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Abstract: We propose a framework that integrates norm entrepreneurship from human society into
the dynamics of an agent society. Most work in agent coordination in a distributed environment
studies norms that are provided to agents as part of their specification or distributed from centralised
agents. Exploring an alternate perspective, we focus on peer-to-peer interaction by providing the
agents with the freedom to initiate norm creation in demanding situations like a potential interference.
This paper explores the concept of norm entrepreneurship through proactive establishment and
emergence of norms by agents. A common approach in prior work focuses on coordination problems
that are reduced to simple game theory models involving the simultaneous performance of a single
action by each agent. Instead, we define the concept of a local coordination plan (LCP), which is a
sequence of actions from each agent to cope with an interference in their normal course of action.
We identify LCPs across various scenarios and abstract these plans using coordination state machines
(CSMs). A coordination state machine contains a separate state machine for each agent where the
states encapsulate the potentially constrained and suboptimal movement options agents have at a
given time. We also explore how multiple LCPs lead to a coordination state machine of the same
format and how a coordination state machine can abstract across multiple scenarios.

Keywords: agent coordination; norm entrepreneurs; normative multi-agent systems

1. Introduction

Consider the etiquette that we tend to follow on our daily commute. On sidewalks, we
are mindful not to jostle past others. While walking with someone, we go single file on a
crowded walkway. While listening to a personal collection of podcasts in a train, we make
sure to use earbuds rather than speakers. Of many such codes of conduct that we follow
in a community, some are unwritten expected forms of behaviours, while others became
formally codified to become legally enforceable. Social norms, which are the unwritten
rules of conduct, help to maintain order and predictability in a society. They offer standards
on behaviours that are considered acceptable or unacceptable among the members in
a social group and provide a mechanism that people use to coordinate with each other
in society.

So, how do norms emerge in a community? More than 100 years have passed since
Sumner [1] wrote a treatise on “Folkways” and “Mores”, which are unwritten rules that are
expected to be followed in a community. Sumner states that:

“The folkways are habits of the individual and customs of the society which
arise from efforts to satisfy needs. The step an individual takes for an immediate
motive is repeated when similar situations arise. This repetition of certain acts
produces a habit in the individual. As this habit becomes widely acceptable in a
society, people tend to comply with them even though they are not enforced by
any authority and it thus evolves as a norm in the group.”
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We might presume that behind such norms in a group, there is an entrepreneurial
mindset. We propose to borrow and adapt this entrepreneurial mindset from human
society to multi-agent systems, where agents interact in a shared environment to achieve
individual or common goals. One noteworthy strand of work on norms in social groups by
various disciplines like anthropology, social science, economics, etc. is regarding “norm en-
trepreneurs”1 and their impact on society. A norm entrepreneur (NE) is broadly considered
as a person interested in changing social norms or as lawmakers or government agencies
who could influence the dynamics of norm-following behaviours in a society. Finnemore
and Sikkink [4] state that many international norms began as domestic norms and become
international through the efforts of entrepreneurs of various kinds, which indicates how
entrepreneurs become carriers of a norm and influence the society to follow them.

Our work proposes to adopt this concept of norm entrepreneur to a multi-agent system.
We introduce a framework in a decentralised multi-agent environment where any agent is
at liberty to be a norm entrepreneur and propose solutions to any potential interference they
come across while acting in the environment [5]. Over a period of time, the coordinating
solutions they propose may emerge as norms in the society. Our focus is on a peer-to-peer,
bottom-up approach like folkways [1], where ideas to solve a problem emerge from an
individual and later evolve to become norms.

This paper extends the PAAMS’23 paper titled “Towards Norm Entrepreneurship in
Agent societies” [5]. The earlier version of the paper focused on how the norm entrepreneur
agent identifies a potential interference and generates Pareto-optimal solutions to the inter-
ference, considering individual and combined regret compared to the agents’ individual
optimal plans. The paper also introduced the concept of “regret landscapes”, which depict
coordination problem in terms of potential agent regret. The extended version of our work
in this article presents the next phase of abstraction. We present the notion of a coordination
state machine (CSM) to encapsulate the solutions devised by the entrepreneurial agent.
We discuss how these abstracted state machine can be reused for different environments
(unlike LCPs). The CSM will provide clear instructions on what actions an agent must
refrain from or must undertake as part of the solution, highlighting that coordination is a
social agreement with a regret.

The remainder of the paper is structured as follows: Sections 1.1 and 1.2 discuss the
background and motivation for our study. Section 2 outlines the problem formally, presents
our proposed framework, and provides our solution and examples. Section 3 discusses the
results obtained. Finally, Section 4 summarises the contributions of this work.

1.1. Background and Motivation

Sociologists say that norms emerge in a society as a result of two factors: (i) as a
result of unintended consequences of human action, and (ii) by human design. According
to Opp [6], norms are mostly an unintended result of uncoordinated human interaction,
i.e., norms may emerge spontaneously like many customs of everyday life. To illustrate
this approach, he analyses an example of how an unplanned non-smoking norm emerges
in a society. Writing about norm emergence by human design, he refers to the norms
created intentionally like laws, contracts between businesses, and the like. Centola and
Baronchelli [7] present experimental results that show how social conventions emerge
spontaneously. This work is inspired by their statement that social conventions emerge as
consequences of individual efforts to coordinate locally with one another.

1.2. Research Gap

Boella et al. [8] define a normative multi-agent system as follows:

“. . . a multi agent system together with normative systems in which agents on
the one hand can decide whether to follow the explicitly represented norms, and
on the other the normative systems specify how and in which extent the agents
can modify the norms.”
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In most of the existing literature on normative multi-agent systems, norms are pro-
vided to agents as part of their specification, created in a normative system through a norm
synthesis process or learned from observation and experience. Norm synthesis requires a
governing mechanism or a special centralised agent to generate and distribute the norms.
Some noteworthy studies along this strand are the approaches of Shoham and Tennen-
holtz [9], Morales et al. [10–13], Alechina et al. [14], and Riad and Golpayegani [15–17].
These works commonly model the coordination problem as a simultaneous matrix game,
as illustrated in Figure 1 [10]. In this approach, norms are modelled as a single joint action
that is obligatory or prohibited. The agent-directed norm synthesis proposed by Morris-
Martin et al. [18–20] decentralises the norm synthesis across a team of specialist synthesiser
agents, each serving a community of agents. An agent can contact its synthesiser agent to
initiate the process, and a consensus across all synthesiser agents must be reached (possibly
with a final approval from an oracle agent) for a new norm or a norm modification to be
adopted. Thus, the single central norm synthesiser in prior approaches is replaced by a
group of empowered agents. There will be many MAS applications for which this is not
feasible or desirable, especially when the agents are peers with no hierarchy in place. Also,
coordination is often more complicated than the work on norm synthesis.

Figure 1. A single-step coordination problem from Morales et al. [10].

Consider a park where agents (A and B) move around with the intention of reaching
their desired locations. Agents are expected to stay on the pathway and avoid walking
through natural areas like the lawn. In this work, we consider agents that are not part of
a team and are moving amongst potentially many unknown agents. Hence, they do not
consider the presence of other agents until they reach any potential interference. In our
model, the park is represented as a grid (Figure 2) and it includes features that require agents
to handle potential interference along their way. The features in Figure 2 are represented
by the following colours:

• Green cells: lawn;
• Brown cells: pathway;
• Grey cells: open space.

Out of many potential interference layouts used in our experiments, for now, we
consider four coordination patterns to express our idea: the ’parallel path pattern’, the ’ex-
tended parallel path pattern’, the ’common goal pattern’, and the ’zigzag pattern’ (Figure 2).
Here, A and B indicate the current locations of the two agents, and Ga and Gb show their
goal locations.
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Figure 2. The park layout (best viewed in colour). The figure illustrates the park layout, where green
cells represent lawn areas, brown cells represent pathways, and grey cells represent open spaces. A
and B indicate the current locations of the two agents, and Ga and Gb show their goal locations.

Initially the agents generate individual optimal policies to reach their goals. As the
agents come across a potential interference, one of these agents may have to wait until the
other exits a pathway, or it will have to expend extra time in using an alternative pathway.
Otherwise, they may block each other’s progress until one backs off. Instead of attempting
to avoid other agents as part of the initial planning process, we consider what strategies
agents can employ to address each inter-agent interaction that agents may encounter while
navigating their environment and how agents can attain coordination without the need of
a central authority.

2. Materials and Methods

We approach the problem through a five-stage process as outlined in the framework
(Figure 3). Sections 2.1.1 to 2.1.5 elaborate on these stages.

2.1. The Five Stages of our Norm Entrepreneurship Framework
2.1.1. Identifying Potential Interference

Agents move through the environment following their optimal policies until they
reach a potential interference. A potential interference is detected when another agent is
observed within a certain distance and it appears to be entering a potentially contested
region. Once a norm entrepreneur agent recognises a potential interference, the agent
generates a region of coordination (ROC), infers2 an approximate goal location for the other
agent within the ROC and then generates possible local coordination plans.
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Figure 3. Overview of the norm entrepreneurship framework. The coloured arrows represent
different local coordination plans.

To enhance comprehension, we first focus on a single pattern (Figure 4) to explain the
model. Further elaboration on other patterns can be found in Section 2.6. In Figure 4, agent
A identifies a potential interference as soon as A and B reach opposite sides of the lawn.
Agent A then proceeds with entrepreneurship.
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Figure 4. The parallel path pattern. Green cells represent lawn areas, brown cells represent pathways,
and grey cells represent open spaces. A and B indicate the current locations of the two agents, and
Ga and Gb show their goal locations.

2.1.2. Local Coordination Planning by Entrepreneurs

The crux of our framework is depicted in Figure 3. Existing studies propose the
following mechanisms to avoid or handle interference in a multi-agent system: design a
collision free environment, provide a mechanism for collision avoidance, or re-plan an
agent’s course of action when it confronts a collision. However, all these approaches restrict
the agent’s mobility by avoiding a potential collision in advance as opposed to the real
world scenario whereas humans devise strategies to handle such situations as and when
they occur. Our approach of generating a local coordination plan addresses this research gap.
Once an agent starts to move along the optimal path, it will recognise situations where
other agents might hamper its course of action. As two or more3 agents come across such
interference, a norm entrepreneur may propose a coordination plan to handle the hindrance
locally, within the ROC.

The proposal of a local coordination plan has two cases. The first is where the norm
entrepreneur agent computes a new local coordination plan, abstracted into a coordination
state machine (CSM) explained in Section 2.5. In the second case, a previously used
coordination state machine that matches the current situation may be proposed for reuse.

2.1.3. Proposal and Agreement

The norm entrepreneur (NE) agent either proposes a candidate coordination norm it
has used before and wishes to promote or it computes possible local coordination plans
and selects one or more to propose as solutions using the abstracted coordination state
machine notation described in Section 2.5. The other agent considers the proposal and has
the choice to accept or reject. In Figure 3, we can see that the NE agent has proposed the
local coordination plan numbered 2. If the other agent accepts the proposal, it will take the
alternative pathway to cross and reach its destination, thereby deviating from its original
plan. The entrepreneur is required to choose either (a) a single CSM that has equal regret
(the extra cost of following the coordination plan, compared to the optimal plan) for the
two agents and also has the least total regret, or if that does not exist, then (b) two sets
of CSMs: one containing CSMs with a lower regret for one agent and another containing
CSMs with lower regret for the other agent. Presenting only one CSM implies this is the
case. The other agent can agree or disagree. If it disagrees, then it is clearly not interested
in coordinating so the negotiation ends and both agents follow their individual optimal
plans. In case (b), in situations where multiple CSMs exist, each agent can opt for the most
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favourable plan from their respective set of options. After both agents have made their
choices, a distributed coin toss [22] can be used to decide the ultimate selection between
them. This is a protocol allowing two or more parties to jointly generate a random value
in the absence of trust between them, with neither agent able to significantly influence
the outcome. A distributed coin toss promotes fairness in an environment where agents
need to agree on outcomes without relying on a central authority. Additionally, in order to
ensure that the norm entrepreneur agent is not cherry picking the proposed CSMs, auditor
agents can be employed in the environment. The encounters with entrepreneurs could
be recorded to be provided later to auditors. Alternatively, there could be undercover
inspectors in the environment.

2.1.4. Plan Execution

Once a coordination state machine is accepted, both the agents proceed with this
CSM until it is executed completely and the agents exit the region of coordination4. They
then resume their optimal policy. When a CSM has been successfully used, the norm
entrepreneur can further abstract it so it can match a wider range of scenarios and in later
encounters a further more general version may be promoted by the NE.

2.1.5. Norm Propagation

According to Savarimuthu and Cranefield [23], from a societal viewpoint, the impor-
tant stages of the norm lifecycle are the formation stage, the propagation stage, and the
emergence stage. The norm formation stage considers how agents can create norms in a
society and how they can identify the norms that have been created. The norm propaga-
tion stage is where norms are spread and enforced in the society. The emergence stage
is characterised by determining the extent of the spread of a norm in the society. Since
norms are considered as behavioural regularities that guide agents’ decisions in a social
environment [24], we address the question of how a local coordination plan proposed by a
norm entrepreneur agent could emerge as a norm.

We consider that once a coordination proposal is accepted by another agent during the
proposal and agreement stage, it then becomes a candidate coordination norm for situations
that it applies to. Agents can reuse and spread this candidate norm through the society
in similar situations that may arise later during their travels. The norm emerges through
repeated future encounters with agents who will promote these norms. For example, a
norm could take the following form: in a situation matching pattern X, an agent must conform
to its role in CSM Y.

A norm is said to have emerged when a candidate norm is accepted by a high pro-
portion of agents. Once the norm has emerged, agents do not need to compute solutions
in interference situations similar to those they might come across at a later stage. Instead,
they could just execute the norms that have emerged already. The emergence of a norm
depends on a coordination plan being abstracted sufficiently to apply to multiple situations
that involve similar coordination problems. Additional conditions may be proposed by the
norm entrepreneur to share the coordination costs on average, e.g., that an agent travelling
towards certain focal points should incur the greater regret of coordination.

2.2. Individual Agent Planning

We model each agent a as a Markov decision process. The model is defined by a
six-tuple (S, A, Ta, Ra, γ, ga), where

• S is the finite set of states. In this paper, the states are cells in a grid environment such
as those shown in Figure 2;

• A is the finite set of possible actions that can be taken at each state;
• Ta(s, α, s′) represents the probability of transitioning from one state to another given a

particular action;
• Ra(s, α, s′) is a function that returns the reward that an agent receives after taking

action α in state s resulting in state s′;
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• γ is the discount factor, a value between 0 and 1 that represents the preference for
immediate rewards over future rewards. We set γ to 1 as we consider finite horizon
planning problems;

• ga is the goal state.

S and A are the same for each agent.
We use an absorbing state model, in which the goal state only has a zero-reward

transition to itself and all other transitions have a negative reward representing the cost of
movement. Also, Ta and Ra only differ between the agents due to their different absorbing
states ga.

Agents use their own local planning procedure to generate a policy to reach their
respective goal without considering other agents. Each agent performs probabilistic plan-
ning using the value iteration algorithm [25] to produce a value Vg

a (C), specific to that
agent (a), for each cell c in the grid. This is the expected cumulative reward of following an
optimal path from that cell to the goal. These values are used to produce an optimal policy
that defines for each cell a probability distribution governing the choice of actions to be
performed when in that state.

For each state s ∈ S, the value function Va(s) is:

Vg
a (s)← max

α∈A
∑

s′∈S
Ta(s, α, s′) · [Ra(s, α, s′) + γ ·Vg

a (s′)]

The figure on the left of Figure 5 illustrates the values assigned to each cell for agent
A, while the right side illustrates those for agent B. The circle represents the start cells and
the thin-edged stars represent the goals.

Figure 5. The Value matrix generated by the value iteration algorithm for Figure 4.

2.3. Coordination Planning by Entrepreneurs

In Figure 3, we can see multiple local coordination plans that are numbered, which
the NE agent has computed as the first step to solve the potential interference. The agent
does this by executing a heuristic search over a space of joint actions in the region of
coordination (ROC). The square in Figure 5 represents an ROC. A multi-objective heuristic
search is carried out in the defined ROC. We adapted the NAMOA* algorithm for the multi-
objective heuristic graph search [26]. The objectives we consider are the regret of each agent
separately and their total regret, where an agent’s regret is its extra cost of reaching the
goal when following the coordinate plan instead of its optimal policy. NAMOA* generates
multiple plans that are Pareto-optimal solutions to the local planning problem, i.e., each
plan has an associated vector of values, one for each objective, and only non-dominated
plans are returned.

Consider Figure 4. If, for brevity, we consider only local coordination plans that are
optimal for A, in the parallel path pattern, A can follow an optimal path to cross the park,
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while B chooses its alternative optimal path. In this scenario, both agents are operating
optimally despite agent B opting for a different path. However, there could be instances
where coordination planning leads one or both agents to take suboptimal paths individually
(for example, in the zigzag pattern in Figure 2, an agent opting for the alternate route must
proceed suboptimally).

2.4. Regret Landscapes

According to decision theory, regret is a numeric measure of the difference between a
choice made and the optimal choice. When a norm entrepreneur agent identifies a potential
interference, it computes a solution to resolve the interference. This solution might have
a suboptimal plan being offered to either or both of the agents. Hence, there is regret
compared to the hypothetical case of following the optimal plan unimpeded.

To characterise the effect of the environment on the agent coordination problem, we
define regret landscapes that show the regret that an agent must bear when required to
deviate from its optimal path. From its initial individual planning, an agent knows its
valuation for all the cells in the region of coordination, and has an optimal path between
its start (s) and goal (g) positions within that region. It can also calculate the shortest path
from s to each other cell in the region. Suppose the agent finds itself at some cell c that
it reached while following an LCP. We define the regret that it would have from having
to detour through c rather than following its optimal path. The regret landscapes are
calculated without reference to any specific LCP, so we make the assumption that c was
reached optimally from s.

The regret Rs,g
a (c) is defined as follows:

Rs,g
a (c) = (spca(s, c) + Vg

a (c))− spca(s, g)

where spca(s, c) denotes the shortest path cost from the start location s to cell c;
Figure 6 shows the regret landscapes of agents A and B for the parallel path pattern.

The higher the saturation of a colour in the regret landscapes, the higher the regret. In
Figure 6, we can see there are two optimal paths around a more costly central region.

Figure 6. Regret landscapes for the parallel path pattern. The figure shows the regret landscapes
of agents A and B for the parallel path pattern. The higher the saturation of a colour in the regret
landscapes, the higher the regret.
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A norm entrepreneur agent can use regret metrics to measure deviations from the
agents’ optimal plans. Yet, merely evaluating regret is not sufficient for proposing a solution
to another agent. Abstracting these data and a plan enables the entrepreneur to present a
solution that is reusable across different matching scenarios. The construction of a state
machine facilitates this process.

2.5. Coordination State Machines (CSMs)

A state machine encapsulates a system’s behaviour by delineating a finite set of states
and defining transitions between them. These transitions are triggered by events, enabling
a structured representation of sequential logic within a system. A candidate LCP selected
by the norm entrepreneur agent is abstracted into a state machine model (we refer to this as
a coordination state machine), which can then be used across different matching scenarios.
The coordination state machine contains a separate state machine for each agent.

The states in a coordination state machine encapsulate abstract movement options
agents have at a given time. There are two dimensions of these options and their cross prod-
uct results in three states (as one combination is not possible). These options are abstracted,
i.e., when an agent moves from one state to another the state machine does not specify
exactly where it is going. Instead, the CSM specifies constraints on the agent’s location at
specific time points. These constraints induce the same behaviour as the LCP under the
assumption that the agent will always make an optimal choice from the allowed options.

The two dimensions of these movement options are as follows:

1. Whether or not they must incur regret when they move, compared to the optimal
action from the current location;

2. Whether their movements are constrained or unconstrained.

The two state machines in a coordination state machine have the following components:

• A set of states: (“noregret ”, “noregret,con”, “regret,con”)

– noregret: when an agent is in this state, it is free to choose an optimal path, i.e., it
does not need to incur regret;

– “noregret,con”: When an agent is in this state, it does not need to incur regret.
However, the coordination requires the agent to constrain its movements;

– “regret,con”: When an agent is in this state, the coordination requires the agent to
incur regret by choosing a suboptimal action. The agent’s movement choices are
also constrained.

• Movement constraints are associated with the states “noregret,con” and “regret,con”.
These states are associated with sets of obligation and/or prohibition constraints. The
syntax for these two types of constraints are shown in Table 1;

• Transitions are identified by the timesteps: 1, 2, . . . , n.

We assume that self-transitions to the same state are allowed for any time point
not shown on an outgoing transition and omit these from our state machine diagrams.
Although, the cross product of two independent dimensions would result in four states,
only three states exists in the CSM’s state machines. There is no separate “regret” state
because a regret state implies that the optional move is not allowed; so there must be a
constraint on movement at that state, which is the state “regret,con”. The constraint may
just prohibit the optimal moves, but it could specify a specific required suboptimal move to
be taken. Algorithm 1 defines the process to construct a coordination state machine from
an LCP, given the two agents’ value matrices, the set of possible actions, and each agent’s
sequence of movements in the LCP (its “LCP path”).
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Algorithm 1 Function to construct a coordination state machine.

1: Input: Value matrices: VA and VB, a list of actions A and LCP paths: lcpA and lcpB
2:
3: function CONSTRUCTCSM(VA, VB, A, lcpA, lcpB)
4: movement_map_A← COMPUTEMOVEOPTIONS(VA, A, lcpA) ▷ Compute move

options for agent A
5: movement_map_B← COMPUTEMOVEOPTIONS(VB, A, lcpB) ▷ Compute move

options for agent B
6: sm_A← CONSTRUCTSM(movement_map_A) ▷ Construct an SM for agent A
7: sm_B← CONSTRUCTSM(movement_map_B) ▷ Construct an SM for agent B
8: csm← (sm_A, sm_B)
9: return csm

10:
11: function COMPUTEMOVEOPTIONS(V, A, lcp)
12: movement_map← empty dictionary
13: for each cell C in lcp do
14: options← arg max

a∈A
{V(move(a, C))} ▷ Find optimal moves from C

15: choice← the next cell in lcp after C, or None if C is the last cell
16: movement_map[C]← (options, choice)
17: return movement_map
18:
19: function CONSTRUCTSM(movement_map)
20: sm← INITIALIZESTATEMACHINE(’noregret’,’regret,con’,’noregret,con’,’end’) ▷

Create a state machine
21: path_states← []
22: for tstep, (_, desc) in enumerate(movement_map.items()) do
23: options← desc[0]
24: choice← desc[1]
25: if choice is None then ▷ Compute state for each move
26: state← ’end’
27: else if choice in options and len(options) >1 then
28: state← ’noregret,con’
29: else if choice in options then
30: state← ’noregret’
31: else
32: state← ’regret,con’
33: Add(state, path_states)
34: constraints← empty dictionary
35: if length(options) >1 then ▷ Compute constraints
36: constraint← (“obl”,desc[1],tstep + 1)
37: if state ∈ keys(constraints) then
38: constraints[state].add(constraint)
39: else
40: constraints[state]← { constraint }
41: SETINITIALSTATE(sm, path_states[0]) ▷ Set the SM’s initial state
42: transitions← []
43: for i← 0 to len(path_states)− 1 do ▷ Compute transitions
44: current← path_states[i]
45: next_state← current_states[i + 1]
46: if current ̸= next_state then
47: event← i + 1 ▷ This represents a step of the LCP
48: transitions.append({’source’:current, ’target’:next_state, ’events’:[event]})
49: SETTRANSITIONS(sm, transitions)
50: return sm
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Table 1. The constraints in coordination state machines.

Notation Description Example

Proh(R, T)

• “Proh” denotes that agents are prohibited from occupy-
ing specified locations for a given time interval;

• R is a range of cells with format [C1:Cn]. Singleton cell
ranges may be written as a single cell identifier, e.g., A1;

• T is a set of timesteps with format [T1:Tn]. Singleton
time intervals may be written as a single timepoint, e.g.,
T1.

Proh([D4:G4], [1:4])

Obl(R, T)

• “Obl” denotes that agents are obliged to move only
within a range of cells for a given time interval;

• R is a range of cells with format [C1:Cn]. Singleton cell
ranges may be written as a single cell identifier, e.g., A1;

• T is a set of timesteps with format [T1:Tn]. Singleton
time intervals may be written as a single timepoint, e.g.,
T1.

Obl([A5:C6], [6:9])

2.5.1. Parallel Path Pattern Plan

From the regret landscapes in Figure 6, we can infer that agents A and B each have
two optimal paths to reach their respective goals. However, if both the agents decide to
take the same route, i.e., if agent A moves to cell D2 and agent B moves to cell D3, their
choices would result in a collision. Hence, the possible coordination plans require agents to
choose non-overlapping optimal paths. Even though agents do not incur extra regret while
choosing either of the optimal paths, they are constrained from entering one at a particular
time. Figures 7 and 8 illustrate the two local coordination plans and their abstraction as
a CSM.

In Figure 7, both agents A and B start in the noregret,con state where they remain for
one timestep and the agents are free to move optimally thereafter. At timestep 1, agent A
is obliged to move to D2 and agent B is obliged to move to E4. After timestep 1, agents’
movements are not constrained as we assume that agents will move optimally thereafter.

Figure 7. Parallel path pattern plan 1. The figure shows the regret landscapes of agents A and B for
the parallel path pattern. The higher the saturation of a colour in the regret landscapes, the higher the
regret. The plans are superimposed on their respective regret landscapes. “0” refers to the starting
point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal, and the
numbers with a subscript “E” refer to the goal.
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Figure 8. Parallel path pattern plan 2. This figure shows the regret landscapes of agents A and B for
the parallel path pattern. The higher the saturation of a colour in the regret landscapes, the higher the
regret. The plans are superimposed on their respective regret landscapes. “0” refers to the starting
point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal, and the
numbers with a subscript “E” refer to the goal.

2.5.2. Cross-Scenario CSMs

Until now, we have looked at abstracting a local coordination plan that agents agree
upon while encountering a potential interference. However, these abstractions incorporate
timesteps, which are specific to each pattern. We intend to further extend these abstractions
away from specific timesteps. By doing so, the abstract notations could be reused across
different matching patterns.

Figure 9 presents phase 2 of abstraction—the cross-scenario CSM for the parallel
path pattern. The set of transitions Seq = 1, Seq = 2, . . . , Seq = n represents the state
change sequence. A state change sequence encapsulates the timestep transitions. The “R”
represents a region on which the constraints are applicable. The examples shown contain
variables for the contents of the constraints, and these will be computed when matching
a previously used CSM (in this abstracted form) to a new interference situation. This
matching process will be the focus of the next stage of our research.

Figure 9. Parallel path cross-scenario CSM. The figure shows the cross-scenario CSM of agents A
and B for the parallel path pattern. The higher the saturation of a colour in the regret landscapes, the
higher the regret. The plans are superimposed on their respective regret landscapes. “0” refers to the
starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal,
and the numbers with a subscript “E” refer to the goal. The set of transitions Seq = 1, Seq = 2, . . . ,
Seq = n represents the state change sequence.

2.6. Examples

Let us now consider the remaining patterns from Figure 2. Figures 10–12 show the
regret of agents A and B for the extended parallel path pattern, common goal pattern, and
zigzag pattern. The higher the saturation of a colour in the regret landscapes, the higher
the regret. In Figure 10, there are two optimal paths around a more costly central region. In
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Figure 11, both agents have two optimal paths of which one path is the same for both. In
Figure 12, both agents have a common optimal path and suboptimal paths that go around
a costly central region.

Figure 10. Regret landscapes for the extended parallel path pattern. The figure shows the regret
landscapes of agents A and B for the parallel path pattern. The higher the saturation of a colour in
the regret landscapes, the higher the regret.

Figure 11. Regret landscapes for the common goal pattern. The figure shows the regret landscapes
of agents A and B for the common goal pattern. The higher the saturation of a colour in the regret
landscapes, the higher the regret.
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Figure 12. Regret landscapes for the zig-zag pattern. The figure shows the regret landscapes of agents
A and B for the zig-zag pattern. The higher the saturation of a colour in the regret landscapes, the
higher the regret.

Figures 13–18 show a state machine model for each pattern from Figure 2. The left-
hand side of these figures shows the coordination plans that the norm entrepreneur agent
computed to resolve the potential interference. These plans are superimposed on their
respective regret landscapes. For brevity, for patterns that have more than two coordination
plans, we illustrated only two of them. Despite the norm entrepreneur presenting one
plan from the set of Pareto-optimal plans it generates, we present two to illustrate how
abstraction can exhibit similarity across various plans and patterns. The right-hand side of
Figures 7, 8 and 13–18 shows the abstraction using the coordination state machine. The
figures show two different state machines, which correspond to agent A and B, respectively,
for the same coordination plan.

Figure 13. Extended parallel path pattern plan 1. The figure shows the regret landscapes of agents
A and B for the extended parallel path pattern. The higher the saturation of a colour in the regret
landscapes, the higher the regret. The plans are superimposed on their respective regret landscapes.
“0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to
reach its goal, and the numbers with a subscript “E” refer to the goal.
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Figure 14. Extended parallel path pattern plan 2. The figure shows the regret landscapes of agents
A and B for the extended parallel path pattern. The higher the saturation of a colour in the regret
landscapes, the higher the regret. The plans are superimposed on their respective regret landscapes.
“0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to
reach its goal, and the numbers with a subscript “E” refer to the goal.

Figure 15. Common goal pattern plan 1. The figure shows the regret landscapes of agents A and
B for the common goal pattern. The higher the saturation of a colour in the regret landscapes, the
higher the regret. The plans are superimposed on their respective regret landscapes. “0” refers to the
starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal,
and the numbers with a subscript “E” refer to the goal.

Figure 16. Common goal pattern plan 2. The figure shows the regret landscapes of agents A and
B for the common goal pattern. The higher the saturation of a colour in the regret landscapes, the
higher the regret. The plans are superimposed on their respective regret landscapes. “0” refers to the
starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal,
and the numbers with a subscript “E” refer to the goal.
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Figure 17. Zigzag pattern plan 1 The figure shows the regret landscapes of agents A and B for the
zig-zag pattern. The higher the saturation of a colour in the regret landscapes, the higher the regret.
The plans are superimposed on their respective regret landscapes. “0” refers to the starting point of
the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal, and the numbers
with a subscript “E” refer to the goal.

Figure 18. Zigzag pattern plan 2. The figure shows the regret landscapes of agents A and B for the
zig-zag pattern. The higher the saturation of a colour in the regret landscapes, the higher the regret.
The plans are superimposed on their respective regret landscapes. “0” refers to the starting point of
the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal, and the numbers
with a subscript “E” refer to the goal.

2.6.1. Extended Parallel Path Pattern

The extended parallel path pattern is an elongated version of the parallel path pattern
(discussed in Section 4). These two patterns are almost identical, with the difference being
their duration and the constraints imposed.

Figures 13 and 14 can be interpreted in the same manner as discussed in Section 2.5.1.
We can observe that the two coordination patterns lead to a coordination state machine
with the same structure.

Figure 19 illustrates the cross-scenario CSM for the extended parallel path pattern. It is
evident that when we abstract from specific timesteps, the cross-scenario CSM for both the
parallel path pattern and the extended parallel path pattern share identical cross-scenario
CSMs. See Figure 9.
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Figure 19. Extended parallel path cross-scenario CSM. The figure shows the cross-scenario CSM
of agents A and B for the extended parallel path pattern. The higher the saturation of a colour in
the regret landscapes, the higher the regret. The plans are superimposed on their respective regret
landscapes. “0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps
the agent takes to reach its goal, and the numbers with a subscript “E” refer to the goal. The set of
transitions Seq = 1, Seq = 2, . . . , Seq = n represents the state change sequence.

2.6.2. Common Goal Pattern

Unlike the coordination plans discussed in Figures 7, 8, 13 and 14 where both
agents initially have constrained movements, the coordination plans in Figures 15 and 16
have one agent moving optimally and unconstrained while the other moves optimally
but constrained.

In Figure 15, agent B is free to move optimally and unconstrained. For example, agent
B could either move to E5 or F6 at timestep 1, while movement for agent A is restricted.
Agent A is obliged to stay at E4 at timestep 1. This allows agent B to manoeuvre freely.
Conversely, in Figure 16, restricting agent B to a region at timestep 1 allows agent A to
move freely towards its goal.

Figure 20 depicts the cross-scenario CSM for these plans for the common goal pattern.
It is noticeable that the agents experiencing regret in both plans share the same CSM, while
those following the optimal path exhibit similar CSMs.

Figure 20. Common goal pattern cross-scenario CSM. The figure shows the cross-scenario CSM of
agents A and B for the common goal pattern. The higher the saturation of a colour in the regret
landscapes, the higher the regret. The plans are superimposed on their respective regret landscapes.
“0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to
reach its goal, and the numbers with a subscript “E” refer to the goal. The set of transitions Seq = 1,
Seq = 2, . . . , Seq = n represents the state change sequence.
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2.6.3. Zigzag Pattern

Unlike the patterns discussed so far where the agents have more than one optimal
path to reach their goal, the zigzag pattern plans in Figures 17 and 18 have agents with only
one shared optimal path. As a consequence, when one agent moves optimally, the other
is obliged to incur regret and follow a suboptimal path to reach its goal. For example in
Figure 17, while agent A moves optimally without any constraints, agent B is obliged to
move only in region D7 to C7 during the timesteps 2 and 3 (hence, the states “regret” and

“noregret,con”). Even though agent B is obliged to incur regret at timestep 2, by timestep 4, it
moves back to a “noregret” state. This is because, an agent incurring regret would incur
the regret in the first few timesteps after it deviates from an optimal path to its suboptimal
path. Once it incurs all the regret, thereafter it can move optimally. Hence, the transition

regret, con
t=4−→ noregret.

Figure 21 illustrates the cross-scenario CSM for the zigzag pattern. To demonstrate
the versatility of cross-scenario CSMs across different patterns, we focus on displaying
the cross-scenario CSM of plan 2, as it mirrors the CSM of the common goal pattern. It is
evident that the cross-scenario CSM for plan 2 resembles the cross-scenario CSM of plan 1
and plan 2 for the common goal patterns in Figure 20.

Figure 21. Zigzag pattern cross-scenario CSM. The figure shows the cross-scenario CSM of agents
A and B for the zig-zag pattern. The higher the saturation of a colour in the regret landscapes, the
higher the regret. The plans are superimposed on their respective regret landscapes. “0” refers to the
starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its goal,
and the numbers with a subscript “E” refer to the goal. The set of transitions Seq = 1, Seq = 2, . . . , Seq
= n represents the state change sequence.

2.7. Executing a CSM

Once an agent receives a CSM, it retrieves the constraints of its current state from the
CSM. The agent then calculates its possible optimal moves based on its current location and
chooses a move from that, adhering to the constraints retrieved. Once the move is chosen,
the agent then dispatches an event, signalling to the state machine that a particular event
has occurred. The state machine then evaluates the transitions associated with that event.
If the move is valid, the state machine transitions to the new state. If the move violates
the constraints, an error will be raised, indicating that the agent’s movement violated the
constraints, terminating cooperative execution of the CSM. Otherwise, the agent proceeds
with the transition to the next state in the CSM and repeats the dispatch process until the
’end’ state is reached.

We confirmed that Algorithm 1 generates the CSM for the parallel path pattern plan
2 shown in Figure 8. Figure 22 shows the execution of this CSM by agent A. The figure
uses a 0-based two-dimensional coordinate system instead of cell labels such as A0 (which
maps to (0, 0)). The agent begins by retrieving the constraints from the CSM for its initial
movement and decides to move to position (4, 1), adhering to the constraints of that state.
Subsequently, it continues without encountering any further constraints and successfully
reaches the goal location (6, 4), as shown below.
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Figure 22. Trace of an agent executing a CSM.
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The agent’s initial position is (3, 1).

• Timestep 1: The agent is in the state ’noregret,con’ at position (3, 1). A constraint is
present requiring the agent to reach position (4, 1). The agent chooses to move to
position (4, 1);

• Timestep 2: The agent is now in the state ’noregret’ at position (4, 1). No constraints
are present. The agent is free to move optimally and chooses to move to position (5, 1);

• Timestep 3: The agent is still in the state ’noregret’ at position (5, 1). No constraints are
present. The agent is free to move optimally and chooses to move to position (6, 1);

• Timestep 4: The agent is still in the state ’noregret’ at position (6, 1). No constraints are
present. The agent is free to move optimally and chooses to move to position (6, 2);

• Timestep 5: The agent is still in the state ’noregret’ at position (6, 2). No constraints are
present. The agent is free to move optimally and chooses to move to position (6, 3);

• Timestep 6: The agent is still in the state ’noregret’ at position (6, 3). No constraints are
present. The agent chooses to move to position (6, 4), successfully reaching its goal.

3. Results

We considered four scenarios (Figure 2) within an environment where agents en-
counter potential interferences. Local coordination planning was then utilised to generate
Pareto-optimal plans to resolve these interferences. Subsequently, the Pareto frontier so-
lutions for the selected scenarios were plotted as points on a 2D coordinate system, as
depicted in Figures 23 and 24.

In Figures 23 and 24, the sum of regrets for both agents and the difference between
their regrets is plotted. Regret here refers to the difference between the cost of an agent’s
part of a local coordination plan and that of its optimal plans. The figures’ colour schemes
use green to denote situations where agent A (the entrepreneur agent) experiences the least
regret and red where the opposite is true. These figures illustrate the nature of the Pareto
frontier of LCPs as a trade-off between social welfare (where a smaller sum of regrets is
preferred) and fairness (where a smaller difference between the agents’ regrets is preferred).

Figure 23. Regret for agents A and B across LCPs—two solution category (the points are jittered to
allow them all to be seen). We use green to denote situations where agent A experiences the least
regret and red where agent B experiences the least regret
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Figure 24. Regret for agents A and B across LCPs—multiple solution category (the points are jittered
to allow them all to be seen). We use green to denote situations where agent A experiences the least
regret and red where agent B experiences the least regret.

The example coordination scenarios fall into two categories based on the solutions
from the local coordination planning.

Category 1 depicted in Figure 23 illustrates scenarios where there are only two solu-
tions available. Figure 23a depicts cases where both agents incur no regret. For example,
in the parallel path pattern and the extended parallel path pattern in Figure 2, both the
agents incur no regret following either of the plans. This happens when agents have more
than one optimal plan and they have to refrain from crossing paths. Figure 23b pertains to
scenarios where two solutions exist: one where agent A benefits more and another where
agent B does. The points are jittered to illustrate two distinct plans.

Category 2 includes scenarios with multiple solutions for the potential interference.
Figure 24 illustrates the common goal pattern scenario. This addresses scenarios with a
large number of Pareto frontier solutions, which can be divided into two categories: green
denotes 50 plans where agent A benefits more, while red represents the remaining 50 plans
where agent B fares better. Interestingly, these 100 solutions can be abstracted to two
distinct groups, which allow the norm entrepreneur agent to propose just two solutions,
consolidating the possibilities in each group. In scenarios where multiple plans exist, each
agent can opt for the most favourable plan from their respective set of options. Once both
agents have made their selections, a distributed coin toss can then be utilised to determine
the final choice among them.

Abstracting solutions with a CSM yielded reusable state machines applicable to vari-
ous matching patterns. The abstraction depicted in Figure 25 reveals that both the parallel
path pattern and the extended parallel path pattern share a coordination state machine,
differing only in time intervals. The extended parallel path pattern essentially extends the
parallel path pattern. Interestingly, the plan 2 CSM in the zigzag pattern and the common
goal pattern depicted in Figure 26 also demonstrate a similar abstraction.
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Figure 25. Coordination state machines for the parallel path pattern and extended parallel path
pattern. The figure shows the cross-scenario CSM of agents A and B. The higher the saturation of a
colour in the regret landscapes, the higher the regret. The plans are superimposed on their respective
regret landscapes. “0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the
steps the agent takes to reach its goal, and the numbers with a subscript “E” refer to the goal. The
circle represents the agent’s start cell and the star represents the agent’s goal cell.

Figure 26. Coordination state machines for the common goal and zigzag pattern. The figure shows the
cross-scenario CSM of agents A and B. The higher the saturation of a colour in the regret landscapes,
the higher the regret. The plans are superimposed on their respective regret landscapes. “0” refers to
the starting point of the agent. The numbers 1, 2, 3, . . . refer to the steps the agent takes to reach its
goal, and the numbers with a subscript “E” refer to the goal. The circle represents the agent’s start
cell and the star represents the agent’s goal cell.
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Figure 27 presents the cross-scenario CSMs for the parallel path pattern and the
extended parallel path pattern. We can see that the patterns have the same abstraction,
allowing it to be reusable across patterns.

From Figure 28, we can observe that, unlike the parallel path and extended parallel
path pattern, the common goal pattern and the zigzag pattern appear to be distinct and
unrelated patterns. Despite this disparity, the the cross-scenario CSMs for these two
patterns are identical from the agents’ perspective, except that the state machines for agents
A and B are swapped.

Figure 27. Parallel path and extended parallel path pattern cross-scenario CSM. The higher the
saturation of a colour in the regret landscapes, the higher the regret. The plans are superimposed on
their respective regret landscapes. “0” refers to the starting point of the agent. The numbers 1, 2, 3, . . .
refer to the steps the agent takes to reach its goal, and the numbers with a subscript “E” refer to the
goal. The set of transitions Seq = 1, Seq = 2, . . . , Seq = n represents the state change sequence.

Figure 28. Common goal and zigzag pattern cross-scenario CSM. The higher the saturation of a
colour in the regret landscapes, the higher the regret. The plans are superimposed on their respective
regret landscapes. “0” refers to the starting point of the agent. The numbers 1, 2, 3, . . . refer to the
steps the agent takes to reach its goal, and the numbers with a subscript “E” refer to the goal. The set
of transitions Seq = 1, Seq = 2, . . . , Seq = n represents the state change sequence.
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4. Discussion

This paper presents a novel framework aimed at establishing norms to effectively
manage interference among agents within decentralised environments. Our methodology
differs significantly from the approaches previously utilised in this research domain. Rather
than attempting to plan for every possible inter-agent interaction, which is often impractical,
we advocate for a dynamic approach where agents address interference as it arises.

Firstly, by introducing norm entrepreneur agents, we provide a solution to the chal-
lenge of coordinating agents in a multi-agent system without relying on specially em-
powered entities. These norm entrepreneur agents dynamically identify local regions of
coordination (ROCs) in which potential agent interferences may occur, and propose plans
to prevent the interference.

Secondly, we address the question of representing agent coordination in a more generalis-
able manner. Through the generation of local coordination plans (LCPs) by norm entrepreneurs
within ROCs, we move beyond the notion of coordination as a single joint action choice. These
plans, abstracted and proposed to other agents, offer a flexible framework for resolving interfer-
ence while accommodating the dynamic nature of decentralised environments.

We develop coordination state machines (CSM) to abstract local coordination plans to
apply to a range of coordination problems. CSMs express constraints imposed on agents
that have agreed to coordinate using that CSM and identify at which coordination steps the
agents must incur regret compared to making individually optimal choices. We examine
four distinct interference scenarios in the environment (Figure 2). The coordination state
machines and the cross-scenario CSMs generated for these scenarios demonstrate that
CSMs can be reused across different and unrelated patterns. Figures 9 and 19 indicate
that a single CSM can accommodate similar structured, elongated versions of a pattern.
Figures 20 and 21, although unrelated, share the same abstraction. Moreover, cross-scenario
CSMs enable the abstraction of timesteps, consolidating various local coordination plans
into one.

After the norm entrepreneur agent generates a set of Pareto-optimal LCPs and gener-
alizes these into CSMs at subsequent stages, they proceed to the proposal and agreement
phase. In situations where there is a single optimal CSM, with no agent incurring regret
or where all regrets are equal and socially optimal, proposing this option is clearly advan-
tageous. Otherwise, each agent has the liberty to choose the most favourable CSMs from
their respective set of options. The agents then conduct a distributed coin toss to select one
of these CSMs, allowing them to agree on outcomes without relying on a central authority.
To ensure that the norm entrepreneur agent is not cherry picking the proposed CSMs,
auditor agents can be introduced into the environment so agents can seek validation of a
norm entrepreneur agent’s fairness. In environments where interference is frequent, agents
will have an incentive to coordinate to avoid the costs of potentially repeated interference.
Also, a reputation mechanism can be employed to inform agents whether they can trust
that the other agent will likely conform to an agreed CSM. These mechanisms promote
consensus building and cooperation among agents, fostering local coordination planning
and making the NEMAS framework effective in addressing potential interferences in a
distributed environment.
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Notes
1 In her paper ‘On the regulation of social norms’, Kubler [2] states that Sunstein [3] coined the term “norm entrepreneur”.
2 This paper does not propose a specific mechanism for goal inference, but this is an active area of research [21].
3 We currently consider only two-agent scenarios.
4 We leave consideration of an agent reneging on an agreed plan as a topic for future work.
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