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Abstract: To overcome the limitations of the present grey models in spatial data analysis, a spatial
weight matrix is incorporated into the grey discrete model to create the SDGM(1,1,m) model, and
the L1-SDGM(1,1,m) model is proposed, considering the time lag effect to realize the simultaneous
forecasting of spatial data. The validation of the SDGM(1,1,m) and L1-SDGM(1,1,m) models is
achieved, and finally, the per capita energy consumption levels (PCECs) of 30 provinces in China
from 2020 to 2025 is predicted using SDGM(1,1,m) with a metabolic mechanism. We draw the
following conclusions. First, the SDGM(1,1,m) and L1-SDGM(1,1,m) models established in this paper
are reasonable and improve forecasting accuracy while supporting interactive regional forecasting.
Second, although SDGM(1,1,m) resembles the DGM(1,n) model, their modeling conditions and targets
are different. Third, the SDGM(1,1,m) and L1-SDGM(1,1,m) models can be used to effectively analyze
the spatial spillover effects within the selected modeling interval while achieving accurate predictions;
notably, from 2010 to 2017, the PCECs of Inner Mongolia and Qinghai were most affected by spatial
factors, while the PCECs of Jilin, Jiangxi, and other provinces were influenced little by spatial factors.
Fourth, predictions indicate that the PCECs of most Chinese provinces will increase under the current
grey conditions, while the PCECs of provinces such as Beijing are expected to decrease.

Keywords: grey prediction model; spatial weight matrix; SDGM(1,1,m); per capita energy consumption

1. Introduction

Recently, China’s economy has grown rapidly, with energy consumption subsequently
increasing. According to the China Energy Statistical Yearbook, China’s total energy
consumption rose from 1.5 billion tons of standard coal in 2000 to 4.9 billion tons of standard
coal in 2019. In 2019, China’s external energy dependence was 21%, including 70.8% for
crude oil, which exceeded the alert threshold of 50%, and the energy shortage is becoming
increasingly serious. In the face of a growing energy demand, energy imports continue to
increase, which has become a potential obstacle to sustainable development. Additionally,
China’s 14th Five-Year Plan proposes to reduce the energy consumption per unit of GDP
by 13.5% by 2025 and CO2 emissions by 18% compared to the respective level in 2020. In
this context, a reasonable forecast of China’s future energy consumption is of high practical
significance for ensuring energy security and formulating energy conservation policies.

There are many methods for forecasting energy consumption, and three major cate-
gories can be distinguished. The first category contains statistical analysis models, such
as the autoregressive integrated moving average (ARIMA) [1–3], time series analysis [4,5],
multiple linear regression [6], exponential smoothing [7], and Bayesian theory [8] mod-
els. The second category encompasses artificial intelligence methods, including artificial
neural networks (ANNs) [9,10], support vector machines (SVMs) [11], and BP neural net-
works [12]. The third category involves grey models. There are certain differences between
grey models and the above two types of models. The above two types of models are mostly
white system models, that is, full information models, which need to consider all factors
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related to system operation and require large sample sizes. The prediction accuracy of
these models is reduced if information is inaccurate or if the sample size is insufficient.
However, in practice, it is often difficult to obtain a large amount of original sample data
due to the difficulty of data collection and potentially low observation accuracy, and it
is unrealistic for all information to be known, thus limiting the accuracy of prediction
in various cases. In contrast, a grey model can model a system with only some known
information, and it can be used to predict energy consumption without considering various
factors, thereby overcoming the uncertainty problems associated with small sample sizes.
As grey forecasting models are easy to use, simple, and accurate, they are broadly utilized
for predicting energy consumption [13–18].

Grey systems are the main components of grey theory [19]. A grey system is a system
that is neither white nor black; that is, the available information is incomplete. Grey
predictive models combine grey system theory and other concepts, and there is a growing
variety of grey models which can be broadly divided into univariate and multivariate
model classes. In univariate models, one variable is studied, and other influencing factors
are ignored. Multivariate grey models are based on a dependent variable and multiple
independent variables, model the effects of various factors, and are classic causal forecasting
models. Recently, grey forecasting models have been increasingly optimized and improved
from various perspectives, such as background value optimization [20,21], fractional order
accumulation and opposite direction accumulation [22–24], data preprocessing [25,26],
model parameter optimization [27–29], model structure extension [30,31], information
prioritization, and rolling prediction [32–35]. To encompass the advantages of grey models
with those of other forecasting models, combined models have been developed [36,37]. In
addition to broadening the basic structures, optimized grey models enhance forecasting
performance and adaptability and are broadly used in numerous domains, such as in
studies of carbon emissions [38,39], environmental sustainability performance [40], the
consumption of petroleum products [41], traffic signal control [42], and COVID-19 [43].

It is worth discussing the emergence of discrete grey models. The derivation calcu-
lation required for the traditional grey model involves a direct switch from a discrete to
a continuous form, which can lead to background value error and parameter estimation
error in the modeling process. To solve this problem, Xie and Liu [44] proposed the discrete
grey model, DGM(1,1), the basic form of which is a first-order difference equation that
eliminates the discretization error of the GM(1,1) model. Therefore, DGM(1,1) is better
suited to describing the development pattern of a system than GM(1,1). On this basis,
scholars have conducted research on discrete grey models, and a large number of new
discrete grey models have emerged: NDGM(1,1) [45], RDGM(1,n) [46], CDGM(1,1) [47],
DGPM(1,1,N) [48], ATDGM(1,1) [49], WFDPGM(1,1,tα) [50], FDGM(1,1,

√
k,r) [51], and

DTDGM(1,N,τ) [52], among others.
Overall, scholars have made significant improvements to grey models from multi-

ple perspectives, but energy consumption forecasting still requires improvement. Cur-
rently, grey models are primarily used for modeling time sequences and are not capable
of modeling panel data or associations among spatial data, particularly for predicting
energy consumption. Notably, they generally fail to consider the spatial correlations
among energy consumption characteristics in different regions. Based on existing re-
search, energy consumption displays spatial correlations [53–57]. Therefore, the considera-
tion of spatial correlations is useful when forecasting energy consumption and analyzing
geospatial relationships.

To overcome the limitations of the present grey models, based on the superiority
of discrete models, spatial interaction is incorporated into DGM(1,1), thereby building
the spatial discrete grey prediction model SDGM(1,1,m) for the associative forecasting of
spatial data. Second, L1-SDGM(1,1,m) is established since spatial interaction processes
are often accompanied by time lag effects. Finally, the validities of the SDGM(1,1,m) and
L1-SDGM(1,1,m) models are verified based on PCEC data from 30 provinces in China, and
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the PCECs of the 30 provinces are forecasted from 2020 to 2025 using SDGM(1,1,m) with a
metabolic mechanism. The contributions of this study are as follows:

(1) In this paper, spatial characteristics are incorporated into DGM(1,1), which enhances
spatial data predictions. SDGM(1,1,m) is proposed and is used to analyze spatial
spillover effects in the selected modeling interval, and a grey model is used to process
panel data.

(2) SDGM(1,1,m) is compared with DGM(1,n), and the differences between them are
analyzed in terms of modeling purposes and requirements.

(3) In this paper, considering the time lag effect that often accompanies spatial interaction
processes, L1-SDGM(1,1,m) is proposed, thus providing a conceptual approach for
establishing other time-lag-based spatial discrete grey models.

(4) Using the PCEC data from 30 provinces in China, SDGM(1,1,m) and L1-SDGM(1,1,m)
are compared with DGM(1,1), DGM(1,n), NDGM(1,1), and BP neural network models
to verify the effectiveness and superiority of SDGM(1,1,m) and L1-SDGM(1,1,m) for
predicting the PCEC of China.

(5) Based on a metabolic concept, we use SDGM(1,1,m) to predict the PCECs of
30 provinces in China from 2020–2025.

This study is organized as follows. In Section 2, DGM(1,1) is presented, the
SDGM(1,1,m) model with spatial spillover terms is constructed, and the L1-SDGM(1,1,m)
model with time lag effects is established. In Section 3, the validities of the SDGM(1,1,m)
and L1-SDGM(1,1,m) models are verified with PCEC data from 30 provinces, and the
PCECs of these regions are predicted for 2020–2025. Section 4 provides the conclusions of
the study.

2. Construction of SDGM(1,1,m) and L1-SDGM(1,1,m)
2.1. Introduction of DGM(1,1)

For the input X(0) =
(

x(0)(1), x(0)(2), · · · , x(0)(n)
)T

, T denotes transposition.
The corresponding first-order cumulative sequence (1-AGO) is

X(1) =
(

x(1)(1), x(1)(2), · · · , x(1)(n)
)T

, where

x(1)(k) =
k

∑
i=1

x(0)(k), k = 1, 2, · · · , n (1)

Then,
x(1)(k + 1) = ax(1)(k) + b (2)

Which is said to be the basic form of DGM(1,1). p = [a, b]T is obtained using the
formula below:

p̂ = [â, b̂]
T
= (HT H)

−1
HTY (3)

where p̂, â, and b̂ denote the estimated values and all obtained values below
represent estimates.

H =


x(1)(1) 1
x(1)(2) 1

...
...

x(1)(n− 1) 1

, Y =


x(1)(2)
x(1)(3)

...
x(1)(n)

 (4)

According to Equation (2), we can obtain the corresponding ultimate simplified equa-
tion from the difference equation and cumulative reduction.

x̂(1)(k + 1) = akx(1)(1) +
1− ak

1− a
b, k = 1, 2, · · · , n (5)
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x̂(0)(k) = x̂(1)(k)− x̂(1)(k− 1), k = 2, 3, · · · , n (6)

2.2. Definition of SDGM(1,1,m)

According to the theory of spatial characteristics, the variables in a certain region are
positively or negatively influenced by the characteristic variables in surrounding regions,
which suggests that the spatial spillover effect caused by spatial correlation plays an
important role in influencing economic indicators [58]. Therefore, when predicting the
future trend of a regional characteristic variable, it is necessary to consider not only the
inertial influence of the regional characteristic variable but also the spatial influence of
the neighboring regional characteristic variables. Therefore, the introduction of spatial
correlation into a grey model can enhance the modeling approach.

Definition 1. Suppose the input data for a model are X(0) =
[

x(0)j (k)
]

m×n
, where j = 1, 2, · · · , m

and k = 1, 2, · · · , n, with m denoting the number of regions and n denoting the periods
considered. The raw sequence of the jth region can be represented as
X(0)

j = (x(0)j (1), x(0)j (2), · · · , x(0)j (n)). The data from all spatial cells at time k are represented as

X(0)(k) = (x(0)1 (k), x(0)2 (k), · · · , x(0)m (k))
T

, where T is the transpose symbol. The first-order

accumulation of X(0) is X(1) =
[

x(1)j (k)
]

m×n
, where

x(1)j (k) =
k

∑
i=1

x(1)j (i), k = 1, 2, · · · , n (7)

Then,

X(1)(k) = (x(1)1 (k), x(1)2 (k), · · · , x(1)m (k))
T
=

k

∑
i=1

X(0)(i), k = 1, 2, · · · , n (8)

If there is a spatial correlation between the variables, then

X(1)(t) = AX(1)(t− 1) + BWX(1)(t) + C (9)

A =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · am

, B =


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bm

, C = (c1, c2, · · · , cm)
T (10)

Which is said to be the basic form of the spatial discrete grey model SDGM(1,1,m), where
WX(1)(t) refers to the interaction among different regions, i.e., the spatial lag term for the sequence
X(1)(t), and W =

[
wij
]

m×m is a spatial matrix with values of 0 along the main diagonal and a
symmetric form.

Let V(0) = WX(0) =
[
v(0)j (k)

]
m×n

, with V(1) denoting the first-order accumulation of

V(0); this calculation is then implemented based on Equation (8). Consequently, it is easy
to see that:

V(1) = WX(1) (11)

Then, Equation (9) is written as

X(1)(t) = AX(1)(t− 1) + BV(1)(t) + C (12)
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The equation can be converted into the following difference equations:

x(1)1 (t) = a1x(1)1 (t− 1) + b1v(1)1 (t) + c1

x(1)2 (t) = a2x(1)2 (t− 1) + b2v(1)2 (t) + c2

x(1)m (t) = amx(1)m (t− 1) + bmv(1)m (t) + cm

(13)

Referring to Equation (3), pj = (aj, bj, cj)
T in the jth equation is estimated according to

the least-squares method:

pj = (aj, bj, cj)
T = (HT

j Hj)
−1

HT
j Yj (14)

where

Hj =


x(1)j (1) v(1)j (2) 1

x(1)j (2) v(1)j (3) 1
...

...
...

x(1)j (n− 1) v(1)j (n) 1

, Yj =


x(1)j (2)

x(1)j (3)
...

x(1)j (n)

 (15)

Reorganizing Equation (9) yields:

X(1)(t) = PX(1)(t− 1) + U (16)

P = (Im×m − BW)−1 A
U = (Im×m − BW)−1C

(17)

where Im×m is denoted as the unit matrix of m × m. Through the equations above, we
can obtain:

X̂(1)(1) = X(1)(1)
X̂(1)(k + 1) = PkX(1)(1) + (Im×m − Pk)(Im×m − P)−1U, k = 1, 2, · · · , n

(18)

Referring to Equation (8), the ultimate simplified equation can be established as:

X̂(0)(1) = X̂(1)(1)
X̂(0)(k) = X̂(1)(k)− X̂(1)(k− 1), k = 2, 3, · · · , n

(19)

Given the description of SDGM(1,1,m), first, after introducing the relevant spatial
characteristics into DGM(1,1), the joint forecasting of multiple spatial variables can be
achieved, thus solving the problem that the traditional grey model is insufficient for spatial
or panel data and creating a bridge between the grey model and spatial observation data.
Second, the spatial correlation is treated as a control variable, and adding more control
variables theoretically improves the model’s accuracy. Third, through parameter estimation,
the spatial correlation coefficient matrix can be calculated, which allows simple analyses
of spillover effects to be performed for each spatial unit in the modeling period. With this
approach, spatial spillover effects can be analyzed, and the complex spatial structures that
are prevalent in the spatial economic system can be assessed.

Additionally, Equation (13) can be written as

x(1)1 (t) = a1x(1)1 (t− 1) + b1∑w1ix
(1)
i (t) + c1

x(1)2 (t) = a2x(1)2 (t− 1) + b2∑w2ix
(1)
i (t) + c2

x(1)m (t) = amx(1)m (t− 1) + bm∑wmix
(1)
i (t) + cm

(20)

In addition, the basic form of the multivariate discrete grey model DGM(1,n) is:
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x(1)1 (k) = β1x(1)1 (k− 1) +
n

∑
i=2

βix
(1)
i (k)+βn+1 (21)

As shown above, SDGM(1,1,m) is very similar in form to DGM(1,n), but they are
different in terms of modeling conditions, targets, and the economic implications they
represent. In SDGM(1,1,m), panel data are used, but time sequences are used in DGM(1,n).
Additionally, spatial correlations among variables are required in SDGM(1,1,m), but causal-
ity or correlations among different variables are required in DGM(1,n). Multiple regions are
modeled together in SDGM(1,1,m) to improve forecasting performance, while the causality
among variables is used in DGM(1, n) to obtain predictions of multiple variables.

2.3. Definition of L1-SDGM(1,1,m)

The spatial spillover effect is usually accompanied by time dependence, i.e., there is
a time lag in the influence of spillover effects on variables, and the SDGM(1,1,m) model
does not consider this lag factor. Since the interval of time lag effects can vary, spatial grey
models that consider time lag also differ. In this paper, we establish the spatial discrete grey
model, L1-SDGM(1,1,m), with one time lag interval; other lag models can be developed
based on this method and will not be discussed in detail in this paper.

Definition 2. Let X(0) and X(1) be expressed as in Definition 1; then,

X(1)(t) = AX(1)(t− 1) + BWX(1)(t− 1) + C (22)

is said to be L1-SDGM(1,1,m), where L denotes lag. The matrices A, B, C, and W are as stated in
Definition 1. Additionally, the matrix V(1) is as stated in Definition 1. Then, the above model is
also converted into the following difference equations:

x(1)1 (t) = a1x(1)1 (t− 1) + b1v(1)1 (t− 1) + c1

x(1)2 (t) = a2x(1)2 (t− 1) + b2v(1)2 (t− 1) + c2

x(1)m (t) = amx(1)m (t− 1) + bmv(1)m (t− 1) + cm

(23)

Referring to Equation (3), pj = (aj, bj, cj)
T , j = 1, 2, · · · , m in the jth equation can be

estimated as follows:
pj = (aj, bj, cj)

T = (HT
j Hj)

−1
HT

j Yj (24)

where

Hj =


x(1)j (1) v(1)j (1) 1

x(1)j (2) v(1)j (2) 1
...

...
...

x(1)j (n− 1) v(1)j (n− 1) 1

, Yj =


x(1)j (2)

x(1)j (3)
...

x(1)j (n)

 (25)

Suppose the matrix D satisfies:
D = A + BW (26)

Then, the model is written as

X(1)(t) = DX(1)(t− 1) + C (27)

The time response equation and ultimate simplified equation are calculated from the
equations above:

X̂(1)(k + 1) = DkX(1)(1) + (Im×m − Dk)(Im×m − D)−1C (28)
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X̂(0)(1) = X̂(1)(1)
X̂(0)(k) = X̂(1)(k)− X̂(1)(k− 1), k = 2, 3, · · · , n

(29)

2.4. Error Evaluation Index

To verify the reliability and fit of both SDGM(1,1,m) and L1-SDGM(1,1,m), the accuracy
of each model is assessed based on the mean absolute percentage error (MAPE). The
traditional MAPE is often used for evaluating the forecasting results for a region, and it
is very complex to use the MAPE to evaluate the forecasting results of multiple regions.
Thus, this metric is improved here. Since the original sequence should be divided into
simulation and prediction sets, the simulation, prediction, and total errors are computed
separately as they can be expressed as the mean relative percentage error of simulation
(MRPES), mean relative percentage error of forecasting (MRPEF), and the combined mean
relative percentage error (CMRPE). The corresponding formulas are as follows:

MRSPE =
1

n×m

m

∑
j=1

n

∑
k=1

∣∣∣∣∣∣
x(0)j (k)− x̂(0)j (k)

x(0)j (k)

∣∣∣∣∣∣× 100% (30)

MRFPE =
1

t×m

m

∑
j=1

n+t

∑
k=n+1

∣∣∣∣∣∣
x(0)j (k)− x̂(0)j (k)

x(0)j (k)

∣∣∣∣∣∣× 100% (31)

CMRPE =
1

(n + t)×m

m

∑
j=1

n+t

∑
k=1

∣∣∣∣∣∣
x(0)j (k)− x̂(0)j (k)

x(0)j (k)

∣∣∣∣∣∣× 100% (32)

where n is the modeling interval and t is the prediction interval. In general, the prediction
performance is considered sufficient when the error is less than 8%, good when the error is
less than 5%, and excellent when the error is less than 1%. In addition, to better compare
the model performance, the RMSPE, RMSE, MAE, IA, and R are used as evaluation metrics
for comparison, and they are calculated as shown in Table 1.

Table 1. Evaluation metrics.

Name Formulation

The Root Mean Square Percentage
Error (RMSPE) RMSPE =

√√√√√ 1
n×m

m

∑
j=1

n

∑
k=1

 x(0)j (k)− x̂(0)j (k)

x(0)j (k)

2

× 100%

The Root Mean Square Error
(RMSE) RMSE =

√√√√ 1
n×m

m

∑
j=1

n

∑
k=1

(
x(0)j (k)− x̂(0)j (k)

)2

The Mean Absolute Error (MAE) MAE = 1
n×m

m

∑
j=1

n

∑
k=1

∣∣∣x(0)j (k)− x̂(0)j (k)
∣∣∣

The Index of Agreement (IA) IA = 1
m

m

∑
j=1

(1− ∑n
k=1(x(0)

j (k)−x̂(0)
j (k))

2

∑n
k=1

(∣∣∣x(0)
j (k)−xj |+|x̂(0)

j (k)−xj

∣∣∣)2 )

The Correlation Coefficient (R) R = 1
m

m

∑
j=1

cov
(

x(0)
j (k),x̂(0)

j (k)
)

√
Var
[

x̂(0)
j (k)]Var[x(0)

j (k)
]

2.5. Flow Chart of SDGM(1,1,m)

The operation process of SDGM(1,1, m) is illustrated in Figure 1.



Systems 2023, 11, 285 8 of 19

Systems 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

Table 1. Evaluation metrics. 

Name Formulation

The Root Mean Square Percentage 
Error (RMSPE) 

( ) ( )
( )

2(0) (0)

(0)
1 1

ˆ1 100%
m n

j j

jj k

x k x k
RMSPE

n m x k= =

 −
 = ×
 ×  

  

The Root Mean Square Error 
(RMSE) 

( ) ( )( )2(0) (0)

1 1

1 ˆ
m n

j j
j k

RMSE x k x k
n m = =

= −
×   

The Mean Absolute Error (MAE) ( ) ( )(0) (0)

1 1

1 ˆ
m n

j j
j k

MAE x k x k
n m = =

= −
×   

The Index of Agreement (IA) 
( ) ( )

( ) ( )( )
(0) (0) 2

1
2(0) (0)1

1

ˆ( )1 (1 )
ˆ

n
m j jk

n
j j j j jk

x k x k
IA

m x k x x k x

=

=
=

−
= −

− + −




 

The Correlation Coefficient (R) 
( ) ( )( )

( ) ] [ ( )

(0) (0)

(0) (0)1

ˆcov ,1

ˆVar Var

m j j

j j j

x k x k
R

m x k x k=

=
 
 

  

2.5. Flow Chart of SDGM(1,1,m) 
The operation process of SDGM(1,1, m) is illustrated in Figure 1. 

 
Figure 1. Flowchart of the SDGM(1,1,m) model. 

3. Applications in Forecasting PCEC in China 
First, the PCEC data for 30 provinces in mainland China are introduced. Second, a 

spatial weight matrix is established, and the ESDA method is used to assess the spatial 
correlations among the PCEC trends in the 30 Chinese provinces. Third, PCEC data from 

Figure 1. Flowchart of the SDGM(1,1,m) model.

3. Applications in Forecasting PCEC in China

First, the PCEC data for 30 provinces in mainland China are introduced. Second, a
spatial weight matrix is established, and the ESDA method is used to assess the spatial
correlations among the PCEC trends in the 30 Chinese provinces. Third, PCEC data from
China are used for model comparison. Finally, the PCECs of 30 Chinese provinces from
2020–2025 are forecasted using SDGM(1,1,m).

3.1. Data Collection

PCEC data from 30 Chinese provinces were obtained by dividing the total energy
consumption by the number of people in each province, as follows.

Per capita energy consumptioni,t =
Total energy consumptioni,t

Populationi,t

i = 1, 2, · · · , 30
(33)

where the subscript i is the ID number of the province, and t indicates the year. The
energy consumption data and the population data are from the China Statistical Yearbook
(stats.gov.cn, accessed on 5 February 2023).

The PCEC data from 2010 to 2019 can be obtained based on the above formula, as
shown in Figure 2. The PCECs of each province in China in 2019 are shown in Figure 3.
From the curves of the PCECs of each region, 28 provinces, excluding Beijing and Henan,
experienced increased PCECs in 2019 compared with the level in 2010. Additionally,
28 provinces, excluding Henan and Tianjin, experienced increased PCECs after 2015. More-
over, the PCEC curves of geographically close provinces, such as those of Liaoning, Jilin,
and Heilong, are similar, with increases before 2012, decreases from 2012 to 2015 and
increases after 2015. The PCEC curves of five regions, Jiangsu, Zhejiang, Anhui, Fujian, and
Jiangxi, all approximate a rising straight line. The curves for Hunan, Hubei, Chongqing,
Sichuan, and Guizhou display the same shape and decrease and increase at the same times.
The curves for Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang are also similar, with an

stats.gov.cn
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upward trend. This phenomenon reflects the spatial correlation of the PCEC to some extent.
As shown in Figure 3, in 2019, the PCECs of the northern and coastal regions of China were
high, and Inner Mongolia, Qinghai, and Xinjiang displayed the highest PCECs; additionally,
the PCECs were moderate in coastal regions such as Shandong, Jiangsu, Zhejiang, and
Fujian, and the PCECs of southern regions such as Hunan, Hubei, Sichuan, and Chongqing
were low. Thus, the PCECs were similar among neighboring regions, reflecting certain
spatial correlation characteristics.

Based on the PCECs of each province over time, the overall PCEC displays an up-
ward trend overall, but there are differences among provinces. For instance, the PCEC
of Henan decreases, the PCECs of Beijing and Tianjin decrease in the early stage and
increases in the later stage, and the PCEC curve in Tianjin exhibits large fluctuations. Con-
sequently, building an appropriate model for PCEC forecasting in these 30 provinces is a
significant challenge.
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3.2. Establishment of the Spatial Weight Matrix

In this paper, spatial correlation is incorporated into the discrete grey model through
the spatial weight matrix, and the SDGM(1,1,m) model is constructed. Therefore, it is
necessary to determine whether there are spatial correlation trends in the PCEC of China
before further modeling is conducted. In this paper, we use Moran’s I index from the ESDA
to assess the spatial correlations of the PCEC. It is necessary to establish a matrix prior to
correlation testing. Therefore, referring to the practice of Wang and Zhang [59], we select a
spatial geographic matrix to model, and the specific settings are shown below.

wij =

{ 1
d2

ij
i 6= j

0 i = j
(34)

where dij denotes the geographical distance between provinces i and j, indicating that the
interaction intensity of the energy consumption between the two provinces is inversely
proportional to the distance between them.

From Table 2, we can see that Moran’s I value is significantly higher than 0 every
year from 2010 to 2019, which indicates that the PCECs are significantly positively cor-
related among provinces; additionally, the overall PCEC displays high–high or low–low
clustering trends, which are consistent with the spatial characteristics of the PCECs in
Section 3.1. Therefore, to predict the PCEC, spatial correlation can be introduced into the
grey prediction model.
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Table 2. Global Moran’s I values for PCECs from 2010 to 2019.

Year Moran’s I Z-Score p-Value

2010 0.225 2.813 0.002
2011 0.197 2.517 0.006
2012 0.191 2.453 0.007
2013 0.193 2.446 0.007
2014 0.181 2.328 0.010
2015 0.181 2.343 0.010
2016 0.174 2.274 0.011
2017 0.170 2.251 0.012
2018 0.167 2.250 0.012
2019 0.156 2.150 0.016

3.3. Model Comparison

To verify the validities of the SDGM(1,1,m) and L1-SDGM(1,1,m) models, according
to the approach described in the previous section, the new model is built by improving
DGM(1,1) and is similar to the DGM(1,n) model; therefore, the DGM(1,1) and DGM(1,n)
models are selected for comparison. In addition, we choose the NDGM(1,1) and BP models
as benchmark models for comparison. Among them, the DGM(1,1), NDGM(1,1), and BP
models are separately used for each region. The PCECs of each region are modeled with
different variables in DGM(1,n). In the following discussion, the abbreviations of these
five models are simplified as SDGM, L1-SDGM, DGM, MDGM, NDGM, and BP. Since
SDGM(1,1,m) and L1-SDGM(1,1,m) require the use of a spatial weight matrix, Equation (33)
is again used for modeling.

In this paper, six models are applied using PCEC data from 30 Chinese provinces from
2010 to 2017, and the PCEC from 2018 to 2019 is predicted. Table 3 lists the errors of all
models; notably, the modeling error of MDGM is very high, and the model completely fails
to predict the PCECs of the 30 regions of China considered. As stated earlier, MDGM is
a causal model based on causality or correlations among different variables; however, in
this example, the PCECs of different regions are not related by causality, so the error of
the MDGM model is particularly large. The errors of the SDGM and L1-SDGM models
are less than 8% in both the simulation and prediction stages, and the errors of the SDGM
are even less than 5%, which verifies the applicability of the model proposed in this paper,
which can provide accurate modeling results by considering regional spatial associations.
By comparing SDGM with L1-SDGM, it can be found that SDGM yields better modeling
accuracy regardless of the evaluation index considered, indicating that the spatial effect
of the PCEC does not display a trend of single-period lag and that the modeling accuracy
is better when the time lag is not considered. Additionally, although the NDGM model
yields a lower MRSPE than the SDGM model, the modeling error of the SDGM model is the
lowest based on all other indicators. In terms of IA and R, SDGM, particularly L1-SDGM,
produces the best values, which indicates that the spatial grey model proposed in this
paper provides strong consistency and preserves the original data.

Table 3. Errors in the PCEC modeling results of five models.

Error Metrics MDGM DGM SDGM L1-SDGM NDGM BP

MRSPE (%) 1.1887 × 103 1.8251 1.6163 1.6999 1.5425 3.7021
MRFPE (%) 1.0076 × 104 5.8939 3.5159 5.2328 4.7667 7.1758
CMRPE (%) 2.9661 × 103 2.6388 1.9962 2.4065 2.1873 4.3968

RMSPE 6.4272 × 103 4.1807 3.1759 4.7898 3.5840 7.6856
RMSE 34,167.3452 24.4039 18.8417 24.2914 22.6363 35.8206
MAE 129.7515 0.1143 0.0847 0.1012 0.0911 0.1711

IA 0.0049 0.8264 0.9072 0.8807 0.8527 0.7236
R 0.0172 0.7514 0.8644 0.8429 0.7892 0.5647
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Plots of the results of the SDGM, DGM, NDGM, and BP models are shown in Figure 4,
and a histogram of errors is presented in Figure 5. In Figure 4, the area to the left of the
dotted line denotes the simulation phase, and the area to the right of the dotted line denotes
the prediction phase. The fitting curve of BP displays certain randomness and fluctuates
considerably, and the deviation from the original data is large in most cases; this result is
further confirmed by the histogram in Figure 5. Regardless of which indicator is selected,
the BP model yields the highest modeling error. Compared with the fitted curves of BP,
those of the grey models are smoother and less volatile, and those of the DGM models are
most similar to a straight line. Additionally, the fitted curves of the SDGM and NDGM
models display a certain curvature. Three grey models can generally fit the curve of the
original data for regions such as Jiangsu, Anhui, Jiangxi, Hainan, and Shaanxi, which
experienced increased levels of energy consumption. However, when there are fluctuations
in the original data, such as for Beijing, Shanghai, and Hunan, the fitted curves of the
three grey models differ. The curve of the DGM model is still a straight line and deviates
from the original data, while the curves of the SDGM model can reflect the fluctuations
in the original data to a certain extent and fit the original data more closely, especially for
Shanghai, Guangdong, and Guizhou. Moreover, the SDGM model can better reflect the
priority of new information than DGM and NDGM can. In Shanghai, Hubei, Hunan, and
Guizhou, the fitting curves of DGM and NDGM exhibit a downward trend, and the SDGM
model can capture the recent trend in the original data, resulting in enhanced predictions
in the later stage. Overall, the SDGM model is superior to the DGM and NDGM models in
this example. This result is further verified in Figure 5; notably, the SDGM model yields
the lowest values of all error metrics, and the modeling results are better than those of the
other models. In summary, the SDGM model provides the best forecasting performance in
this case.

Table 4 lists the spatial correlation coefficients of the SDGM and L1-SDGM models,
and the properties and characteristics of the spatial correlation effect of PCEC are analyzed.
By comparing the spatial correlation coefficients of SDGM and L1-SDGM, we find that the
coefficients for most regions are relatively similar, such as those for Beijing, Shanghai, and
Anhui; however, there are still some regions with large differences in spatial correlation
coefficients, such as Hebei, Liaoning, and Heilongjiang. This result indicates that there
may be differences in the effects produced by spatial spillover in the lagged period and
the current period and that each spatial unit is affected by its neighboring regions. The
influence of the spatial spillover effect is time-varying. Based on the above comparison
of the SDGM and L1-SDGM models, SDGM is more applicable in this example, so the
spatial correlation coefficient of SDGM is analyzed here. Specifically, the spatial spillover
of the PCECs of each province from 2010 to 2017 is comprehensively analyzed. First, the
spatial correlation coefficients of three regions, Zhejiang, Hainan, and Ningxia, are negative,
meaning that the growth of the PCECs of the adjacent provinces leads to a decline in the
PCECs of these four regions to a certain extent. The spatial correlation coefficients of the
PCECs of the other 27 regions are positive, which indicates that increases in the PCECs
of the surrounding regions lead to increased PCECs for these four regions. Second, the
spatial influence of the PCEC is most pronounced in Inner Mongolia, whereas Hainan is
the least affected.

Table 4. Spatial lag coefficients of PCECs for the SDGM and L1-SDGM models.

Province
Spatial Correlation

Coefficient-b Province
Spatial Correlation

Coefficient-b

SDGM L1-SDGM SDGM L1-SDGM

Beijing 0.3845 0.3267 Henan 0.1176 0.0709
Tianjin 0.8436 0.6084 Hubei 0.3368 0.2932
Hebei 0.1196 −0.1231 Hunan 0.3292 0.2901
Shanxi 0.4113 0.8088 Guangdong 0.6824 0.5985
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Table 4. Cont.

Province
Spatial Correlation

Coefficient-b Province
Spatial Correlation

Coefficient-b

SDGM L1-SDGM SDGM L1-SDGM

Inner Mongolia 2.1688 1.2967 Guangxi 0.1482 0.0030
Liaoning 1.4674 −0.1139 Hainan −0.0448 −0.0584

Jilin 0.0669 0.0186 Chongqing 0.3304 0.2542
Heilongjiang 0.2612 −0.0964 Sichuan 0.2506 0.1302

Shanghai 0.4931 0.5391 Guizhou 0.6152 0.6303
Jiangsu 0.5556 0.1995 Yunnan 0.4339 0.1157

Zhejiang −0.7091 −0.3981 Shaanxi 0.1336 0.0887
Anhui 0.1713 0.1522 Gansu 0.2695 −0.3935
Fujian 0.6435 0.5127 Qinghai 1.1506 1.4352
Jiangxi 0.0582 0.0570 Ningxia −0.6829 −0.8404

Shandong 0.7867 0.3192 Xinjiang 0.6587 0.6787
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3.4. Projections of PCEC of China

Based on the model comparison above, SDGM is most applicable in this case; there-
fore, SDGM is selected to predict the PCECs of 30 provinces. Additionally, given the
above analysis of the spatial correlation coefficients and the nature of the SDGM model,
a metabolic concept is applied in forecasting [35,36]. The so-called metabolic concept
involves reconstructing the model by eliminating irrelevant data from the original series
based on the most recent data generated by the system, i.e., adding new data to the series
while deleting the oldest available data so that the dimension of the data series remains
fixed. In practical modeling, using the original data series for long-term prediction is not
ideal in some cases because over time, the factors that influence the system change, and the
state subsequently varies. When grey prediction models are built using original data, the
reliability of predictions may decrease over time. Based on this metabolic approach, the
most recent information is constantly added, thus gradually decreasing the grey level until
the prediction objective is achieved.

We first use eight data points from 2012 to 2019 to predict 2020 data and then remove
the old data from 2012, add the new predictions for 2020, and predict data for 2021. The
final prediction results are presented in Figure 6 and Table 5, and the fitting errors are
presented in Table 6. Notably, the fit of the SDGM model is good, with most error values
below 1%. Good fitting accuracy is a prerequisite for an accurate prediction. In Figure 6,
the forecasting results show that the PCECs of most Chinese provinces will increase in the
future, which is consistent with the results of Lu et al. [59], whose projections indicate that
the PCEC of China will continue to grow rapidly in the coming years; however, the PCEC
of Tianjin will peak in 2024, the PCEC of Qinghai will remain largely unchanged, and the
PCEC of Beijing will tend to decrease, possibly due to technological advances, a reduction
in energy consumption in the surrounding areas, or supply-side reform to improve the
efficiency of energy consumption in the Beijing–Tianjin region.
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Figure 6. Modeled prediction curves for the PCECs of the SDGM model.

Table 5. PCEC prediction results (tons of standard coal).

Province 2020 2021 2022 2023 2024 2025

Beijing 3.4015 3.4225 3.4171 3.3649 3.2611 3.0888
Tianjin 5.9607 6.1118 6.2208 6.2472 6.2527 6.2041
Hebei 4.4683 4.5062 4.5709 4.6455 4.7347 4.8103
Shanxi 6.0551 6.3351 6.5418 6.7544 6.9954 7.2678

Inner Mongolia 10.3993 11.2928 11.8828 12.3648 12.7920 13.4055
Liaoning 5.4333 5.7046 5.8732 6.0661 6.2458 6.4316

Jilin 2.8981 3.0800 3.1546 3.2611 3.3602 3.4692
Heilongjiang 3.5072 3.7621 3.8624 3.9873 4.1115 4.2505

Shanghai 4.8301 4.9320 5.0331 5.1702 5.3241 5.4703
Jiangsu 3.8777 3.9323 3.9998 4.0874 4.1772 4.2650

Zhejiang 3.5749 3.6706 3.7472 3.8415 3.9517 4.0679
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Table 5. Cont.

Province 2020 2021 2022 2023 2024 2025

Anhui 2.3283 2.3957 2.4640 2.5334 2.6019 2.6726
Fujian 3.3444 3.4510 3.5465 3.6656 3.7879 3.9184
Jiangxi 2.1837 2.2514 2.3182 2.3878 2.4714 2.5623

Shandong 4.2566 4.3510 4.4373 4.5540 4.6636 4.7802
Henan 2.2553 2.2854 2.2958 2.3177 2.3462 2.4001
Hubei 2.9657 3.0748 3.1673 3.2718 3.3901 3.5205
Hunan 2.4674 2.5592 2.6294 2.7188 2.8234 2.9354

Guangdong 2.7815 2.8356 2.8822 2.9400 3.0042 3.0731
Guangxi 2.3030 2.3915 2.4663 2.5548 2.6558 2.7686
Hainan 2.3343 2.4036 2.4748 2.5577 2.6469 2.7466

Chongqing 2.8665 2.9959 3.0987 3.2294 3.3844 3.5581
Sichuan 2.5476 2.6653 2.7668 2.8900 3.0316 3.1954
Guizhou 2.7783 2.8838 2.9696 3.0880 3.2208 3.3631
Yunnan 2.6431 2.7154 2.8217 2.9346 3.0577 3.1948
Shaanxi 3.5389 3.6699 3.8253 4.0066 4.2078 4.4288
Gansu 3.2307 3.3675 3.5202 3.6727 3.8754 4.1317

Qinghai 7.3175 7.3303 7.3759 7.3487 7.3797 7.4859
Ningxia 12.0485 13.3855 15.0643 16.8951 19.3048 22.1072
Xinjiang 7.5810 7.7859 8.0738 8.4171 8.8585 9.2682

Table 6. Simulation error of the SDGM model.

Modeling Interval MRSPE (%)

2012–2019 1.1395
2013–2020 0.6917
2014–2021 0.5570
2015–2022 0.4549
2016–2023 0.3510
2017–2024 0.3232

4. Conclusions

This paper addresses the shortcomings of existing grey models relating to their abil-
ities to model spatial variables. A spatial matrix is incorporated into DGM(1,1) on the
basis of the advantages of the discrete grey model, which enhances spatial data prediction.
Then, SDGM(1,1,m) with spatial characteristics, is established, and L1-SDGM(1,1,m) with
spatial time lag effects is developed. The SDGM(1,1,m) and L1-SDGM(1,1,m) models are
compared with the DGM(1,1), DGM(1,n), and BP neural network models using PCEC data
from 30 Chinese provinces. The results verify the superiority of the SDGM(1,1,m) and L1-
SDGM(1,1,m) models. SDGM(1,1,m) is also used to forecast the PCECs of 30 provinces
in China. We draw the following conclusions. First, although SDGM(1,1,m) is similar to
DGM(1,n), their modeling conditions, targets, and economic perspectives are obviously
different. Second, compared with the DGM(1,1), DGM(1,n), NDGM(1,1)s and BP neural
network models, the SDGM(1,1,m) and L1-SDGM(1,1,m) models provide enhanced fore-
casting performances by considering regional associations. Third, the SDGM(1,1,m) and
L1-SDGM(1,1,m) models are more capable of capturing the most recent trends in the data
than the DGM(1,1), NDGM(1,1), and BP neural network models are, and they better reflect
the priority of new information. Fourth, the SDGM(1,1,m) and L1- SDGM(1,1,m) models
can be used to effectively analyze the spatial correlations within the selected modeling
interval and provide accurate predictions. Based on the spatial correlation coefficients of
SDGM(1,1,m), the PCECs of Inner Mongolia and Qinghai are the most affected by spatial
factors, and the PCECs of Jilin and Jiangxi are the least affected. Fifth, the predictions of
SDGM(1,1,m) indicate that the PCECs of most regions of China will increase under the
current grey conditions, while the PCEC in Beijing is expected to decline and the PCEC in
Tianjin will peak in 2024.
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In this paper, only the spatial matrix is incorporated into DGM(1,1), and whether the
same optimization can be performed for other grey models is not discussed. Moreover,
although the time lag effect of spatial spillover is considered, only the case with a one-
period lag is modeled, and other cases are not discussed. In addition, only the PCEC is
predicted, and the model’s application to other types of energy systems remains to be
studied. The projections show that PCECs will tend to increase in most regions of China,
but the reasons for this phenomenon are not revealed, nor are the problems or policy
recommendations associated with the increase in energy consumption. All these limitations
should be addressed in future research.
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