS Systems. In Proceedings of the Summer

Computer Simulation Conference, Vancouver, BC, Canada, 16–20 July 2000; pp. 134–139.
6. Lukasik, S.J. Systems, systems of systems, and the education of engineers. Artif. Intell. Eng. Des. Anal. Manuf. 1998, 12, 55–60.

[CrossRef]
7. Manthorpe, W. The emerging joint system of systems: A systems engineering challenge and opportunity for APL. John Hopkins

APL Tech. Dig. 1996, 17, 305–310.
8. Jamshidi, M. System of Systems Engineering Definitions. In Proceedings of the IEEE Systems, Man, and Cybernetics Conference,

Waikoloa, HI, USA, 10–12 October 2005.
9. Maier, M.W. Architecting principles for systems-of-systems. Syst. Eng. 1998, 1, 267–284. [CrossRef]
10. DeLaurentis, D. Understanding Transportation as a System-of-Systems Design Problem. In Proceedings of the 43rd AIAA

Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005.
11. Miclea, L.; Sanislav, T. About dependability in cyber-physical systems. In Proceedings of the 2011 9th East-West Design & Test

Symposium (EWDTS), IEEE, Sevastopol, Ukraine, 9–12 September 2011; pp. 17–21.

http://doi.org/10.1002/sys.1021
http://dx.doi.org/10.1017/S0890060498121078
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

Systems 2022, 10, 42 25 of 27

12. Blume, S. Electric Power System Basics: For the Nonelectrical Professional (IEEE Series on Power Engineering); John Wiley & Sons:
Hoboken, NJ, USA, 2007.

13. United States Department of Energy. The Smart Grid: An Introduction. Technical Report. 2008. Available online: https://www.energy.
gov/sites/default/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf (accessed on 16 February 2022).

14. Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [CrossRef]
15. Khurana, H.; Hadley, M.; Lu, N.; Frincke, D.A. Smart-Grid Security Issues. IEEE Secur. Priv. 2010, 8, 81–85. [CrossRef]
16. Uslar, M.; Rosinger, C.; Schlegel, S. Security by Design for the Smart Grid: Combining the SGAM and NISTIR 7628. In Proceedings

of the 38th International Computer Software and Applications Conference Workshops (COMPSACW), IEEE, Vasteras, Sweden,
21–25 July 2014; pp. 110–115.

17. Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The Vision of a Smart City; Technical Report;
Brookhaven National Lab.: Upton, NY, USA, 2000.

18. Gurgen, L.; Gunalp, O.; Benazzouz, Y.; Gallissot, M. Self-aware cyber-physical systems and applications in smart buildings and
cities. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, Grenoble, France,
18–22 March 2013; pp. 1149–1154.

19. Zhang, K.; Ni, J.; Yang, K.; Liang, X.; Ren, J.; Shen, X.S. Security and privacy in smart city applications: Challenges and solutions.
IEEE Commun. Mag. 2017, 55, 122–129. [CrossRef]

20. Hatzivasilis, G.; Papaefstathiou, I.; Manifavas, C. Software security, privacy, and dependability: Metrics and measurement. IEEE
Softw. 2016, 33, 46–54. [CrossRef]

21. Kitchin, R. Making sense of smart cities: Addressing present shortcomings. Camb. J. Reg. Econ. Soc. 2015, 8, 131–136. [CrossRef]
22. Hobert, L.; Festag, A.; Llatser, I.; Altomare, L.; Visintainer, F.; Kovacs, A. Enhancements of V2X communication in support of

cooperative autonomous driving. IEEE Commun. Mag. 2015, 53, 64–70. [CrossRef]
23. Weiß, C. V2X communication in Europe–From research projects towards standardization and field testing of vehicle communica-

tion technology. Comput. Netw. 2011, 55, 3103–3119. [CrossRef]
24. Härri, J.; Brens, F. Challenges and Opportunities of WiFi-based V2X Communications. In Proceedings of the VDI Conference on

Digital Infrastructure & Automotive Mobility, Berlin, Germany, 5–6 July 2017; pp. 5–6.
25. Poudel, B.; Munir, A. Design and evaluation of a novel ECU architecture for secure and dependable automotive CPS. In

Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), IEEE, Las Vegas, NV,
USA, 8–11 January 2017; pp. 841–847.

26. Much, A. Automotive security: Challenges, standards and solutions. Softw. Qual. Prof. 2016, 18, 4–12.
27. Amarnath, R.; Munk, P.; Thaden, E.; Nordmann, A.; Burton, S. Dependability challenges in the model-driven engineering of

automotive systems. In Proceedings of the 2016 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), IEEE, Ottawa, ON, Canada, 23–27 October 2016; pp. 1–4.

28. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
29. Kargl, F.; van der Heijden, R.W.; König, H.; Valdes, A.; Dacier, M.C. Insights on the security and dependability of industrial

control systems. IEEE Secur. Priv. 2014, 12, 75–78. [CrossRef]
30. Bicaku, A.; Maksuti, S.; Palkovits-Rauter, S.; Tauber, M.; Matischek, R.; Schmittner, C.; Mantas, G.; Thron, M.; Delsing, J. Towards

trustworthy end-to-end communication in industry 4.0. In Proceedings of the 2017 IEEE 15th International Conference on
Industrial Informatics (INDIN), IEEE, Emden, Germany, 24–26 July 2017; pp. 889–896.

31. Jaradat, O.; Sljivo, I.; Habli, I.; Hawkins, R. Challenges of safety assurance for industry 4.0. In Proceedings of the 2017 13th
European Dependable Computing Conference (EDCC), IEEE, Geneva, Switzerland, 4–8 September 2017; pp. 103–106.

32. Monostori, L. Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia Cirp. 2014, 17, 9–13.
33. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE

Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]
34. Neureiter, C.; Eibl, G.; Veichtlbauer, A.; Engel, D. Towards a Framework for Engineering Smart-Grid-Specific Privacy Require-

ments. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria,
10–13 November 2013; pp. 4803–4808.

35. Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F.; Sommerlad, P. Security Patterns. Integrating Security and
Systems Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005.

36. Avizienis, A.; Laprie, J.C.; Randell, B. Fundamental Concepts of Dependability; University of Newcastle upon Tyne, Computing
Science: Newcastle upon Tyne, UK, 2001.

37. Popper, S.; Bankes, S.; Callaway, R. System-of-Systems Symposium: Report on a Summer Conversation; Technical Report; Potomac
Institute for Policy Studies: Arlington, VA, USA, 2004.

38. Lee, E. Cyber-Physical Systems: A Fundamental Intellectual Challenge; Paris, France, 2013. Available online: https://ptolemy.berkeley.
edu/projects/chess/pubs/1045/Lee_CPS_CollegeDeFrance.pdf (accessed on 16 February 2022).

39. INCOSE International Council on Systems Engineering. Systems Engineering Handbook. A Guide for System Life Cycle Processes and
Activities. Version 3; INCOSE International Council on Systems Engineering: San Diego, CA, USA, 2006.

40. ISO 15288:2015; Systems Engineering—System Life Cycle Processes. International Organization for Standardization: Geneva,
Switzerland, 2015.

41. Schmidt, D.C. Model-Driven Engineering. IEEE Comput. Soc. 2006, 39, 25–31. [CrossRef]

https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf
https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf
http://dx.doi.org/10.1109/TSG.2010.2046346
http://dx.doi.org/10.1109/MSP.2010.49
http://dx.doi.org/10.1109/MCOM.2017.1600267CM
http://dx.doi.org/10.1109/MS.2016.61
http://dx.doi.org/10.1093/cjres/rsu027
http://dx.doi.org/10.1109/MCOM.2015.7355568
http://dx.doi.org/10.1016/j.comnet.2011.03.016
http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.1109/MSP.2014.120
http://dx.doi.org/10.1109/TDSC.2004.2
https://ptolemy.berkeley.edu/projects/chess/pubs/1045/Lee_CPS_CollegeDeFrance.pdf
https://ptolemy.berkeley.edu/projects/chess/pubs/1045/Lee_CPS_CollegeDeFrance.pdf
http://dx.doi.org/10.1109/MC.2006.58

Systems 2022, 10, 42 26 of 27

42. Kent, S. Model Driven Engineering. In Proceedings of the 3rd International Conference on Integrated Formal Methods, Turku,
Finland, 15–17 May 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 286–298.

43. Bézivin, J. In Search of a Basic Principle for Model Driven Engineering. Novatica J. Spec. Issue 2004, 5, 21–24.
44. Favre, J.M. Towards a Basic Theory to Model Driven Engineering. In Proceedings of the 3rd Workshop in Software Model

Engineering (WiSME), Lisbon, Portugal, 11 October 2004; pp. 262–271.
45. Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice; Synthesis Lectures on Software Engineering

#1; Morgan & Claypool: San Rafael, CA, USA, 2012.
46. INCOSE Technical Operations. Systems Engineering Vision 2020, Version 2.03; Technical Report; INCOSE: San Diego, CA, USA,

2007.
47. Object Management Group. OMG Systems Modeling Language (OMG SysML) Version 1.3; Technical Report; Object Management

Group: Needham, MA, USA, 2012.
48. Lee, E.A. Fundamental Limits of Cyber-Physical Systems Modeling. ACM Trans. Cyber-Phys. Syst. 2016, 1, 1–26. [CrossRef]
49. Evans, E. Domain Driven Design: Tackling Complexity in the Heart of Software; Addison Wesley: Boston, MA, USA, 2003.
50. Nuseibeh, B. Weaving together requirements and architectures. Computer 2001, 34, 115–119. [CrossRef]
51. Weilkiens, T. SYSMOD—The Systems Modeling Toolbox; MBSE4U—Tim Weilkiens: Hamburg, Germany, 2016.
52. Pohl, K.; Hönninger, H.; Achatz, R.; Broy, M. Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology; Springer:

Berlin/Heidelberg, Germany, 2012.
53. Pohl, K.; Broy, M.; Daembkes, H.; Hönninger, H. Advanced Model-Based Engineering of Embedded Systems: Extension of the SPES 2020

Methodology; Springer: Berlin/Heidelberg, Germany, 2016.
54. Smart Grid Coordination Group. Smart Grid Reference Architecture. Technical Report, CEN-CENELEC-ETSI. 2012. Available

online: https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC_Topics/Smart%20Grids%20and%
20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf (accessed on 16 February 2022).

55. Uslar, M.; Rohjans, S.; Neureiter, C.; Proestl Andren, F.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsman-
heimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the
Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [CrossRef]

56. ZVEI—Zentralverband Elektrotechnik- und Elektronikindustrie e.V. Industrie 4.0: Das Referenzarchitekturmodell Industrie 4.0 (RAMI
4.0); Technical Report; ZVEI: Frankfurt, Germany, 2015.

57. Security Sub-Working Group “Connected and Automatic Driving” of the Governmental Department of Transport and Infrastruc-
ture (BMVI). Reference Architecture Model Automotive (RAMA); BMVI: Berlin, Germany, 2017.

58. Weinert, B.; Hahn, A.; Norkus, O. A domain-specific architecture framework for the maritime domain. In Lecture Notes in
Informatics, P-259 ed.; Gesellschaft für Informatik: Bonn, Germany, 2016; pp. 773–784.

59. Neureiter, C.; Rohjans, S.; Engel, D.; Dänekas, C.; Uslar, M. Addressing the Complexity of Distributed Smart City Systems by
Utilization of Model Driven Engineering Concepts. In Proceedings of the VDE Kongress 2014, Frankfurt, Germany, 20–21 October
2014; pp. 1–6.

60. Uslar, M.; Gottschalk, M. Extending the SGAM for Electric Vehicles. In Proceedings of the International ETG Congress 2015, Die
Energiewende-Blueprints for the New Energy Age, VDE, Bonn, Germany, 17–18 November 2015; pp. 1–8.

61. Conboy, K.; Gleasure, R.; Cullina, E. Agile design science research. In International Conference on Design Science Research in
Information Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 168–180.

62. Pfeffers, K.; Tuunanen, T.; Gengler, C.E.; Rossi, M.; Hui, W.; Virtanen, V.; Bragge, J. The design science research process: A model
for producing and presenting information systems research. In Proceedings of the First International Conference on Design
Science Research in Information Systems and Technology (DESRIST 2006), Claremont, CA, USA, 24–25 February 2006; pp. 83–106.

63. von Alan, R.H.; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004, 28, 75–105.
64. Neureiter, C. A Domain-Specific, Model Driven Engineering Approach for Systems Engineering in the Smart Grid; MBSE4U—Tim

Weilkiens: Hamburg, Germany, 2017.
65. Object Management Group. Model Driven Architecture (MDA) MDA Guide Rev. 2.0; Technical Report; Object Management Group

(OMG): Milford, MA, USA, 2014.
66. ISO/IEC/IEEE 42010; Systems and Software Engineering—Architecture Description. International Organization for Standardiza-

tion: Geneva, Switzerland, 2011.
67. Brankovic, B.; Binder, C.; Neureiter, C.; Lastro, G. Towards a generic Process-Model definition in Cross-Domain architectures. In

Complex Systems Design & Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–12.
68. International Electrotechnical Commission. Intelligrid Methodology for developing requirements for Energy Systems—Public

Available Specification (PAS). In IEC/PAS 62559 ed 1.0; Technical Report; International Eletrotechnical Commission: Geneva,
Switzerland, 2008.

69. Lamm, J.G.; Weilkiens, T. Method for deriving functional architectures from use cases. Syst. Eng. 2014, 17, 225–236. [CrossRef]
70. Kleppe, A. Software Language Engineering: Creating Domain-Specific Languages Using Metamodels; Pearson Education: London, UK,

2008.
71. Neureiter, C.; Eibl, G.; Engel, D.; Schlegel, S.; Uslar, M. A concept for engineering smart grid security requirements based on

SGAM models. Comput. Sci. Res. Dev. 2014, 31, 65–71. [CrossRef]

http://dx.doi.org/10.1145/2912149
http://dx.doi.org/10.1109/2.910904
https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC_Topics/Smart%20Grids%20and%20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC_Topics/Smart%20Grids%20and%20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf
http://dx.doi.org/10.3390/en12020258
http://dx.doi.org/10.1002/sys.21265
http://dx.doi.org/10.1007/s00450-014-0288-2

Systems 2022, 10, 42 27 of 27

72. Smart Grid Coordination Group. Sustainable Processes. Technical Report, CEN-CENELEC-ETSI. 2012. Available online: https://
its-wiki.no/images/f/fe/CEN-CENELEC-ETSI_Smart_Grid_Coordination_Group_%E2%80%93_Sustainable_processes.pdf (ac-
cessed on 16 February 2022).

73. International Electrotechnical Commission. IEC 62559 Use Case Methodology—Part 2: Definition of the Templates for Use Cases, Actor
List and Rerquirements List; Technical Report; International Electrotechnical Commission: Geneva, Switzerland, 2015.

74. Gottschalk, M.; Uslar, M.; Delfs, C. Tool-Support—A Use Case Management Repository. In The Use Case and Smart Grid Architecture
Model Approach; Springer: Berlin/Heidelberg, Germany, 2017; pp. 63–69.

75. Neureiter, C.; Engel, D.; Trefke, J.; Santodomingo, R.; Rohjans, S.; Uslar, M. Towards Consistent Smart Grid Architecture
Tool Support: From Use Cases to Visualization. In Proceedings of the 5th International Conference on Innovative Smart Grid
Technologies Europe (ISGT Europe), IEEE/PES, Istanbul, Turkey, 12–15 October 2014; pp. 1–6.

76. The Smart Grid Interoperability Panel—Cyber Security Working Group. NISTIR 7628-Guidelines for Smart Grid Cyber Security Vol.
1–3. Revision 2; Technical Report; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2014.

77. Neureiter, C.; Uslar, M.; Engel, D.; Lastro, G. A Standards-based Approach for Domain Specific Modelling of Smart Grid System
Architectures. In Proceedings of the 11th International Conference on System of Systems Engineering (SoSE), Kongsberg, Norway,
12–16 June 2016.

78. Neureiter, C.; Engel, D.; Uslar, M. Domain Specific and Model Based Systems Engineering in the Smart Grid as Prerequesite for
Security by Design. Electronics 2016, 5, 24. [CrossRef]

79. Uslar, M.; Göring, A.; Heidel, R.; Neureiter, C.; Engel, D.; Schulte, S. An Open Source 3D Visualization for the RAMI 4.0 Reference
Model. In Proceedings of the VDE Kongress 2016, Dresden, Germany, 23–25 August 2016; pp. 1–6.

80. Knirsch, F.; Engel, D.; Neureiter, C.; Frincu, M.; Prasanna, V. Model-driven Privacy Assessment in the Smart Grid; Technical Report;
Josef Ressel Center for User-Centric Smart Grid Privacy, Security and Control: Salzburg, Austria, 2014.

81. Knirsch, F.; Engel, D.; Frincu, M.; Prasanna, V. Model Based Assessment for Balancing Privacy Requirements and Operational
Capabilities in the Smart Grid. In Proceedings of the 6th Conference on Innovative Smart Grid Technologies (ISGT2015),
Washington, DC, USA, 17–20 February 2015; Innovative Smart Grid Technologies Conference (ISGT); IEEE Power & Energy
Society: Washington, DC, USA, 2015; pp. 1–5.

82. Binder, C.; Gross, J.A.; Neureiter, C.; Lastro, G. Investigating Emergent Behavior caused by Electric Vehicles in the Smart Grid
using Co-Simulation. In Proceedings of the 14th Annual Conference System of Systems Engineering (SoSE), Anchorage, AK,
USA, 19–22 May 2019; IEEE: Anchorage, AK, USA, 2019; pp. 230–235.

83. Binder, C.; Fischinger, M.; Altenhuber, L.; Draxler, D.; Lastro, G.; Neureiter, C. Enabling architecture based co-simulation of
complex Smart Grid applications. Energy Inform. 2019, 2, 1–19. [CrossRef]

84. Binder, C.; Fischinger, M.; Neureiter, C.; Lastro, G.; Polanec, K.; Gross, J.A. Towards a Tool-Based Approach for Dynamically
Generating Co-Simulation Scenarios based on complex Smart Grid System Architectures. In Proceedings of the 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE), IEEE, Budapest, Hungary, 2–4 June 2020; pp. 199–204.

85. Neureiter, C.; Binder, C.; Lastro, G. Review on Domain Specific Systems Engineering. In Proceedings of the 2020 IEEE International
Symposium on Systems Engineering (ISSE), IEEE, Vienna, Austria, 12 October–12 November 2020; pp. 1–8.

86. ISO/IEC 7498-1:1994; Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic Model.
International Organization for Standardization: Geneva, Switzerland, 2015.

87. Zachman, J.A. The Zachman Framework for Enterprise Architecture: Primer for Enterprise Engineering and Manufacturing.
2003. Available online: https://www.zachman.com/about-the-zachman-framework (accessed on 16 February 2022).

88. The Open Group. The Open Group Architecture Framwork (TOGAF) Version 9.2; Technical Report; The Open Group: Van Haren
Publishing: Zaltbommel, The Netherlands, 2018.

89. Pavlovic, M.; Gawron-Deutsch, T.; Neureiter, C.; Diwold, K. SGAM Business Layer for a Local Flexibility Market. In Proceedings
of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016; Institution of Engineering and Technology: Helsinki, Finland,
2016; pp. 221–224.

90. Binder, C.; Leitner, W.; Jöbstl, O.; Mair, L.; Neureiter, C.; Lüder, A. Utilizing an Enterprise Architecture Framework for Model-
Based Industrial Systems Engineering. In Proceedings of the IEEE 19th International Conference on Industrial Informatics
(INDIN 2021), Palma de Mallorca, Spain, 21–23 July 2021.

https://its-wiki.no/images/f/fe/CEN-CENELEC-ETSI_Smart_Grid_Coordination_Group_%E2%80%93_Sustainable_processes.pdf
https://its-wiki.no/images/f/fe/CEN-CENELEC-ETSI_Smart_Grid_Coordination_Group_%E2%80%93_Sustainable_processes.pdf
http://dx.doi.org/10.3390/electronics5020024
http://dx.doi.org/10.1186/s42162-019-0084-0
https://www.zachman.com/about-the-zachman-framework

	Introduction
	Background and Own Contribution
	Modeling Approaches
	Domain Specific Architecture Frameworks
	Contribution of DSSE

	Research Design and Validation Strategy
	The Domain Specific Systems Engineering Approach
	Modeling Stack
	Modeling Environment
	Process Model

	The DSSE Modeling Stack
	Domain Architecture Model
	Technical Architecture Model
	Detailed Design Model and Implementation
	Interrelations between the Different Layers

	Domain Specific Language
	Metamodel
	DSL Implementation

	Modeling Environment and Toolchain Integration
	Discussion
	Process Model
	Modeling Framework
	Modeling Environment

	Conclusions
	References

