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Abstract: This research aims to study a real-world example of the unrelated parallel machine schedul-
ing problem (UPMSP), considering job-splitting, inventories, shortage, and resource constraints. Since
the nature of the studied optimization problem is NP-hard, we applied a metaheuristic algorithm
named Grey Wolf Optimizer (GWO). The novelty of this study is fourfold. First, the model tackles
the inventory problem along with the shortage amount to avoid the late fee. Second, due to the
popularity of minimizing completion time (Makespan), each job is divided into small parts to be
operated on various machines. Third, renewable resources are included to ensure the feasibility of
the production process. Fourth, a mixed-integer linear programming formulation and the solution
methodology are developed. To feed the metaheuristic algorithm with an initial viable solution, a
heuristic algorithm is also fabricated. Also, the discrete version of the GWO algorithm for this specific
problem is proposed to obtain the results. Our results confirmed that our proposed discrete GWO
algorithm could efficiently solve a real case study in a timely manner. Finally, future research threads
are suggested for academic and industrial communities.

Keywords: unrelated parallel machine scheduling problem; completion time; inventory; shortage;
resource constraints; Grey Wolf Optimizer

1. Introduction

In today’s manufacturing systems, producing goods based on their due dates and
priorities is a complex decision problem that needs to be taken into consideration to help
manufacturers deliver the products to their customers in a timely manner. The parallel
machine scheduling problem (PMSP) is one kind of complex problem that has been widely
applied to produce goods in a timely manner and avoid late deliveries. This paper studies a
real problem that exists in Bronze Industrial Manufacturing Company (BIMC) in Iran, which
produces different parts for major car manufacturers such as Renault and Peugeot. The
problem description is to minimize the completion times of all jobs over existing machines
(Makespan) while inventories, shortages, resource constraints, job splitting, and machine
eligibility are considered. Also, each job has a distinct due date and is split into different
sub-jobs that can be processed on different unrelated parallel machines, which vary in terms
of speed, resource consumption, productivity, and eligibility. The sequence-dependent setup
time is another critical parameter that plays a significant role in this manner.

This study pursues improving the production planning of BIMC by proposing a new
formulation of the unrelated parallel machine scheduling problem (UPMSP). The proposed
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model of this study has novelty due to the following contributions. First, the model tackles
the inventory problem along with the shortage amount to avoid late fees. Second, each job
is split into sub-parts to be completed on different machines. Third, renewable resources,
including cranes, workers, and lift trucks, are integrated to guarantee the feasibility of
the solution. Our goal is to maximize productivity by minimizing the completion time
of all jobs, which is the most common optimization problem in UPMSP so that we can
produce all parts of each job as quickly as possible with the least amount of inventory. Also,
the proposed model is coded using a metaheuristic algorithm called Grey Wolf Optimizer
(GWO), proposed by Mirjalili et al. [1], due to the NP-hardness nature of the model to
provide feasible solutions to the decision makers (DMs). Then, the coding package becomes
a part of the manufacturer’s expert and intelligent production system.

Continuing with this study, we will follow the following structure: In the next section,
we will cover past studies in PMSP. In Section 3, we will dive into constructing a model
and developing a metaheuristic algorithm in Section 4. The results will be discussed in
Section 5. Lastly, the conclusions and future research directions are provided in Section 6.

2. Literature Review

The parallel machine scheduling problem has been widely investigated by many
studies during the last few decades [2–4]. For instance, Allahverdi et al. [5] classified
scheduling problems according to shop environments such as single machines, parallel
machines, flow shops, job shops, and open shops. Similarly, Cheng et al. [6] summarized
various types of machine scheduling problems (MSPs) based on different approaches,
including identical parallel machine scheduling where a job should be processed on any
identical machine with the same speed, uniform parallel machine scheduling where jobs
can be produced on any machine with different speed factors in fixed ratios with each
other, and unrelated parallel machine scheduling where each job can be processed on a set
of specified machines with varied speed. Also, we have collected past studies conducted
on three types of MSPs which are shown in Table 1. In the following paragraphs, we will
discuss these three problems in terms of mathematical modeling, solution methodology,
constraints, and optimization criterion.

Various solution methodologies are applied to solve complex problems. For the identi-
cal parallel machine scheduling problems, Kim et al. [7] proposed a two-phase heuristic
approach to minimize total tardiness. Also, some researchers [9,10,13] applied tabu search,
simulated annealing, heuristic, and iterated greedy-based meta-heuristic algorithm to
minimize the total tardiness of their proposed models. Some other researchers have con-
sidered minimizing the total completion time of all jobs, which is a commonly known
objective function in PMSP. For instance, some [8,9,11,14,35] minimized Makespan in their
studies using heuristic, simulated annealing, ant colony optimization, tabu search, and
particle swarm optimization algorithms. For the UPMSP, many studies have optimized
the objective function by minimizing the total tardiness and completion time, and some
others minimized the total energy consumption. Afzalirad and Rezaeian [20] addressed
the UPMSP by considering resource constraints, sequence-dependent setup time, various
release dates, machine eligibility, and precedence constraints. They utilized two metaheuris-
tic algorithms, including a genetic algorithm and an artificial immune system, to solve the
developed integer programming modeling. Similarly, Fanjul-Peyro et al. [21] proposed
two mathematical models; the first is based on the literature review of the UPMSP, and
the other one is based on the real complex problem of strip packing problems. They could
solve the proposed model based on a greedy-based fixing algorithm. Zhang et al. [23]
suggested a novel UPMSP in which two factors influence the energy consumption rate
of parallel machines: tool changes and corresponding processing speed. Therefore, they
optimized two objective functions simultaneously, including completion time and total
energy consumption, and then solved them using a heuristic evolutionary algorithm. In
another study, Lei et al. [26] optimized both the completion time and total tardiness of the
UPMSP as a multi-objective problem. They used an improved artificial bee colony to solve
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the model. In a recent study conducted by Arık et al. [28], weighted earliness/tardiness is
used as an objective function to solve the UPMSP. They proposed a constructive algorithm
as a heuristic methodology to tackle the model.

Table 1. Summarizing the PMSPs with/without splitting the jobs.
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[7] IPMSP 1 Minimize tardiness X - - - - - Heuristic algorithm
[8] IPMSP Minimize completion time X - - - - X Heuristic algorithm
[9] IPMSP Minimize completion time - - - - - - Simulated Annealing

[9] IPMSP Minimize tardiness X - - - - - Tabu search and simulated
annealing

[10] IPMSP Minimize tardiness X - - - - X Heuristic algorithm
[11] IPMSP Minimize completion time X - - - - - Ant colony optimization

[12] IPMSP Maximize the number of
on-time jobs - - - - X - Heuristic algorithm

[13] IPMSP Minimize tardiness - - - - - - Iterated greedy-based
metaheuristic

[14] IPMSP Minimize completion time - - - - - - Tabu search and particle
swarm optimization

[15] IPMSP Minimize lateness - - - - - - Fast neighborhood search

[16] IPMSP Minimize tardiness and
energy consumption - - - - - - Simulated annealing and

harmony search
[17] UPMSP 2 Minimize tardiness X - - - - X Tabu search
[18] UPMSP Regular - - - - - - Heuristic algorithm
[19] UPMSP Minimize completion time - - - - - - Heuristic algorithm

[20] UPMSP Minimize completion time - - - X X X
Genetic algorithm and

artificial immune system

[21] UPMSP Minimize completion time - - - X - - Greedy-based fixing
algorithm

[22] UPMSP Minimize completion time - - - X - X Heuristic algorithm

[23] UPMSP
Minimize completion time

and total energy
consumption

- - - - - - Heuristic algorithm

[24] UPMSP Minimize completion time - - - X - X
Heuristic and GRASP

algorithms

[25] UPMSP Minimize completion time - - - X - X
Combinatorial

evolutionary algorithm

[26] UPMSP Minimize completion time
and tardiness - - - - - - Heuristic algorithm

[27] UPMSP Minimize completion time - - - X X X Heuristic algorithm

[28] UPMSP Minimize earliness and
tardiness - - - - - - Heuristic algorithm

[29] UnPMSP 3 Minimize tardiness - - - - - X Tabu search algorithm
[30] UnPMSP Minimize completion time - - - - - - Heuristic algorithm
[31] UnPMSP Minimize completion time - - - - - - Heuristic algorithm

[32] UnPMSP Minimize completion time - - - X - -
Genetic and particle
swarm optimization

algorithms
[33] UnPMSP Minimize completion time - - - - - - Heuristic algorithm

[34] UnPMSP

Minimize total electricity
costs and number of
machines used for

processing

- - - - - - Greedy insertion algorithm

This study UPMSP Minimize completion time X X X X - X
Grey Wolf Optimizer

algorithm

1 Identical parallel machine scheduling problem; 2 unrelated parallel machine scheduling problem; 3 uniform
parallel machine scheduling problem.
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Compared to both UPMSP and IPMSP, some studies were conducted on uniform PMSP.
Koulamas et al. [30] utilized a modified longest processing time algorithm for two uniform
parallel machines to minimize the completion times of all jobs. The proposed heuristic
algorithm could improve the Makespan optimization problem. Yeh et al. [32] minimized
the completion times of all jobs, considering resource consumption that should not reach
a certain threshold. Alternatively, they utilized several mate-heuristic algorithms, includ-
ing the genetic algorithm and particle swarm optimization, to find an optimal solution.
Zeng et al. [34] presented a model to optimize the total electricity costs as well as the
number of machines used for processing all jobs. An iterative search framework based
on the proposed insertion procedure is developed to acquire the entire Pareto front of the
problem. Lastly, Kaabi et al. [33] proposed a model to minimize the completion time based
on deterministic unavailability to solve the uniform UPMSP. A heuristic algorithm was
proposed for solving the problem on a large scale.

Splitting the job into subparts has been studied by a few studies in the prior literature.
Kim et al. [7] solved the IPMSP by considering job splitting. They could process all parts
of one job on parallel machines independently. Similarly, Nait Tahar et al. [8] minimized
the total completion time by splitting jobs into different sub-parts. Using job splitting
time and a heuristic approach, they could improve the running time of the model by
considering more than 6000 examples. In 2011 and 2012, some researchers [9,10] minimized
total tardiness by separating all jobs into sub-parts. A few papers studied job splitting on
the UPMSP. For instance, Logendran et al. [17] developed a mixed (binary) integer linear
programming model aimed at minimizing total tardiness by splitting the job dynamically.
Recently, Kim et al. [36] considered job splitting and sequence-dependent setup time
simultaneously in IPMSP to present a model and solve it using metaheuristic algorithms.
For more information, readers are referred to Table 1.

Many studies have considered the concepts of resource availability, sequence-dependent
setup time, and machine eligibility. For the IPMSP, some researchers [8,10] considered
sequence-dependent setup times. For the UPMSP, some research considered sequence-
dependent setup times, machine eligibility, and resource constraints at the same
time [20,27]. While others only considered resource constraints and sequence-dependent
setup times [22,24,25]. Only Fanjul-Peyro et al. [21] included resource constraints in their
model without paying attention to other constraints as discussed. They limited the resource
constraints through the production horizon. Lastly, for uniform PMSP, one study consid-
ered sequence-dependent setup times [29], and one other included resource constraints in
their proposed model with the objective of minimizing makespan [32].

To the best of the authors’ knowledge, splitting jobs has been studied by many studies.
Some other papers studied the effect of resource constraints, machine eligibility, and
sequence-dependent setup times at the same time in their model. Also, many studies have
been performed on the IPMSP. A few studies looked at the splitting jobs regarding the
UPMSP. Therefore, based on what we have discussed, as well as the summarized papers in
Table 1, the main contributions of this study are as follows:

• Proposing a new mathematical formulation for the UPMSP with the aim of minimizing
the completion time (Makespan) considering job splitting, inventories, and shortages
in the production planning horizon, resource constraints, and machine eligibility.

• Developing a heuristic algorithm to produce an initial feasible solution.
• Solving the proposed model using the novel Grey Wolf Optimizer algorithm developed

by Mirjalili et al. [1];
• Measuring the performance of the formulation and solution methodology in a real-

world production environment, implemented at Bronze Industrial Manufacturing
Company (BIMC) in Iran as a decision support system.

3. Mathematical Model

The problem framework is to schedule all jobs over a limited number of machines
with different speeds. We aim to minimize the completion time of all jobs in the model, con-
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sidering inventories, shortages, resource constraints, job splitting, and machine eligibility.
Also, some assumptions are considered to establish the underlying boundaries to create a
deterministic mathematical model as follows:

X The number of unrelated parallel machines and jobs is constant [20,25].
X The capability of a machine to complete a job is provided [12].
X The Kanban planning of each job is presented based on the days of the week. In other

words, the required number of products for each job is known during the production
planning phase.

X The setup time of the machine is with respect to the changes in the machine’s frames.
Moreover, the sequence limitations are provided here.

X There are two different working hours and shift duration, six days a week or seven
days a week. There are three different working hours have been provided by the
BIMC [37].

X At the beginning of the planning horizon, the production planner needs to know the
inventory levels.

After defining the assumption of the model, we introduce the set, parameters, and
variables to build the model of this study. Table 2 shows the notation of the proposed model.

Table 2. Notation of the proposed model.

Notations Descriptions

Sets:
N Set of jobs (i, j ∈ N, and N = {1, 2, . . . , n}
M Set of machines (m ∈ M and M = {1, 2, . . . , m}
R Set of renewable resources (r ∈ R and R = {1, 2, . . . , r} including cranes, workers, and lift trucks
T Set of the time period (t ∈ T and T = {1, 2, . . . , t}
Qi Set of qi part of job i (q ∈ Q and Qi = {1, 2, . . . , q}

Parameters:
Nqi Number of produced qi part of job i
Dit The demand for job i in period t
L A large number

Mmi If machine m is eligible to process job i, 1, otherwise 0
τijm If job j could be followed by job i and processed on machine m is 1, otherwise 0

REirt Renewable resource requirement of job i per quantity for resource r in period t
Art Available renewable resource of type r in period t

Variables:
Ciqi Completion time of part qi job i (instead of part, job split)

Cmax Maximum completion time of all jobs
Y′iqimt If machine m started processing part qi job i in the beginning of period t 1, otherwise 0

Qit Processed quantity of job i in period t
SHit Shortage amount of job i in period t

Iit Inventory level of job i at the end of period t

The proposed model of this study has been formulated as follows:

MinZ1 = Cmax = max
i,qi=Qi

Ciqi (1)

The above equation is subject to

Ii(t−1) + Qit − Dit = Iit − SHit, ∀i, t (2)

Iit × SHit = 0, ∀i, t (3)

∑
qi

Y′ iqimt ≤ L×Mmi, ∀i, m, t (4)
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∑
qi

∑
i

∑
m

REirt ×YY′ iqimt ≤ Art, ∀r, t (5)

∑
qi

∑
m

Nqi ×YY′ iqimt = Qit, ∀i, t (6)

SHit = max{0, Dit − Iit}, ∀i, t (7)

∑
m

∑
qi

YY′ iqimt ≤ 1, ∀i, t (8)

∑
t

∑
m

YY′ iqimt ≤ 1, ∀i, qi (9)

∑
t

∑
m

YY′ iqimt = 1, ∀i, qi = 1 (10)

∑
t

∑
m

YY′ iqimt = 1, ∀i, qi = |Qi| (11)

∑
i

∑
qi

YY′ iqimt ≤ 1, ∀m, t (12)

∑
m

t×YY′ iqimt = Ciqi , ∀i, qi, t = 2, . . . , T (13)

∑
m

Y′ iqimt ≤∑
m

∑
t′=t+1

Y′ i(qi+1)mt′, ∀i, qi = 1, . . . , Qi − 1, t = 1, . . . , T − 1 (14)

∑
qi

Y′ iqimt + ∑
qj

Y′ jqjm(t+1) ≤ 1 + τijm, ∀i, j, m, t = 1, . . . , T − 1 (15)

Ciqi , Qit, SHit, Iit ≥ 0, i, qi, t (16)

Y′ iqimt ∈ {0, 1}, ∀i, m, t, qi (17)

The objective function, which is shown in Equation (1), aims to minimize the com-
pletion time of all split jobs over different existing machines. Equation (2) displays the
inventory balance of each job in different time periods. Equation (3) guarantees that the
two variables of inventory and shortage cannot obtain a positive value at the same time,
which is written due to the nature of these two defined variables. The eligibility of each
split job over all machines is assured by Equation (4). Also, Equation (5) represents the
renewable resource constraint of the model, including labor, experts, and cranes. The
total number of split jobs that should be produced at the end of the program is shown by
Equation (6). Equation (7) relates to the inventory shortage problem in that state shortage
cannot obtain a negative value. In other words, when the demand is far below the inventory,
a shortage cannot occur. Equation (8) states that only one part of each job can proceed on
one machine at each period. Equation (9) through Equation (11) confirms that each part of
each job can only be processed on one machine in one period. The only difference between
Equation (9) through Equation (11) is the order of the parts of each job that should be taken
into consideration. Only one part of each job can be processed on one machine in one
period, which is drawn by Equation (12). The completion time of each part of each job is
assured with Equation (13). The sequence of parts of each job that can be processed only in
one machine is written in Equation (14). Equation (15) guarantees that each time, only one
part of each job can be produced to make sure all parts of the job are processed at the end
of T-1. Lastly, the nature of defined variables is shown by Equations (16) and (17).
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4. Solution Methodology

The proposed model of this study is a complex combinatorial optimization prob-
lem that belongs to the NP-hard set [38]. In the last few decades, many metaheuristics
algorithms have been suggested to combat solving optimization problems. Like many
other complex problems, this study utilized a metaheuristic algorithm that might be an
alternative to solve this type of problem [9,11,13,14,16,35]. To that end, this study applied
the recent well-known metaheuristic GWO algorithm proposed by Mirjalili et al. [1]. This
algorithm is inspired by grey wolves and is a stochastic metaheuristic algorithm that allows
the optimization problems to avoid stagnation or trap in local solutions and search the
entire solution space wisely.

As stated earlier, this section aims to propose the solution methodology of the pre-
sented model in Section 3. First, we provide the representation scheme of the solution to
the problem by wolf encoding (solution representation). Second, the initial population gen-
eration is explained. Third, the original GWO algorithm is discussed. Finally, the discrete
version of the GWO is introduced for the model of this study to find an optimal solution.

4.1. Solution Representation

The first step of the GWO algorithm is the encoding representation scheme that shows
a solution point in a structured way. For the real problem that we plan to study, the solution
representation should reflect three main parts, including the sequence of jobs on every
single machine, which is called a permutation, the number of products for each split (qi in
Table 2), and lists of jobs dedicated to each machine. The structure of each wolf is shown
in Figure 1. Fundamentally, a solution point is constructed by a table similar to part C in
Figure 1, with an associated number of products to each split (presented by B in Figure 1). A
specific job necessitates the production of 950 units, with an engineering directive specifying
a minimum production threshold of 300 units per segment. Consequently, this requirement
breaks down into segmented quotas: 300 (q1) + 350 (q2) + 300 (q3), summing up to a total of
950 units. Due to limitations in renewable resources, the simultaneous production of these
segments is not viable. However, it is worth noting that the order of qi on eligible machines
remains flexible and feasible within these constraints. Please refer to the next section where
the initial population generation is explained.
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4.2. Initial Population Generation

After encoding the structure of the wolf, the initial population of the grey wolf should
be generated. As the GWO is a population-based metaheuristic algorithm, it needs to be
produced with the size of search agents. Since the GWO algorithm is categorized among the
stochastic metaheuristic algorithms, its initial population of the grey wolf will be generated
randomly. Accordingly, we utilized this approach to produce the required numbers of the
grey wolf for this study. Also, to avoid the unfeasibility of solution space, the heuristic
algorithm is suggested for the proposed model of this study to avoid the unfeasible solution,
which is shown in Algorithm 1.
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Algorithm 1: Randomly created feasible solutions.

Input
Jobs, Economic Production, Machines, Machines Eligibility
Based on economic production job, create splits
Every split is equal to or greater than economic production.
Every split contains the number of products that need to be produced.
Assign the previous step to solution coding, 2nd segment “No. of Product per Split”.
Create a random permutation of splits.
Assign the previous step to solution coding, 1st segment “Permutation”.
For each machine, create an empty list of assigned splits.
For each split from each job, randomly assign it to a machine.
While not an eligible machine is assigned, repeat the previous step.
Assign this step to solution coding, 3rd segment “Split of Job Assigned to eligible Machine”.
Evaluate the cost of solution coding.
Assign this step to solution coding, 4th segment “Cost”.
Output
Create structured data containing all 4 segments

The procedure of the proposed Algorithm 1 is explained as well. First, all jobs are
split into smaller parts by having the knowledge about the minimum number of products
in each split (presented by A and B in Figure 1). Then, a random sequence of all splits is
generated (presented by A in Figure 1). Next, for splits belonging to each job, a list of the
minimum number of products is mapped; therefore, each will have the number of products
that need to be produced. After that, a list of eligible jobs is constructed for each machine,
as shown in Figure 1C. Finally, the random assignment takes place by iteratively going
through the random sequence and randomly assigning the split to an eligible machine
(presented by C in Figure 1). However, please note that the same job cannot be operated
by different machines simultaneously. In that case, one machine must finish operating
the split, and then another machine can start operating the next split. Please consider “J2”
presented by C in Figure 1.

4.3. Original Grey Wolf Optimizer

This section first aims to utilize the existing GWO algorithm and determine how it
works. Second, we modify this algorithm based on the discrete nature of our problem to
solve the model.

GWO works based on the social hierarchy of wolves. At the top level of the pyramid,
the wolf exists, which belongs to the social hierarchy of Alpha. In the second level, the wolf
with a group of betas stands, which helps the wolf with Alpha to make a better decision to
attack the prey. Lastly, the last level of the pyramid is the wolf, located in the omega group.
Also, the last group only eats and behaves normally like children or wolves with old age.
To mathematically model the social hierarchy of grey wolves, the fittest solution will be
considered as the Alpha. Also, the remaining solutions will be considered as Beta, Delta,
and gamma; they will be utilized in the GWO algorithm.

Equations (18) and (19) provide the encircling prey formulation that was proposed by
Mirjalili et al. [1], which are as follows:

→
D = |

→
C .
→
Xp(t)−

→
X(t)| (18)

→
X(t + 1) =

→
Xp(t)−

→
A.
→
D (19)
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where
→
A,
→
D are coefficients vectors, and

→
Xp,

→
X are positions of prey and grey wolves in the

algorithm. Also
→
A,
→
C are computed by Equations (20) and (21) as well.

→
A = 2

→
a .
→
r 1 −

→
a (20)

→
C = 2

→
r 2 (21)

Also,
→
r 1,
→
r 2 are random numbers that will be generated. Additionally,

→
a is a crit-

ical parameter of the GWO algorithm that will be decreased from 2 to 0 linearly using
Equation (22).

→
a = 2− It× 2

MaxIteration
(22)

In Equation (22), It shows the counter of iterations in the main algorithm, while
MaxIteration represents the total number of iterations that the problem needs to run. After
that, the hunting will be started and guided by the Alpha. To mathematically formulate the
hunting, we have the following:

X1 =|Xα − γα.dα|, dα =|c.Xα − X| (23)

X2 =
∣∣Xβ − γβ.dβ

∣∣, dβ =
∣∣c.Xβ − X

∣∣ (24)

X3 =|Xδ − γδ.dδ|, dδ =|c.Xδ − X| (25)

X(t + 1) = (X1 + X2 + X3)/3 (26)

where Xα, Xβ, and Xδ are the approximate positions of Alpha, Beta, and gamma. Also,
Equation (26) updates the positions of each wolf in the algorithm. Algorithm 2 shows the
pseudocode of the GWO algorithm.

Algorithm 2: The original GWO algorithm.

Input: Set the parameters of the GWO such as α, A, C
for I = 1 to number of search agents do
Create a random solution.
Calculate the value of the objective function (Minimization or Maximization)
end for
Set the best solution as Alpha.
Set the second-best solution as Beta.
Set the third-best solution as Delta.
Initialize iteration it = 1
while it < MaxIteration do
for it = 1 to number of search agents do
Update the position of each grey wolf using Equation (26)
end for
Decrease the value of Alpha from 2 to 0 using Equation (22)
Decrease A and C parameters.
Calculate the value of the objective function of each grey wolf.

Update
→
Xα,

→
Xβ, and

→
Xδ

it = it + 1
end while
Return the best wolf alpha
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4.4. Discrete Grey Wolf Optimizer

So far, we have understood how GWO works iteratively and efficiently. Therefore, this
sub-section aims to modify the original version of the GWO algorithm to obtain a feasible
solution for the proposed model of this study. Since GWO is proposed for the continuous
optimization problem, some modifications need to be taken to solve the UPMSP.

To apply the mathematical formulation of the GWO algorithm proposed in Section 4.3,
we applied the 2-opt algorithm proposed by Croes et al. [39], so that the UPMSP can be
solved efficiently. The 2-opt algorithm belongs to the local search family, and it is widely
used by many researchers to speed up convergence [40,41]. The 2-opt algorithm is first
proposed for solving the popular travel salesman problem to find an optimal route along
the existing routes of the network. Accordingly, we customized this algorithm based on
our model to obtain the results.

The 2-opt algorithm, firstly, selects two jobs randomly from one permutation and,
secondly, removes them from the current permutation and then reconnects all remaining
jobs in the permutation together. These steps will be performed until all permutations in
the algorithm are optimized. The purpose of this operation is to minimize the completion
time of all jobs (Makespan), which is the objective function of this study.

Interestingly, we utilized the concept of hamming distance to alter the original GWO
to a discrete GWO [40,41]. Also, some parameters of the GWO have been removed for the
purpose of improving algorithm efficiency. Therefore, we modified Equations (23)–(25) to
compute the new dα, dβ, and dδ to reflect the discretion, which is as follows:

dα = random[1, HamDis(Xi, Xα)] (27)

dβ = random[1, HamDis(Xi, Xβ)] (28)

dδ = random[1, HamDis(Xi, Xδ)] (29)

Equations (27)–(29) calculate the random number between 1 and hamming distance
between wolves. Similarly, we proposed the 2-opt algorithm to update the positions of
the wolves. Also, the wolf i executes dα number of the 2-opt algorithm in each iteration.
Algorithm 3 shows the pseudocode of the discrete version of the GWO algorithm.

Algorithm 3: The discrete GWO algorithm.

Input: Set the parameters of the GWO such as α, A, C
for i = 1 to number of search agents do
Create a random solution.
Calculate the value of the objective function (Minimization or Maximization)
end for
Set the best solution as Alpha.
Set the second-best solution as Beta.
Set the third-best solution as Delta.
Initialize iteration it = 1
while it < MaxIteration do
for it = 1 to number of search agents do
Update the position of each grey wolf using Hamming Distance in Equations (27)–(29)
end for
Decrease the value of Alpha from 2 to 0 using Equation (22)
Decrease A and C parameters.
Calculate the value of the objective function of each grey wolf.

Update
→
Xα,

→
Xβ, and

→
Xδ

it = it + 1
end while
Return the best wolf alpha
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5. Computational Experiments

This section provides the results of the UPMSP proposed in Section 3. First, we plan
to solve the proposed model by considering different test problems in small and medium
sizes and then solve a real case study of BIMC as discussed in this paper. Moreover, the
proposed discrete GWO algorithm is coded on MATLAB R2021b software and runs on an
Intel Core i5 CPU with 2.07 GHz speed and 8 GB of RAM.

5.1. Test Problem and Parameter Setting

To obtain the results, the model of this study is tested on a small size of the problem.
Also, by doing so, we understand that our model works efficiently. The parameter value of
the model and algorithm is provided in Table 3.

Table 3. Parameter value of the model and algorithm.

Parameters Value

Parameter algorithm
Search agents (wolf population) 50
Maximum iterations 500
Parameter model
Number of parts of each job 2
Demand of job Uniform (30, 50)
Renewable resource of each job for each resource in each period Uniform (30, 50)
Available renewable resources in each period Uniform (30, 50)

5.2. Computational Results

After defining the parameters, the discrete GWO metaheuristic algorithm is imple-
mented to obtain the results for each test problem in Table 4. The problem dimension
is defined by the number of jobs, machines, parts of each job, renewable resources, and
periods. The result and solution time of each problem has been provided and reported in
Table 4.

Table 4. Parameter value of the model and algorithm.

Problem Problem Dimension
Results Solution Time (Seconds)

CPLEX GWO CPLEX GWO

1 4*2*2*2*4 20.00 20.00 1.02 1.00
2 5*2*2*2*4 23.00 23.00 16.00 2.05
3 7*4*2*2*4 31.00 31.00 423.00 39.00
4 8*4*2*2*4 37.00 37.00 765.00 127.00
5 10*5*2*2*4 46.00 46.00 1359.00 234.00
6 12*6*2*2*4 - 59.00 - 357.00
7 15*8*2*2*4 - 71.00 - 482.00

As can be seen from Table 4, by increasing the dimensions of the problem, the complex-
ity of the model increases. This is due to the nature of the UPMSP proposed in Section 3.
Also, we have seen that the CPLEX solver is not able to solve problem number 5 (10*5*2*2*4)
or more due to the increase in the dimension of the problems. In this way, the discrete
GWO is proposed to combat this issue by solving various problems in the fastest time.

Interestingly, we provide the details of other variables defined in our model, including
inventories and shortages, to avoid late fees. Because of the important role of these two
variables, we provide the results of problem 1, where the number of jobs, machines, parts
of each job, renewable resources, and periods are 4, 2, 2, 2, and 4 for these two variables.
Figure 2 displays the results of two important inventory and shortage variables for problem
1 (4*2*2*2*4). The first thing that can be seen from Figure 2 is that when the inventory
obtained a positive value, the shortage yielded zero. Also, the same thing can be interpreted
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and visible for the shortage variable. This is due to the nature of these two variables that
we defined in this study. Also, the other thing that can be understood is that an increase
in inventory value resulted in a decrease in shortage value, and the same thing for the
shortage. This is due to the conflict that exists between these two variables in the inventory
management problem.
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5.3. Results of a Case Study

As stated earlier, this study considered the real case study of BIMC in Iran to address
the UPAMSP by providing the results of the model in an efficient way. In this way, the real
case study of BIMC includes 32 jobs that have been considered, which need to be produced
on four machines seven days a week. The results of the UPMSP for the BIMC are shown in
Figure 3. As can be seen in Figure 3, the optimal completion time of all 32 jobs over the
four machines is 106.3825 h.
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Also, the number of iterations, as shown in Figure 4, shows the convergence of the
proposed discrete GWO in this study. As shown in Figure 4, the real case study has reached
a stable condition after 200 iterations.
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6. Conclusions

This paper studied a real case study of the UPMSP, which aimed at minimizing the
completion time of all existing jobs over the machines within a period. Our proposed model
integrated inventory with shortage along with splitting the jobs to complete the jobs in the
shortest time. Due to the NP-hard nature of the UPMSP, we have utilized a metaheuristic
approach named GWO, which was proposed by Mirjalili et al. [1] to find a near-optimal
solution in a reasonable time. Also, because of the nature of GWO that has been proposed
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for continuous optimization problems, we modified the GWO to be compatible with the
discrete problem. In this manner, we proposed a discrete GWO algorithm to fully solve
the UPMSP in discrete space and search for feasible solutions. To validate the model of
this study, we have tested the UPMSP on different problems with various sizes of jobs,
machines, renewable resources, periods, and parts of each job and ran the model for the
case study of this paper. Our results showed that increasing inventory led to a decrease
in the shortage of various jobs in multiple time periods. Also, considering job splitting
could help the planner obtain a lower completion time compared to the situation without
job splitting.

Some suggestions have been provided for future studies. First, different objective
functions can be investigated, including minimizing tardiness and lateness to be solved by
the proposed discrete GWO algorithm. Second, the proposed UPMSP can be solved using
other metaheuristic approaches. Lastly, various inventory policies accompanying varied
types of perishable and non-perishable products can be included.
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agreed to the published version of the manuscript.
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