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Abstract: According to the statistics provided by the World Health Organization, the number of
people suffering from visual impairment is approximately 1.3 billion. The number of blind and
visually impaired people is expected to increase over the coming years, and it is estimated to triple
by the end of 2050 which is quite alarming. Keeping the needs and problems faced by the visually
impaired people in mind, we have come up with a technological solution that is a “Smart Cane device”
that can help people having sight impairment to navigate with ease and to avoid the risk factors
surrounding them. Currently, the three main options available for blind people are using a white
cane, technological tools and guide dogs. The solution that has been proposed in this article is using
various technological tools to come up with a smart solution to the problem to facilitate the users’
life. The designed system mainly aims to facilitate indoor navigation using cloud computing and
Internet of things (IoT) wireless scanners. The goal of developing the Smart Cane can be achieved by
integrating various hardware and software systems. The proposed solution of a Smart Cane device
aims to provide smooth displacement for the visually impaired people from one place to another and
to provide them with a tool that can help them to communicate with their surrounding environment.

Keywords: smart cane; indoor navigation system; cloud; styling; visually impaired; IoT

1. Introduction

According to the World Health Organization, 1.3 billion people live with some form of visual
impairment [1]. While the prevalence of blindness has declined since 1990, the aging of the population
will in the future lead to a much larger number of blinds and partially sighted [2]. In fact, the number
of blinds in the world is expected to triple by 2050 [3], increasing from 39 million now to 115 million.
This increasing number has motivated our work to design an autonomous cane to facilitate the
navigation of blind people in unknown environment.

To assist the blind in their displacement, we mainly count the white cane, guide dog and
technological tools. The white cane remains the most widely used mobility aid. It allows the detection
of obstacles with a range of three feet. This reduced range forces the user to be ready to stop or
correct his trajectory quickly, and therefore limits the speed of operation [4]. While it cannot warn of
the presence of hanging objects such as tree branches; it is easily recognizable by other pedestrians,
warning passers-by to stay out of the way, but also marginalize the blind [4]. Despite its flaws, the long
cane is a wonderful instrument, providing surprisingly rich information. It is mainly used to make
arches, tapping at each end [5]. The sounds emitted by the tapping can be used for echolocation.
Dynamic contacts also inform about the texture and slope of the terrain. All this and “the signals
given by the soles of the feet” are rich sources of information to help blinds. The dog for the blind
is also a popular aid with around 7000 users. Dogs for the blind are effective and can be trained by

Technologies 2020, 8, 37; doi:10.3390/technologies8030037 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0001-9027-4352
https://orcid.org/0000-0002-2589-8609
http://dx.doi.org/10.3390/technologies8030037
http://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/8/3/37?type=check_update&version=3


Technologies 2020, 8, 37 2 of 17

professionals and maintained by their owners. Their cost varies from twelve to twenty thousand
dollars. Their professional life is about five years.

Technological tools aiming for assisting blind are known as electronic travel aids (EDAs). EADs can
be divided into two categories, depending on their main use. The first category helps the blind to
orient themselves in their environment while traveling to a given destination. The second category
provides warning for the presence of obstacles and facilitates the selection of a path without pitfalls.
Our proposal is about this second category. It is a stick equipped with several sensors aiming to
facilitate indoor navigation. An analysis of existing technologies shows that the research has largely
focused on outdoor navigation; the GPS (Global Positioning System) being the main sensor used for
this purpose [6]. Our interest is in indoor navigation.

Indoor navigation remains an active research area [7–9]. The idea is to be able to help people
navigate towards an indoor point of interest. This is generally considered a challenging task; especially
for people who are visually impaired or blind. This group may indeed have considerable problems
when trying to navigate through an unfamiliar place (e.g., a university, a shopping mall, or public
buildings such as courthouses).

We report here the design of a smart and autonomous cane. The proposed system is designed to be
easy to use. Using a computer vision system, object detection is provided. This allows the blind persons
to safely navigate through many obstacles. Cloud services use modern algorithms to rapidly calculate
the distance of detected objects. This fast calculation of the path is very useful for the user as it enables
the real time navigation. Moreover, since it vocalizes the elements encountered in the environment,
it allows the blind person to search for any particular object in the surrounding environment.

Figure 1 shows a graphical representation of a smart autonomous cane with object detection and
a navigation system. It has an object detector at the lower end and a navigation system with audio
device at the upper end where the user can interact with it using his/her hand.
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Cane is expected to perform. Section 3 presents the proposed system including the characteristics
of the system, triangulation principle, object detection and route determining. Section 4 presents
the experimental setup where the system is tested and then reports the system performance. Finally,
Section 5 concludes the paper and gives future directions.

2. Related Study

In the last two decades, many technologies have been proposed in order to assist blinds or visually
impaired persons to navigate in closed spaces. We divide this section into three main areas. Many research
projects have been carried out in the field of indoor positioning technologies [10,11]. To achieve this,
different techniques for locating an object were investigated. Here, we briefly analyze the main indoor
location methods.

The Laterartion method assesses the distance of an object by measuring the distance of the
object from different reference points; these techniques are known as range measurement techniques.
Time distance of arrival (TDOA) is a kind of Laterartion technique that has been used to measure
indoor position of an object with respect to signal with three reference points [12,13]. Authors of [14,15]
have proposed the method to measure TDOA using different signaling techniques, i.e., ultra-wide
band measurements (UWB) and direct-sequence spread-spectrum (DSS) [16]. Others [17,18] have
proposed a non-linear cost function for measuring the indoor location of an object, where the cost
function computes the location by minimizing the sum of squares of non-linear cost function, e.g.,
least-square algorithms.

Some other algorithms for measuring indoor position of an object are residual weighting, closest
neighbor (CN) that assesses the location with respect to the reference points or location of the base
stations [18]. These TDOA based methods have some drawbacks when it comes to indoor environments,
it becomes difficult to find LOS channel between the receiver and the transmitter. This shortcoming can
be value-added by applying the premeasured RSS (Received Signal Strength) contours at the receiver
side or at the base stations [19]. Authors in [20] proposed a fuzzy logic algorithm for improving the
accuracy using the RSS method considerably.

Another method based on received signal phase assesses the range using carrier phase, also known
as phase of arrival (POA). This method assumes the transmitting stations having same frequency
and zero offset for determining the sinusoidal signals phase at a point [21]. This method can be used
in combination of TDOA for fine-tuning the location positioning, but the problems come with the
ambiguous measurements of the carrier phase, LOS signal path resolves this issue otherwise the indoor
positioning environment incurs more error.

In this respect, authors have also focused on angulation techniques that find the target in an
indoor environment using the intersection of several points in angle direction lines. These techniques
are advantageous where the users are required to estimate positions for 2-D and 3-D environments and
they also do not require time synchronization among measuring units. On the other hand, they have
complex hardware requirements [22,23]. Another technique that cogitates position as a classification
problem is probabilistic method. These probabilistic methods work upon calculating the likelihood
of independent measuring units, i.e., the Kernel approach and the histogram. The likelihood of
one-unit location can be calculated by multiplying likelihoods of all units [24]. These methods work
accurately only for discrete locations as mobile units are usually located at different points rather
than the discrete points. Researchers also have investigated other indoor location-aware methods like
Bayesian network-based methods and tracking assisted positioning methods are proposed in [25].

New techniques for indoor positioning findings are based on supervised or machine learning
algorithms. One of them is support vector machines (SVM) extensively used in applications like
medicine, engineering and science [26]. Researchers have focused on support vector classification
and support vector regression in indoor positioning environments [27,28]. SMP (Smallest M-vertex
Polygon) has also been studied in location estimation that uses RSS values for finding location of
the target with the reference of transmitter signal. M-vertex polygons are created by selecting one
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candidate from the transmitter where the smallest polygon suggests the location estimation [24].
Other machine learning/supervised learning algorithms that are under consideration for estimating
location in an indoor environment are KNN and neural networks. K-nearest neighbor algorithm works
on online RSS for searching k nearest matches of recognized places from already created database
using root mean square error principle. The estimated location is found (weighted/un-weighted KNN)
by averaging the k location candidates. On the other hand, neural networks are used during the offline
RSS stage. The appropriate weights are gained by training neural networks, in the indoor positioning
environments, a multilayer perceptron (MLP) network with one hidden layer is used. Neural networks,
in indoor positioning environments, are capable of finding 2D or 3D estimated locations.

Other techniques for finding target location of an object in an indoor positioning environment are
Proximity-based methods. These algorithms deliver symbolic relative information, depending upon
dense grid antennas with a popular location with each antenna. When single antenna detects the target,
it is reflected to be collocated with it, when detected by more than one antenna, it is collocated with the
strongest signal antenna. Proximity-based techniques are easier and simple to implement for detecting
target location in an indoor environment over various kinds of physical media. Systems using radio
frequency identification (RFID) and infrared radiation (IR) are making use of proximity-based methods.

Laser and camera-based indoor positioning system has also been developed by Tilch and Mautz [9],
to define the camera position with reference to the laser ring. As the ring emits laser-beams, it can
be observed as an inverse camera. The comparative orientation between laser rig and camera can
be calculated with the help of laser spots that are projected to any surface irrespective of a defined
structure of a scene. With this laser and camera-based positioning system, the point tracking is obtained
at the frame rate of 15 Hz while the camera accuracy is sub-mm.

Another indoor localization system known as NorthStar has been developed by evolution
robotics [29] that navigates robot vacuum cleaners and shopping carts. Here, infrared light spots that
are emitted from infrared LED specify the location of the mobile units. In NorthStar, every mobile unit
is equipped with a projector and an infrared detector for determining the relative orientation between
mobile devices. The positioning accuracy is reported to be in the magnitude of cm to dm.

Other techniques for object detection in an indoor positioning environment rely on reference
from 3D building models, that depend on detecting objects in images and then matching these with a
built database, i.e., CityGML contains position data of the interior of building. These methods have
advantageous, as there is no need to deploy sensor beacons [30,31]. In this regard, important research
has been conducted by Kohoutek et al. [10], using CityGML as highest level of detail for determining
position of imagining camera within the range. Initially, the correct room with camera is located
using the CityGML database. Then the indoor objects with like doors and windows are spotted using
3D point cloud obtained by range image sensor. In the final step, dm-level fine positioning of the
camera-based method combines spatial and trilateration resection.

Muffert et al. [32], specify the trajectory of an omnidirectional video camera based on relative
orientation of consecutive images. The path drifts away from the trajectory when there is no control
over reference directions. A low-cost indoor positioning system for off-the-shelf camera phones has
also been developed by Mulloni et al. [11], using bar-coded fiduciary markers. The markers are
positioned on certain objects like walls or posters etc. Further, 6-DOF (degrees of freedom) tracking
can deliver centimeter-level accuracy when markers are tracked.

Previously Proposed Smart Cane

Smart Cane serves as an enhancement to the visual impairment devices by detecting knee-above
and hanging obstacles. These obstacles can be the strings of hanging clothes, the corner or edge of
a truck or inclined ladders, etc. These obstacles can result in injury to the head or upper body parts
as they do not possess any footprint on the ground. It also detects the presence of the objects in
surroundings using vibratory patterns [33].
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Different sensors are embedded in the Smart Cane. They are the ultrasonic sensors that are used
to first detect and avoid the obstacles in front of a person. At the same time there is a fuzzy controller
that is aimed to instruct the person, i.e., to turn to right, left or to stop [34,35]. In [36], the ultrasonic
sensor is coupled to a GPS. A vibration actuator is used to convey distance of obstacles. Each distance
corresponds to a certain delay among the vibrations where greater distance has greater delays. Another
model described in [37] uses radio frequency identification (RFID). RFID detects objects or obstacles
which come in the track of the persons. RFID is also able to detect the RFID tags which have been
placed in several areas for navigating persons.

With this brief review, we noticed that Smart Cane can be used by everyone having any visual
impairment. Independent travelers can use this device for their mobility. People who commute
long-distance walking are usually the ones who can get the most out of it. The people having a
non-acceptance view of their disability will be less eager to use the Smart Cane. This can be observed
among the people who are adolescents and are highly skeptical of how they would be perceived by
peers. As a result, it appears that Smart Cane is very useful and simple to use with exciting features like:

• Ergonomic grip for comfortable holding and cane tapping: Smart Cane provides different gripping
styles that allow users to use their natural way of holding cane.

• Built-in rechargeable battery with a long battery back-up: Smart Cane is easily charge-able like a
mobile phone. The removal of the battery is not required for/while charging the device.

• Fully accessible user interface: the interface is very friendly where there is varying number of
beeps for conveying different messages, i.e., battery low or status of the charging, etc.

• Vibrations are uniformly produced on the entire grip: The Smart Cane provides non-localized
vibration feedback for allowing users to grasp/hold the device conveniently.

• Easy attachment/detachment from a white cane: the white cane can easily be replaced by the
user himself.

The proposed Smart Cane is one of its kind state-of-the-art device with unmatchable usability
features. It uses advanced IoT wireless scanner and other navigation instruments that perform well in
all conditions. Cloud connectivity with backend database system makes it stands out as compared to
other competitors. The next section includes all the description of the Smart Cane indoor navigation
system with in-depth details of each component used.

3. Proposed Smart Cane Indoor Navigation System

3.1. Identification of Users’ Requirements

Identification of user requirements is the basic and essential part of a system. According to Mitchell
David Kapor, “design is where you stand with two worlds—the world of technology and the world of
people—and you try to bring the two together.” From this point of view, we want to understand how
current technology could help improve the independence of visually impaired people. Considering the
tools that have proved their worth in this field as mentioned above, the white cane and the guide dog
appear at the head of the list. A quick analysis of these assistive systems shows that they mainly offer:

1. Help to achieve autonomous navigation;
2. Provide safety and comfort in the displacement;
3. Provide a companion and a significant vector of communication;
4. Help to pick up a fallen object.

It is important to note that these four features are not covered completely by neither the white cane
nor the guide dog. To achieve a high-quality system that will meet the needs and lifestyle requirements
of blind people, we focus on identifying the needs that the ideal assistive tool should fulfil. Doing so,
we have identified main characteristics that an assistive device for blind or visually impaired people
should offer:
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• Assist visually impaired people to come to autonomous navigation;
• Providing security and comfort while moving from one place to another;
• Offering a tool that will support them to communication with others;
• Offering a tool that will identify objects within the surrounding environment.

3.2. Main Characteristics of the Proposed System

As discussed in the previous subsection, the proposed system has been designed to offer great
usability to its users. Usability can be defined as “the measure of user performances in the context
of intended use”. Usability can be measured by various indicators such as ease of learning, ease of
memorization, error-free use, and so on. That is why the proposed system is centered on providing all
possible help with a smart white cane. Figure 2 shows an indoor navigation system that uses cloud
computing and IoT concepts to assist the users with the Smart Cane. Smart Cane has the ability to
collect the data that is transmitted to cloud network. Moreover, IoT wireless scanner is also connected
to cloud computing that makes a complete indoor navigation system that is further explained in the
next sections.
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The proposed Smart Cane indoor navigation system including all the software and hardware
components is discussed in detail in the following sections.

3.3. Detailed Explanation of Proposed System Components

Visually impaired persons including deaf-blind, blind, and low vision people require assistance
in their daily life. Navigating complex routes and finding objects of interest are challenging tasks for
visually impaired persons and in today’s world, there is a lack of infrastructures to make it easier.
One of the most problematic tasks for visually impaired people is outdoor navigation [38]. Here,
this element is typically termed as macro-navigation or orientation. It includes multiple sub-processes
such as being oriented, selecting an appropriate path, maintaining the path, and detecting when the
destination has been reached. These tasks are dedicated to processing the remote environment, beyond
the immediate perceptible ones. In the case of visual impairment, the main cues (e.g., landmarks
and paths) for sensing the environment are degraded. This results in difficulties relating to correct
orientation or heading, piloting (i.e., guidance from place to place using landmarks) and retaining the
path, etc. A system that assists visually impaired persons’ navigation and orientation in real time will
be of great benefit to achieve this demanding task.

Our proposed system is made up of an ultrasonic sensor that was interfaced to the microcontroller,
codes were written with the Arduino sketch and the physical sensor was connected to the microcontroller.
The system will allow the blind to freely navigate to their desired destination. It is also user-friendly and
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easy. It is affordable and therefore can be mass produced for use of the visually impaired. The system
has the capacity to detect obstacles that exist on the ground during walks of indoor and navigation.
A camera mounted on the Smart Cane can detect objects and colors and relay the information to the
user via an audio message, this means that the users can independently locate objects around them,
also with accelerometer we count the number of steps and calculate the number of calories burns to
encourage users who have lung disease to move.

The Smart Cane is basically an embedded system integrating the following: pair of ultrasonic
sensors to detect obstacles in front of the blind from ground level height to head level height in the
range of 400 cm ahead. Ultrasonic sensors and connected to a cloud service for easy navigation.
Using this Arduino Smart Cane, a visually impaired person can walk without anyone’s help. The cane
can automatically detect an obstacle and give the user a feedback response by giving a warning sound.

Cloud services: this gets the position of the cane, gets the route to destination and gets the traffic to
the destination. The data comes from the Wi-Fi Arduino board from the last stage to the cloud service.
The cloud service then uses a Gaussian model for the triangular based pose estimation. This code we
use is an open source code for the resection problem, it gives us the position of the cane at that point.
The cloud service is linked to the database which has all the paths. The cloud service then gets the
path, i.e., the shortest and the safest path considering the traffic. The cloud service also gets traffic.
These are the number of devices that can be connected. It outputs three lights. Red when devices are
greater than 15, yellow if the devices are between 5 and 15 and green if the devices are less than 5.

IoT wireless scanner: The wireless scanner sends the cloud names and the received signal strength
indicator (RSSI) of Wi-Fi and Bluetooth devices scanned as shown in Figure 3. It is built using aHM-10
Bluetooth RSSI or received signal strength indicator. RSSI is typically used to estimate the distances [2].
Generating, detecting and processing ultrasonic signals in ultrasonic is the production of sound waves
above the frequency of human hearing and can be used in a variety of applications such as sonic
rulers, proximity detectors, movement detectors, liquid level measurement. The distance between the
sender and the receiver machines has an impact on the signal strength this is then used to calculate the
distance. The distance of the obstacle is determined based on the delay between the emission of sound
and the arrival of an echo. The distance of the obstacle can be measured as distance = (time × speed
of sound in air)/2, [3]; where time is the time duration for which the ultrasonic waves have travelled
and speed of sound in air is 340 m/s. The advantage of this is that it is a cheap solution for distance
estimation. The Arduino component, on the other hand, gives an easy path to use the device for
communication between the cloud and the wireless scanner.
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Smart Cane: Created with ultrasonic sensor distance measuring module, keyboard for blind
people, accelerometer, ESP32 board, Pixy cam, and Emic 2 Text-to-Speech module as shown in Figure 4.
The ultrasonic sensor distance measuring module includes ultrasonic transmitters, receiver and control
circuit. The ultrasonic sensors send a sequence of ultrasonic pulses. If the obstacle is detected, then the
sound will be reflected back to the receiver [39]. The microcontroller processes the readings of the
ultrasonic sensors in order to activate the motors by sending pulse width modulation. It also provides
a low power consumption. The data from this sensor is sent to the ESP32 board for transmission to the
cloud. The keyboard for blind people is used as an input device. The blind person touch types their
destinations and then the path is calculated. An accelerometer is one of the most important things in
the stick. Accelerometers get the acceleration forces electromagnetically. Now they are used to detect
and measure the gravitational and other forces. They are used to measure the speeds with which a
person is traveling. Now this speed is important when it comes to the path updating to the user.
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The Smart Cane is composed of:
Ultrasonic sensor distance measuring module for the detection of an obstacle. The HC-SR04

Ultra01 + Ultrasonic Range Finder provides 2–400 cm non-contact measurement function, the ranging
accuracy can reach to 3 mm. The module includes ultrasonic transmitters, receiver, and control
circuit [40].

Keyboard for blind people.
Accelerometer—we use the accelerometer to know the position of cane and calculate a number of

steps. Here, we are using the ADXL337 and the ADXL377 are both small, thin, low power, complete
3-axis accelerometers with signal conditioned analog voltage outputs [41].
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ESP32 board—send data of sensor to the cloud and receive data from the cloud like route and obstacle
position and traffic. ESP32 is a series of the low-cost, low-power system on a chip microcontroller with
integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series employs a Tensilica Xtensa LX6 microprocessor
in both dual-core and single-core variations and includes in-built antenna switches, Radio frequency (RF)
balun, power amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 is
created and developed by Expressive Systems, a Shanghai-based Chinese company, and is manufactured
by TSMC using their 40 nm process. It is a successor to the ESP8266 microcontroller [42].

Pixy Camera: A camera is used to detect the colors and objects; it also detects the different kinds of
signs. For obstacle avoidance systems camera-based approaches are predominant. Different approaches
may be used for obstacle avoidance purposes based on the type of camera used. The monocular
camera is the primary type of camera that can be used in precautionary scenarios. As the method’s
name implies, only one camera is used. Various algorithms to detect the obstacle have been proposed.
The Pixy 2 Image Sensor is smaller, faster and more capable than the original Pixy. Like its predecessor,
Pixy 2 can learn to detect objects that you teach it, just by pressing a button. Additionally, Pixy 2 has
new algorithms that detect and track lines for use with line-following robots. The new algorithms can
detect intersections and “road signs” as well. The road signs can tell your robot what to do, such as
turn left, turn right, slow down, etc. [43].

Emic 2 Text-to-Speech modules: It’s used for audio output for the blind. The Emic 2 Text-to-Speech
Module is a multi-language voice synthesizer that converts a stream of digital text into natural sounding
speech. Its simple command-based interface makes it easy to integrate into any embedded system [7].
Text-to-speech (TTS) is a technology for speech synthesis that is used to produce a sound spoken
version of the text in a computer document, for instance the help file or website. TTS may allow the
visually challenged person to read computer display information or it can be used simply to enhance
text message reading.

Emic 2, Text to speech unit, is an unconstrained voice synthesizer which can turn a digital text input
into a natural speech sound output in different languages. Emic 2 offers complete speech synthesis
capability for any embedded system via a simple command-based interface using a universally
recognized DECtalk text-to-speech synthesizer engine. We have used text-to-speech system to give
voice to our interactive system. Text-to-speech is a process by which a text is rendered as a digital
audio that is converted to analog audio. It is used where digital audio records are unable to audibly
convey the data to the user.

The ESP32 board is used to send data of sensor to the cloud and receive data from the cloud like
route and obstacle position and traffic. The biggest benefit of using an esp32 is that it is a cost-effective
and low power system. The Pixy cam is used to detect objects and colors. It is a small camera, that in
the end, gives us frames at the rate of 60 FP. It is the fastest version sensor for robotics. Pixy has
the ability to detect multiple objects simultaneously, but the main advantage is that the data we get
from it is only the information we want, i.e., discarding the ground data and getting only the object
data. This all is topped up with an Emic 2 Text-to-Speech module that is responsible to read out
all the instructions it gets from the cloud. The Emic 2 Text-to-Speech Module is a voice synthesizer.
It converts the text into a speech. It is easily integrated with our cane due to the fact that it has a single
command-based interface.

The whole of the system is fitted in the cane, the cane needs an internet connection to communicate
with the cloud servers. The servers are listening to them all the time. The data that comes back is
also spoken by the module which means that it is beneficial for all sorts of people. One more key
advantage of this Smart Cane is that it is fully autonomous and does not require a partner device such
as a smartphone to operate.

3.4. Triangulation of the Cane and Guidance of the User

Triangulation is the basic feature of the proposed system. It aims at guiding the user towards a
point of interest located in a building. To be feasible, the explored environment has to be equipped with
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multiple IoT devices situated in some predefined positions. In addition to providing object detection
in a longer range, the IR sensors use an established methodology that provides a wide variety of
information. Due to the new approach, the new technologies offer a far better immunity to ambient
lighting conditions. These new technologies use a linear triangulation to calculate the distance and
presence of objects in the field of vision. The transmitter releases a pulse of infrared light. If there are
no obstacles in the specific area, then the light is never reflected and the output does not indicate an
object, but if it does have an obstruction, the light is reflected and thus object is reflected. This action
creates a triangle of reflectors, emitters and detectors. The angles of the triangle differ according to
the object’s size. The receiving segment of these new detectors is a sensitive lens, which transmits
the reflected light to several sections of the enclosed linear array. Given what angle the reflected light
came back in the CCD array, the distance to the object can be computed. This features relays on the
following hardware and services.

Trilateration: Trilateration (a sophisticated version of triangulation) is used to determine the
position of the user in an indoor space. This technique is being used in state-of-the-art navigation
systems. Triangulation is typically more common in long distances than indoor settings. Trilateration,
on the other hand, seems to be doing well indoors. Trilateration is the technique of measuring the
distance between the object and the access points in which the position of an object is estimated.
Common procedures for deciding range are time of arrival (TOA), time difference of arrival (TDOA)
and received signal strength indicator (RSSI).

RSSI is one of the most common and easiest location methods. The main reason for its popularity
is that finding RSSI does not require additional hardware and is available on nearly all types of wireless
communication devices. Indoor locations based on RSSI are environmentally affected. Some wireless
technologies, however, are more vulnerable than others to environmental changes.

Bluetooth low energy (BLE) [36], with its high localization accuracy in the two environmentally
tested is a promising, low power, cost efficient solution for the location of IoT in small, crowded
areas. Wi-Fi is a reliable technology, thanks to its high availability can also be used for localization.
Nevertheless, Wi-Fi uses the most energy out of all the systems that have been tested. LoRaWAN
(long range wide area network) has a wide range of transmission and low energy consumption,
which are useful in large areas to localize IoT, but was the worst performance in indoor location.
ZigBee’s energy demand is close to LoRaWAN while in the two conditions measured its efficiency is
much better.

3.5. Recognition of Objects Encountered in the Environment

Beyond navigation, in many situations of everyday life, one may have to search for a particular
object in a given environment. To understand the usefulness of this characteristic, imagine how
frustrating it can be to find one’s keys just before leaving. Moreover, in everyday life, most of our
positioning indications exploit the identification of an object of interest. Indeed, it is very common to
say that the place is located to the right or to the left of a specific object. This feature responds to this
need. It aims to assist the user in the search for a particular element.

Sonar: Sonar is a sound reflection-based system for finding distance. An acoustic transmitter
and receiver are necessary in this process. Initially a brief sound signal will be sent by the transmitter.
The timer begins and when the receiver detects acoustic signal reflection, it stops counting if the timer
exceeds the time limit, it is turned off. By dividing the sound frequency in that atmosphere by half the
sound time it is possible to calculate the distance from the detector to the target. The time is divided
into two as the sound goes to the target and returns back.

Object Detection: As we want to guide the user towards a destination, it is important to detect
obstacles that may be present on the path. Object detection is made possible by manipulating the
mean of the ultrasonic sensors. The goal is to detect ground and air obstacles using ultrasonic sensors.
The object detection process requires sensors and microcontroller units within a specific distance.
The control signal will be produced, and the microcontroller Echo-Pin will be activated when an
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ultrasonic wave is detected. The microcontroller tracks the length of the time period of the height of
each pin and then transforms it to a distance. The command signal is transmitted wirelessly to the
receiving device that is carried on the shoulders. The buzzer is played to alert the user depending on
the approach of the obstacle (high alert, usual warning, low alert and without warning).

Sound Buzzer: The sound buzzer is activated whenever there is an obstacle, it gets the signal
from the microcontroller and behaves accordingly.

3.6. Determining the Route

In order to determine the possible path between the user and the destination sensors’ data is sent
to the cloud service, which returns the potential path towards the destination. It has two goals that are:

• Calculation of the fastest and safest route to arrive at a given point in the environment;
• Proposition of different navigation modes.

Navigation Modes

There are three navigation modes available. A user can choose one of the modes using the keypad:

(a) Smart navigation mode: In this mode, the system uses the camera and the ultrasonic sensor to
detect objects and obstacles. The Smart Cane is connected to the cloud thus it can communicate
with the database to let the user know about detected objects and obstacles, thus guiding the user
for indoor navigation.

(b) Eco mode: This mode uses the camera when the ultrasonic sound sensor detects an object distance
less than 30 cm. Similar to the smart navigation mode, the Smart Cane is also connected to
the cloud in the mode. This mode is set to be activated automatically when the battery is less
than 20%.

(c) Offline mode: In this mode, the Smart Cane is not connected to the cloud and IoT wireless scanner
so the user can’t get itinerary, route details. In this mode the system can just detect obstacles
and objects.

3.7. Itinerary Algorithm

The system uses Dijkstra’s algorithm to calculate shortest itineraries. We also tag each computed
itinerary based on the number of obstacles that it contains. Blind pedestrians can choose one of the four
different paths described by different tags in order to reach the same destination. Some of them are
shorter or have less turns but may be less convenient for blind people (e.g., no pedestrian sidewalk).
Our goal is to choose the route that most fits the user’s needs and to focus on the proposed geographical
information classification. We suggest that an optimum route can be determined using the Dijkstra
method to solve the minimization problem. This is because the Dijkstra’s algorithm always takes all
positive borders into account. We calculate the path safety index with the number of obstacles detected
and number of devices connected in this path. While all indoor X, Y coordinate locations are saved in
the database, in the cloud the Algorithm 1, it uses the following step to find if the path is safe to move
or not:

Algorithm 1

function GetSafetyPath(PathLength,NumDev,NumObs):
IndDev← (PathLength\NumDev)\PathLength
IndObs← (PathLength\NumObs)\PathLength

Return ((IndDev*30) + (IndObs*70))\100
If: GetSafetyPath >= 80: The Path is Safe
If: GetSafetyPath >= 50 AND <80: The Path is normal.
Else: The Path is unsafe.



Technologies 2020, 8, 37 12 of 17

3.8. Calculate Speed

To calculate the speed of the user we have used a reference design that uses the three-axis
ADXL345 accelerometer in a full-featured pedometer that can recognize and count steps, as well as
measure distance and speed [44]. For pedometer applications, the ADXL345 is an excellent speed
meter. Using its small, thin 3 mm/5 mm/0.95 mm plastic packages, pedometers can be found in medical
devices as well as fancy consumer electronics. We have used it to calculate the speed while the user
traverse through a path following the instructions of the Smart Cane navigation system.

4. Experiment

This section describes the experimental details for testing the system. Two different experiments
were performed to measure two different performance parameters. The first experiment was to test
the indoor navigation system using the smart navigation mode. While the second experiment is
focused on testing the performance of battery and connectivity of the system while using all of the
available modes.

The system was evaluated on its ability to detect different types of obstacles encountered in
daily life. We also measured their ability to recognize an obstacle-free path. A tape calculated the
actual distance from the barriers to the cane and the distances recorded by the Smart Cane system
were contrasted. The navigation system could sense the distances from obstacles up to a distance
of 10 cm. Since we announce the gap far beyond 10 cm with haptic feedback to the user, this is an
appropriate error range for our purposes. It also established an obstacles-free path and a potentially
dangerous decline.

4.1. Testing of Indoor Navigation System

The indoor navigation system is tested using the smart navigation mode in an office environment.
In this experiment, we have defined a route to traverse; where a normal user, who is not blind,
will navigate from point A to point B as shown in Figure 5. There are eight offices in the experimental
setup, and we have put four obstacles at different locations in the pathway between the offices.
This experiment was performed once to measure the performance of the navigation system. All the
information about the map and environment is stored in the cloud server. This includes the pathways,
position of the obstacles, number of offices with their locality information, etc.

At the start of the experiment, the system will first inquire the position to begin, that is the point
A in the map. The user then pushes a key to send information about the starting point. The device will
request to enter the destination location that would be an office number. The user then presses the end
location. Once the start key is pressed the system gives instructions to start the navigation process.
The system will instruct the user by an audio speaker about how to go to the destination that is Point B.
These instructions could be like “turn right”, “turn left”, “move forward”, etc. At the point B location,
the user will hear the voice “destination arrived”.

Since the system follows the map and helps the visually impaired person to get to a specific
location. If obstacles between paths are detected, then the system will inform about these obstacles
as well. We tested the system in an experimental environment where a blind person is expected to
navigate from the starting position to the destination position while crossing some obstacles. We have
performed the experiments three times with a normal person who is not blind.
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Figure 5. Experimental setup.

As shown in the figure, we want to from point A to point B move using the Smart Cane. We put
office trashes as obstacles to test the object detection of the system. In this scenario the positions of the
blue trash are already stored in the cloud database as obstacles. Whereas, the other trashes are not
already stored in the database. We installed three IoT scanners in three corners of the building for
location accuracy. Precision of the localization of the Smart Cane was expected to be between 50 cm
and 100 cm in an area of 70 m × 50 m. During each experiment, the system includes the detected
obstacles in the database and thus can help in the navigation for the user for the next experiments by
taking less time for navigation, as shown in Table 1.

Table 1. Elapsed time with number of obstacles in three experiments.

Experiment Time Number of Obstacles Stored in the Cloud

1 154 s 2
2 112 s 5
3 105 s 5
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In our experiment, whenever the user approaches near the blue trash, the cane warns about the
presence of the obstacle. The detection occurs because the trash position is already stored in the cloud
system. While navigating through the path between A and B. When the cane detects a new obstacle,
it will be stored in the cloud in the table of obstacles. This table is used by the system to get the safe
way. It is important that the cane remains connected to the cloud, whenever the Smart Cane loses
connection with the cloud, it cannot guide the user to navigate to point B.

Table 2 shows the precision accuracy of the Smart Cane navigation system. For all three zone
shown in the Figure 5 of experimental setup, it shows precision of estimated location of trashes. It can
be seen that the system can accurately determine the location of the obstacles with a precision range of
50 cm to 100 cm. It is to be noticed that as the user moves father from the IoT Scanner 2 and 3, and it
effects the accuracy of the object detection system.

Table 2. Localization precision of the Smart Cane navigation system.

Zone Precision of Estimated Location of Trash Precision

1 Between 50 cm to 55 cm Between 50 cm to 55 cm
2 Between 60 cm to 75 cm Between 60 cm and 70 cm
3 Between 80 cm to 100 cm Between 80 cm and 90 cm

4.2. System Performance

We have tested the performance of the system parameters including battery, connectivity, response
time and detection range of the Smart Cane navigation system. All these experiments are performed
five times by a person who is not blind. To test the performance of the battery, we keep the cane
on until the battery of the cane is completely drained. The capacity of the power bank is 2200-mah.
This experiment is performed for all three available modes that are smart navigation mode, Eco mode
and offline mode.

For testing the range of obstacle detection, we have put obstacles at different distances from the
user to measure the maximum detection range. Obstacles were placed at 1–8 m away from the user to
determine the maximum detection range. Each experiment is performed five times and average values
are presented in the Table 1. Similarly, to get the average value for response time from the server is
also measured five times. It is the time that a message takes to carry information from the cloud server
to the Smart Cane. Average values of response time are calculated for all three available modes and are
recorded in the Table 1. When the cane loses connection with the sound the system cannot localize the
cane indoor. Table 3 presents an analysis of the performance of the system in Smart navigation mode,
Eco mode and off-line mode.

Table 3. Performance of navigation system.

Parameters Smart Navigation Mode Eco Mode Offline Mode

Battery 11.8 h 12.45 h 15.2 h
Maximum object
detection range 500 cm 400 cm 400 cm

Time Delay 1 s 1.2 s Not applicable

The Table 3 shows the performance of the Smart Cane navigation system in all three modes for
different parameters such as battery consumption, maximum range for object detection and time delay.
Smart navigation mode is the powerful mode that can detect objects from 500 cm with only 1 ms of
communication delay, but it consumes battery at a faster rate. Eco mode can be turned on for smart
usage in order to have a longer usage of battery. Offline mode is also helpful when you do not need to
have communication with the cloud server, thus it consumes less battery but still can detect the objects
in the 400 cm range.
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5. Conclusions

Considering that navigation has been a major problem for this segment of people, we have proposed
a smart white cane to help blinds in indoor navigation. This system contains micro-controllers, cameras
and accelerometers and can send audio messages. A cloud service is exploited to assist the user in
navigating from one point to another. It mainly helps in the detection of the fastest routes. The device
may also warn about nearby objects using a sonar and a sound buzzer. We have tested our system and
the results are very satisfactory. The observed results have shown that the system is capable of assisting
navigation. Such results may lead to enhancing product design based on user input. Functionality
experiments carried out so far have given practical suggestions for growing the usefulness of the
new navigation system. In the near future, we also plan to make the Smart Cane useful even if
it loses connection with the cloud. To convert user requirements into design quality, the quality
function deployment framework will be used. We also plan to add some intelligence in the Smart Cane
navigation system since the field of artificial intelligence is making great progress now and features
like objects detection can become more efficient, easier and computationally feasible. We can use
extended support vector machines (SVMs), which were initially designed to solve the classification task
of medical implant materials, to provide a higher accuracy of the navigation tool. Similarly, to improve
the precision of object detection, we can consider using artificial neural networks to solve this problem.
The non-iterative feed-forward neural network works much faster than MLP and has a lot of other
advantages for solving the stated task.
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