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Abstract: Heating, ventilation and air-conditioning (HVAC) systems play a key role in shaping office
environments. However, open-plan office buildings nowadays are also faced with problems like
unnecessary energy waste and an unsatisfactory shared indoor thermal environment. Therefore, it
is significant to develop a new paradigm of an HVAC system framework so that everyone could
work under their preferred thermal environment and the system can achieve higher energy efficiency
such as task ambient conditioning system (TAC). However, current task conditioning systems are not
responsive to personal thermal comfort dynamically. Hence, this research aims to develop a dynamic
task conditioning system featuring personal thermal comfort models with machine learning and the
wireless non-intrusive sensing system. In order to evaluate the proposed task conditioning system
performance, a field study was conducted in a shared office space in Shanghai from July to August.
As a result, personal thermal comfort models with indoor air temperature, relative humidity and
cheek (side face) skin temperature have better performances than baseline models with indoor air
temperature only. Moreover, compared to personal thermal satisfaction predictions, 90% of subjects
have better performances in thermal sensation predictions. Therefore, personal thermal comfort
models could be further implemented into the task conditioning control of TAC systems.

Keywords: machine learning; non-intrusive sensing; skin temperature; personal comfort model;
building automation

1. Introduction

Heating, ventilation and air conditioning (HVAC) is a technology to create a suitable
indoor environment, particularly thermal environment and indoor air quality, for various
types of buildings. Since the HVAC system plays a key role in shaping office environments
and building energy performances, it is of great importance to develop a new paradigm of
HVAC system framework considering both comfort and energy efficiency.

Among various types conditioning systems in office buildings, the task ambient
conditioning (TAC) system is one of the most energy efficient and comfortable space
conditioning systems. The TAC system is defined as any space conditioning system
that allows thermal conditions in small, localized zones to be individually controlled
by building occupants, while still automatically maintaining acceptable environmental
conditions in the ambient space of the building [1]. Since the TAC system not only takes
individual thermal preferences into account but also maintains the overall acceptable
thermal environment, it has become one of the most promising air-conditioning systems in
open-plan office buildings. Moreover, due to rapid development of building automation
system (BAS), many researchers have investigated advanced control strategies so as to
operate an advanced HVAC system more effectively and energy efficient in the open-plan
office buildings recently [2–4].

However, for most existing TAC systems, the control of the task component is partially
or entirely decentralized and completely under the control of the occupants. As a result, the
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TAC system cannot be fully optimized since the task conditioning system is not responsive
to dynamic thermal environment and personal thermal comfort until the occupant takes
action on his/her own. In order to tackle the issue, automatic task conditioning system
control with a personal thermal comfort model shall be developed.

This paper consists of mainly five different sections. Besides the introduction, includ-
ing related work, motivation and contribution, Section 2 mainly describes the methodology
and test setup of the field study. Moreover, Section 3 analyzes the result of personal thermal
comfort model performances and energy savings of the proposed task-ambient condition-
ing system in the field study. Last but not least, Section 4 discusses about the limitations
and future work, followed by Section 5, the conclusion.

1.1. Related Work

Since the development of task conditioning systems aims to satisfy individual thermal
preferences in the local environment, control strategies based on thermal comfort models
could realize the automation of the task conditioning system. Thermal comfort is the
condition of mind that expresses satisfaction with the thermal environment and is assessed
by subjective evaluation. In the course of thermal comfort theory, static thermal comfort
and adaptive thermal comfort have become two main categories. In terms of static thermal
comfort, predicted mean vote (PMV) developed by Fanger [5] is the most widely accepted
thermal comfort model. Moreover, in the study of static thermal comfort, the psychrometric
chart can be used to analyze the comfort zone under certain conditions, as shown in
Figure 1. On the contrary, adaptive thermal comfort models emphasize how people
interact with and change the real environment [6]. However, since both static and adaptive
comfort models are aggregate models, which are designed to predict the average comfort of
large populations, the accuracy decreases when predicting individual thermal comfort [7].
Therefore, researchers have proposed a new category of thermal comfort model, named
the personal comfort model, which predicts an individual’s thermal comfort response [7].
Such personal comfort models have been developed with various algorithms, including
Bayesian network, hidden markov model (HMM), support vector machine (SVM), random
forest (RF), and multi-variate regression models [8–20].
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Figure 1. Examples of psychrometric charts for acceptable comfort ranges in winter and summer with
different acceptability criteria. (a) 90% general acceptability criterion. (b) 80% general acceptability
criterion [6].

In addition, motivated by thermoregulation theory, skin temperature is one of the
key factors to thermal comfort. Therefore, many researchers have proposed to use mean
skin temperature or the most representative local skin temperature [19–26] for thermal
comfort inference. Moreover, the development of advanced sensing techniques has also
promoted the development of the personal thermal comfort model. The current sensing
technique used for thermal comfort inference can be mainly divided into two categories.
One is wearable sensing devices and the other is contactless sensing devices.
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Currently, there have been various types of wearable devices, such as wrist
bands [12–14,16–19] and eyeglass frames [15]. Even if wearable devices can directly mea-
sure skin temperature to indicate thermal comfort, the major disadvantage is intrusive-
ness [20,21]. Therefore, contactless measurement methods have drawn much more attention
nowadays, especially infrared (IR) thermography. An empirical study utilized an infrared
(IR) sensor called Lepton to estimate occupant thermal comfort level by measuring skin
temperature measured from different face regions. The results have shown that the ears,
nose and cheeks are most indicative to thermal comfort [21,22]. In addition, Ranjan and
Scott [23] have used an IR camera to dynamically detect and predict thermal comfort. They
classified thermal preferences based on skin temperature of eight different body parts, and
found that face has outperformed other body regions. Moreover, the results have shown
that the cheek performs much better than other face regions. Moreover, Han et al. [24]
utilized infrared imaging to measure face skin temperature and control the indoor en-
vironment with self-learning algorithms. As a result, 98% of the occupants’ feedback
demonstrated the control system was able to achieve satisfactory thermal environments.
Moreover, Lu et al. [25] have developed steady-state data-driven personal thermal comfort
models with Random forest and support vector machines using infrared camera. The
results of the best model have shown a recall score of 100% on female subjects and 95%
on male subjects. In addition, Ghahramani et al. [15] have developed an eyeglass frame
for thermal comfort, which measures skin temperatures of different parts of human heads,
including the cheekbone, front face, nose and ears. Besides the IR camera, other types of
cameras can also be implemented to measure skin temperature-related variables like a
red–green–blue (RGB) camera and depth camera. A recent study has proposed a red–green–
blue-depth–temperature (RGB-DT) framework consisting of a thermographic camera, a
depth-sensor and a color camera to measure body temperatures to indicate thermal comfort
at different body parts, including the hand, elbow, shoulder, chest as well as the left and
right of the head [26].

To summarize, personal thermal comfort models are more realistic to the actual indoor
environment than static and adaptive thermal comfort models and the performance can be
enhanced with machine learning algorithms. Moreover, infrared thermography can solve
the intrusiveness issue while maintaining high performance of thermal comfort inference.
However, since the current thermal camera is too expensive to be deployed in large-scale
open plan office buildings, developing personal comfort models with more cost-effective
contactless sensing techniques have become an interesting research area recently.

1.2. Motivation and Contribution

Based on a literature review regarding thermal comfort and task-ambient HVAC
control, it can be concluded that the recent studies related to thermal comfort have drawn
more attention to different sensing techniques to develop personal comfort models and
apply such models into a dynamic HVAC system. Moreover, in terms of sensing technique,
even if a wearable sensing technique is popular for thermal comfort inference nowadays,
vision-based sensors such as IR thermography are less intrusive. However, it is expensive
to use existing IR cameras in large-scale open-plan office buildings.

Therefore, motivated by improving personal thermal comfort with the cost-effectiveness
task conditioning system, this study aims to develop a dynamic task conditioning system
with personal comfort prediction models. The models were developed with machine
learning algorithms by collecting data from the non-intrusive sensing system consisting
of infrared temperature sensor called AMG8833 to measure cheek (side face) skin temper-
ature, indoor air temperature and relative humidity called DHT22 in an empirical study
in Shanghai.

The study contributes to the field of building automation that personal thermal
comfort models were used for controlling the task conditioning system automatically.
With a personal thermal comfort model with machine learning and the non-intrusive
sensing system, the proposed task conditioning system could be further implemented to
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optimize ambient conditioning system (i.e., cooling set-point) so as to improve energy
efficiency while still maintaining individual thermal comfort level. In particular, this study
not only builds personal thermal comfort models with machine learning algorithms but
also develops an online learning process to update the personal thermal comfort model
through interactive behaviors between occupants and the task conditioning system such as
desktop fan.

2. Methodology

As mentioned in the introduction, this study aims to develop a dynamic task condi-
tioning system with a personal thermal comfort model and a non-intrusive sensing system.
Therefore, the development of a non-intrusive sensing system and the development of
personal thermal comfort models with two phases are described below. In addition, the
methodology was applied in a case study in Shanghai during cooling season.

2.1. Development of Non-Intrusive Sensing System

In order to predict personal comfort in real-time, a personalized sensing system has
been implemented for each individual. Table 1 shows the specification of each component
in the sensing system. As shown in the table, inspired by advantages of a contactless
sensing device, a contactless temperature array called AMG8833 (Grideye) was used to
measure the cheek (side face) skin temperature in the study.

Table 1. Components in the non-intrusive sensing system.

Variable Sensor Unit Resolution Accuracy Operating Range

Air temperature DHT22 ◦C 0.1 ◦C ±0.5 ◦C −40–80 ◦C
Relative

humidity DHT22 % 0.1% ±2% 0–100%

Skin temperature
(calibrated) AMG8833 ◦C 0.01 ◦C ±0.5 ◦C 0–80 ◦C

AMG8833 is a temperature array sensor for temperature detection. It has a two-dimensional
area with 8× 8 pixels. Unlike the infrared temperature sensor called MLX90614 [12], AMG8833
measures temperature distribution of an area at a time instead of a single temperature
spot. The typical application of the sensor includes occupancy detection, energy savings,
thermal comfort, digital signage and home appliances. Compared to an infrared camera
like Lepton 2.5 [21], AMG8833 is more cost-effective, with a price of around $25. In ad-
dition, the accuracy of the sensor will be ±0.5 ◦C after calibration [27], which is higher
than that of Lepton being, ±2.5 ◦C, while lower than that of special version of MLX90614
for human body temperature, being ±0.2 ◦C. However, since in this study the thermal
comfort response rate from participants was 5 min/time and the task-conditioning system
of desktop fans was controlled with two simple and discrete modes of on/off, the accuracy
of the sensing system, including DHT22 and that of the calibrated AMG8833 are enough
for the development of a personal thermal comfort model for task-conditioning system
control. The calibration process of AMG8833 is shown below:

1. Cool or warm the object covered with electric tape whose emissivity is 0.95 [28] (the
object used in the calibration needs to have high emissivity close to 1). As a result,
the electric tape temperature can be distinguished from the environment temperature
and the temperature distribution over the electric tape will be uniform;

2. Use the Infrared camera to take the photo of the object (Figure 2) and measure the
average temperature Trad of the tape surface with the camera at 0.5-m distance;

3. Measure the temperature of the tape surface with AMG8833 at the same distance and
make sure that all pixels (T11, T21 . . . T88) only measure the surface temperature of the
electric tape; and

4. Calibrate the temperature of all pixels with Trad. For instance, ∆t11 = T11 − Trad.
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Figure 2. Camera views of the electric tape. (a) IR image of electric tape whose color bar ranges
between 76.7 ◦F (23.8 ◦C) and 67.1 ◦F (19.5 ◦C); (b) RGB image of electric tape.

Moreover, in order to measure cheek (side face) skin temperature correctly, the sensor
is designed to be installed 0.5 m away from the user so as to avoid the error due to distance.
Since the view angle of AMG8833 is around 60◦ and the distance between the sensor and the
user is 0.5 m, part of the pixels may measure the background temperature (i.e., temperature
of the object surface behind the user) instead of cheek (side face) skin temperature. Since the
radiative surface temperature in the background is always lower than that of occupant skin
temperature in regular office buildings, in order to ensure only the radiative temperature
of the cheek (side face) area is captured, a simple yet effective skin temperature extraction
is proposed such that the cheek (side face) skin temperature is estimated as the mean of
3 × 3 highest temperatures among these 64 pixels. Figure 3 shows an example of skin
temperature detection.
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Besides the sensing system, the personalized cooling system also includes an 8′

desktop mini-fan (since the air velocity > 0.2 m/s also has cooling effects [29], the supply
direction is adjusted so that the air velocity towards each occupant is controlled within
0.1 m/s without draft risk). Compared to a conventional air-conditioning system, the TAC
system with a fan has several advantages. Firstly, fans offer a straight-forward, economic,
and independently operable technique to increase movement of air so as to ultimately
improve thermal comfort in a room [29]. Moreover, when operated with an AC system, the
downwash propelled by foil (rotating) drives the warm air downwards to blend with the
cold air, countering the impacts of buoyancy [30].

2.2. Development of Personal Comfort Models

The development of personal comfort models consists of two phases. The first phase
was to collect sensor data used as features and thermal comfort feedback used as labels
from various participants in different sessions. The second phase was to update personal
comfort models by observing the thermal environment when individuals overrode the
actuations of the fan controlled with personal comfort models.

In the first phase, personal comfort models were trained by varying the temperature
set-point from 22 ◦C to 30 ◦C slowly such that the air temperature increases no more than
0.2 ◦C/min on average. However, it was not guaranteed that the same people would
attend all the sessions in both phases. During each session, they were asked to report
their thermal sensation and thermal satisfaction with a 7-point thermal sensation [31] and
modified 5-point thermal satisfaction scale every 5 min, as shown in Figure 5a,b.
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Figure 5. Personal thermal comfort metrics. (a) The 7-point thermal sensation; (b) 5-point thermal
satisfaction.

Figure 6 describes the development of personal comfort models in the first phase. The
classification follows the standard machine learning pipeline, including feature extraction,
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feature selection, classification and validation. In order to evaluate the effects of cheek (side
face) skin temperature on the personal thermal comfort model, including both thermal
sensation and thermal satisfaction, two different personal thermal comfort models were
developed with the same machine learning pipeline. One is the personal thermal comfort
model with only air temperature (baseline model) while the other is the personal thermal
comfort with all features, including air temperature, relative humidity and cheek (side face)
skin temperature (proposed model).
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Figure 6. The personal comfort model pipeline in the first phase.

In this study, a support vector machine (SVM) was used for developing personal
comfort models, including thermal sensation and thermal satisfaction prediction in the
first phase. SVM can be used to develop supervised classification models with high-
dimensional and non-linear data. Since the data is unlikely to be separated linearly,
with SVM classification, soft margin usually performs better than hard margin [32]. The
following equations show the optimization framework in SVM. Moreover, compared
to quadratic programming to solve the optimization problem, kernelized SVM can be
computed much more efficiently. The common kernel functions include linear kernel,
polynomial kernel and Gaussian kernel. In this study, kernel type and penalty number
were selected with cross-validation [33].

Inputs:
S = {(x1, y1 ), (x2, y2 ) . . . , (xn, yn)},

where xi ∈ Xtrain and yi ∈ Ytrain
Objective:

argminw,ξ1,ξ2 ...ξn
||w||2 + C ∑

i
ξi (1)

Subject to:
yiw ∗ xi ≥ 1− ξi (2)

ξi ≥ 0 (3)

where w is a weight vector, C is a penalty parameter controlling how much you want
to avoid misclassifying each training example and ξi is a slack variable indicating if
the sample is misclassified. With larger C, the optimization will select a smaller margin
of the hyperplane while with smaller C, the optimization will select a larger margin of
the hyperplane.

In addition, the confusion matrix [34] is a matrix M such that Mi,j is equal to the
number of observations known to be in group i and predicted to be group j. With the
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confusion matrix, the recall score is calculated as ratio between TP and sum of FN and TP,
which can be used to evaluate the performance of a classification model. The confusion
matrix of binary classification is shown below:

In binary classification with the confusion matrix, each cell in the Table 2 is the number
of the testing samples with the prediction and the correspondent actual results. The metric
used for personal comfort model evaluation is the recall score. Based on the confusion
matrix, recall is used for evaluating percentage of actual positive instances classified
correctly among all actual positive instances, which is defined as the ratio between true
positives and the sum of false negatives and true positives [35].

Table 2. Confusion matrix.

Predicted: Negative Predicted: Positive

Actual: Negative True negative (TN) False positive (FP)
Actual: Positive False negative (FN) True positive (TP)

In the second phase, due to the fact that some participants in the first phase did not
attend the second phase and some participants in the second phase had insufficient data
from the first phase to get well-developed personal comfort models, the initialized personal
comfort model for each female participating in the second phase was developed with all
female data in the first phase, and so was the initialized personal comfort model for each
male. Moreover, instead of interrupting occupants by asking them to respond to surveys in
the second phase, personal comfort models were updated with dynamic rule-based logics
by taking override actions into account after a certain period. The reason for rule-based
logics instead of machine learning algorithms was that it took a long time to get enough
data for retraining with machine learning algorithms since the override actions happened
infrequently. Figure 7 shows an example of updating the personal comfort model with the
rule-based control logics. The example assumes the indoor air temperature threshold t0
and skin temperature threshold tsk have been learnt from occupant override actions after a
certain period. As shown in the diagram, if the current indoor air temperature t, relative
humidity RH and skin temperature ts as well as the personal thermal comfort prediction
satisfy the conditions, the new prediction will override the original prediction. Otherwise,
the original prediction will be unchanged.

In addition, Wemo insight with an open source Wemo control package called Ouimeaux [36]
was used to control the desktop fan with the personal thermal sensation prediction wire-
lessly. Since thermal satisfaction models outperformed thermal sensation models in the first
phase, the mini-fan was controlled based on thermal sensation predictions in the second
phase. In addition, the fan was designed to be turned off when the sensation prediction
was negative (uncomfortably cool) or neutral, while being turned on when it was positive
(uncomfortably warm). However, users still had the right to override the control manually,
and the system recorded the overridden actuations. During both phases, the data from all
participants, including sensor data and plug status were stored in a remote server using an
open-source platform called ThingSpeak [37]. The proposed closed-loop task conditioning
system diagram used in the second phase is shown in Figure 8.
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2.3. Case Study

A case study with a total of 14 sessions was conducted in a 2.6 × 3.5 × 4.3 m3 office
room in Shanghai from July to August during the cooling season in the first phase. In
the office environment, an air-conditioner was operated when the space was occupied.
Moreover, the radiation effect on thermal comfort was avoided by using curtains to prevent
direct sunlight coming through windows. Meanwhile, a total of 9 healthy female and
11 healthy male participants aged from their twenties to forties attended the study. In the
first phase, for each session, 5 participants attended the study for at least a continuous
3 h. In the second phase, the experiment was conducted with a group of five participants
for a two-day comparative study at the end of August where the first day was to update
personal comfort models and the second day was to evaluate performances of updated
models. For each of the two days, the desktop fan was controlled every 10 min based on
the personal thermal sensation prediction at that time.

Figure 9a,b shows the real field study in an open plan office and the 3D visualization,
respectively. As shown in the figures, each participant is provided with a personalized
device while an air-conditioner is used to control the overall thermal environment. In
addition, the sensing system is facing towards the participant and the status of the desktop
fan is controlled by personal thermal comfort model outputs, which can be manually
overridden with the Wemo control interface. The proposed task conditioning system
realizes the automatic adjustments of the local thermal environment around each occupant
while still allowing the user to override the automatic actions from the controller.
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3. Result Analysis

3.1. Analysis between Objective Thermal Environment Conditions and Subjective
Thermal Comfort

Even if 20 participants attended the study in the first phase, some of them did not
have enough amount of data for training. Therefore, only 12 personal comfort models were
developed. Hence, throughout the field study, a total of 488 instances collected from female
subjects and a total of 770 instances collected from male subjects were used for developing
thermal models.

Figure 10a shows the distribution among neutral sensation and non-neutral sensation
votes where the x-axis refers to participant ID and the y-axis refers to the ratio of occurrences
of neutral and non-neutral sensation votes of each participant in the first phase. Moreover,
Figure 10b shows the distribution among satisfaction and dissatisfaction votes where the
x-axis refers to participant ID and the y-axis refers to the ratio of occurrences of satisfaction
and dissatisfaction for each participant in the first phase. As shown in the figure, among
all feedbacks from the first phase, the number of votes for non-neutral sensation is 28.7%
of that for neutral sensation on average. Similarly, the number of votes for dissatisfaction is



Technologies 2021, 9, 90 11 of 17

67.9% of that for satisfaction on average. This indicates that in a regular office environment,
it is more difficult to detect discomfort states than comfort states because of imbalanced data
distribution. Therefore, in order to realize more fine-grained thermal comfort management,
it is of great significance to operate localized and personalized control so as to further
reduce individual discomfort as much as possible.
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Moreover, Figure 11a–h shows the boxplots between thermal environment conditions
and thermal sensation and thermal satisfaction. Figure 11a,b shows the box plots of indoor
air temperature to thermal sensation of the female and male subjects. As shown in the
figures, both female and male subjects perceive warmth as the indoor air temperature
increases. Meanwhile, the air temperature is 29 ◦C when participants feel neutral, which
indicates it has potential to save energy consumption by increasing standard indoor air
temperature of 26 ◦C in such climate conditions [38].

Figure 11c,d shows the box plots of skin temperature to thermal sensation of the female
and male subjects. Unlike the relation between air temperature and thermal sensation,
the relation between skin temperature and thermal sensation of female subjects differs
from that of male subjects. As for female subjects, the median skin temperatures are 31.31,
31.11, 31.52 and 31 ◦C, respectively, which vary little among different thermal sensations
while for male subjects, the median skin temperatures are 31.47, 31.53, 32.22 and 32.88 ◦C,
which vary over 1 ◦C when thermal sensation is above 0. This indicates that female subjects
are more sensitive than male subjects. Moreover, since relative humidity was not strictly
controlled, the thermal sensation of participants is likely to be affected by skin moisture.

Figure 11e,f shows the box plots of indoor air temperature to thermal satisfaction of
the female and male subjects. As shown in the figures, the air temperature differences
among different thermal sensations of female subjects are much smaller than those of
male subjects. Moreover, compared to male subjects, the female subjects are more satisfied
under the thermal environment with higher air temperature than the male subjects. In
addition, considering thermal sensation distribution, the female subjects prefer a warm
environment while the male subjects prefer a cold environment, which indicates even if
thermal sensation is the precondition of thermal satisfaction [39], it may not be the same as
thermal satisfaction all the time.

Lastly, Figure 11g,h shows the box plots of skin temperature to thermal comfort of the
female and male subjects. The results also illustrate the female subjects are very satisfied
thermally with higher skin temperature while male subjects are very satisfied thermally
with lower skin temperature. Moreover, similarly to thermal sensation, thermal satisfaction
is also likely to be affected by skin moisture.
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3.2. Performances of Personal Comfort Models

Table 3 shows the performance benchmark of the personal thermal sensation and sat-
isfaction models with the recall score. As shown in the table, compared to baseline models,
the personal thermal sensation models and the thermal satisfaction models developed with
data of all female subjects outperform them by 2 and 3%, respectively. In addition, thermal
sensation models and thermal satisfaction models developed with data of all male subjects
have similar performances to the baseline models. However, performances vary from 61.5
to 100% among different individuals and the highest recall score improvement was 25% for
both sensation and satisfaction predictions.

Table 3. Performance benchmark of the thermal models with recall scores.

Gender Sensation Prediction
with Baseline Model

Sensation Prediction
with Proposed Model

Satisfaction Prediction
with Baseline Model

Satisfaction Prediction
with Proposed Model

All female 82.65% 84.7% 73.5% 76.5%
All male 87.0% 87.0% 81.2% 82.5%

F 93.0% 88.0% 83.0% 84.0%

F 90.9% 91.0% 63.6% 77.3%
F 84.6% 85.0% 84.6% 84.6%

F 50.0% 75.0% 50.0% 75.0%
F 61.5% 61.5% 84.6% 84.6%
M 92.3% 94.9% 82.1% 82.0%
M 86.7% 90.0% 80.0% 87.0%

M 83.3% 83.3% 83.3% 83.3%
M 94.7% 94.7% 89.5% 90.0%
M 100.0% 100.0% 100.0% 100.0%
M 100.0% 100.0% 100.0% 100.0%
M 61.5% 61.5% 46.1% 46.1%

Moreover, among all personal comfort models for female subjects, 80% of thermal
sensation models and 100% of thermal satisfaction models with the proposed features
have no worse performances than those with baseline features, respectively. Meanwhile,
for male subjects, all thermal sensation and thermal satisfaction models with proposed
features have no worse performances than those with baseline features. Therefore, personal
comfort models with air temperature, skin temperature and relative humidity outperform
those with air temperature only. Moreover, compared to thermal satisfaction predictions,
11 out of 12 subjects have better performances in thermal sensation predictions. Therefore,
personal thermal sensation models were applied into task conditioning system control for
each participant.

Moreover, Figure 12 shows the comparison regarding the proportion of the override
actions among all actuations between the two days in the second phase. Since both experi-
ments were conducted under the same outdoor climates with same type of air-conditioner,
the override actions can be used to indicate if fans make occupants thermally comfortable.
As shown in the figure, 60% of the subjects have fewer override actions with the updated
thermal sensation models than the initialized personal comfort models. Moreover, those
participants providing override actions on the first day achieved a reduction of 11–27%
based on override actions. This indicates that the rule-based updating mechanism does
help improve the performances of personal comfort models.
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4. Discussion

In order to improve personal thermal comfort level, this study has developed a task
conditioning system featuring personal comfort models with machine learning and a non-
intrusive sensing system in a shared office room. In addition, compared to expensive IR
cameras, this study has proposed a cost-effective sensing system consisting of an infrared
temperature array called AMG8833 as well as an air temperature and relative humidity
sensor called DHT22 to develop personal comfort models, including personal thermal
sensation and personal thermal satisfaction predictions with machine learning algorithms.
Moreover, personal comfort models were further updated with the feedback mechanism
by collecting the override actions of the desktop fans by users.

One of the advantages of the proposed approach is the wireless sensing system. The
current sensing system for personal comfort prediction consists of a temperature and
humidity sensor called DHT22 and infrared temperature sensor called AMG8833. With
such non-intrusive sensing systems, occupants no longer need to wear any devices to
measure skin temperature. Moreover, compared to wearable devices, the proposed sensing
system consists of indoor air temperature, indoor relative humidity and an IR sensor. Hence,
only temperature, relative humidity and the mean of highest nine radiative temperatures
from an IR sensor are collected. Therefore, there is no privacy issue since the system will
not conduct applications such as face recognition with RGB cameras or wearable devices
such as smart watches. Besides, compared to existing non-intrusive skin temperature
measurement methods such as Lepton 2.5 [18] or MLX90614 [12], the proposed AMG883 is
more cost-effective with acceptable resolutions.

In addition, as one of the key components in the system, the personal comfort model
is proposed and evaluated for real-time task conditioning control. Hence, the second
advantage of the proposed system is that of an automatic task conditioning system, and the
task-ambient system could be optimized by maximizing energy savings while maintaining
individual thermal comfort. As shown in the results, even if the recall scores of the initial-
ized comfort models developed with data from all female subjects or all male subjects are
above 80%, the performances of personal comfort models developed with individual data
vary a lot among different individuals. This is not only because of individual differences
but also because the amount of data from some individuals is not sufficient enough to train
personal comfort models. Therefore, an initialized personal comfort model with a large
amount of data from various occupants is a good start point and the individual thermal
models can be updated continuously via the interactions with the personalized cooling
system in real-time. In addition, with the rule-based updating mechanism to improve
performances of personal thermal comfort models, the results have shown that with more
override actions from occupants, the personal comfort predictions indeed improve.
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However, there still exists some limitations to be improved. For instance, the current
experimental testbed consists of only a split air-conditioner in a thermal zone and occupants
can interact with personal fans with only on/off operations. Moreover, since the current
task conditioning system is only for temperature set-point control, the benefits of thermal
comfort are limited. Therefore, with more options for personal comfort control of the task
conditioning system, the proposed framework can also be able to be implemented in more
complex HVAC systems such as variable refrigerant volume (VRV) or variable air volume
(VAV) systems.

5. Conclusions

This study aims to develop a dynamic task conditioning system controlled with per-
sonal comfort models with SVM featuring a non-intrusive sensing technique in a shared
office room. The sensing system consists of the infrared temperature sensor, indoor air
temperature sensor and indoor relative humidity sensor. In addition, this study also evalu-
ates the feedback collection mechanism to calibrate personal comfort models by observing
interactions between the task conditioning system (the desktop fan) and occupants instead
of interrupting occupants with surveys. As a result, the performances of personal comfort
models with features consisting of indoor air temperature, relative humidity and cheek
skin temperature were better than those with baseline features consisting of indoor air
temperature only. Moreover, the performances of thermal sensation models were better
than satisfaction models. The study contributes to the development of the dynamic task
conditioning system to maximize energy performances while maintaining individual ther-
mal comfort in the regular shared office space. In the future, the proposed task conditioning
system shall be developed with a more intelligent control algorithm with personal ther-
mal comfort models for thermal comfort management. Moreover, in order to evaluate
the proposed automatic task conditioning system more comprehensively, besides field
studies, more detailed studies shall be conducted with computational fluid dynamic (CFD)
simulations as well as building energy simulations.
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