
technologies

Article

Incremental Lagrangian Relaxation Based Discrete Gate Sizing
and Threshold Voltage Assignment †

Dimitrios Mangiras * and Giorgos Dimitrakopoulos *

����������
�������

Citation: Mangiras, D.;

Dimitrakopoulos, G. Incremental

Lagrangian Relaxation Based Discrete

Gate Sizing and Threshold Voltage

Assignment. Technologies 2021, 9, 92.

https://doi.org/10.3390/

technologies9040092

Academic Editors: Spiros Nikolaidis

and Rodrigo Picos

Received: 3 November 2021

Accepted: 24 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
* Correspondence: dmangira@ee.duth.gr (D.M.); dimitrak@ee.duth.gr (G.D.)
† This paper is an extended version of our paper published in 10th International Conference on Modern Circuits

and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021.

Abstract: Timing closure remains one of the most critical challenges of a physical synthesis flow,
especially when the design operates under multiple operating conditions. Even if timing is almost
closed at the end of the flow, last-mile placement and routing congestion optimizations may introduce
new timing violations. Correcting such violations needs minimally disruptive techniques such as
threshold voltage reassignment and gate sizing that affect only marginally the placement and routing
of the almost finalized design. To this end, we transform a powerful Lagrangian-relaxation-based
optimizer, used for global timing optimization early in the design flow, into a practical incremental
timing optimizer that corrects small timing violations with fast runtime and without increasing the
area/power of the design. The proposed approach was applied to already optimized designs of
the ISPD 2013 benchmarks assuming that they experience new timing violations due to local wire
rerouting. Experimental results show that in single corner designs, timing is improved by more
than 36% on average, using 45% less runtime. Correspondingly, in a multicorner context, timing is
improved by 39% when compared to the fully-fledged version of the timing optimizer.

Keywords: incremental power and timing optimization; Lagrangian relaxation; gate sizing; multi-
mode multicorner; physical optimization

1. Introduction

Physical synthesis refers to the process of placing and routing the logic netlist of a
design, while concurrently optimizing for multiple objectives given a set of area, power,
timing, and routability constraints [1]. To achieve these goals, besides the main physical
synthesis steps, we need several incremental optimizers for logic restructuring (addition,
removal of logic cells) and logic tuning (selecting for each gate an appropriate size and
threshold voltage from a discrete set of library cells). Considering that chip designs
usually operate under many different operating conditions (e.g., different temperatures
and voltages) with different electrical properties, the timing constraints of more than one
mode/corner should be satisfied simultaneously [2,3]. Trying to remove a timing violation
from one timing scenario could easily create a new violation in another. This behavior of
the multimode multicorner (MMMC) timing analysis, makes the physical process even
more challenging.

At the end of the design flow, the design should satisfy all timing constraints of all
the timing scenarios and be free of any design rule violations such as maximum allowed
capacitance and transition time. Large timing and design rule violations are analyzed and
removed at the first steps of the design flow using efficient global optimization engines [4].
Still, a small set of remaining violations always exist close to the end of the flow. Repairing
such violations requires incremental operations that are nondisruptive and execute as fast
as possible. For instance, after routing, we do not want cells’ placement to change for
improving timing, since this would cause rerouting a large part of the design thus possibly
introducing new violations.

Technologies 2021, 9, 92. https://doi.org/10.3390/technologies9040092 https://www.mdpi.com/journal/technologies

https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-3688-7865
https://doi.org/10.3390/technologies9040092
https://doi.org/10.3390/technologies9040092
https://doi.org/10.3390/technologies9040092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/technologies9040092
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies9040092?type=check_update&version=1

Technologies 2021, 9, 92 2 of 17

The problem becomes harder to solve when considering that the introduced timing
violations may involve multiple corners that may need significantly different actions to
remove them.

The least disruptive operations for improving design’s characteristics during physical
synthesis involve threshold voltage (VT) reassignment and gate sizing [4,5]. VT reassign-
ment tradeoffs smaller delay with increased leakage power and does not perturb routing
nor it requires a new parasitics extraction after the change. Gate resizing, even if not as
simple as VT reassignment, is still considered a fairly noninvasive operation. In the worst
case, increasing cell’s size (possibly avoiding exceedingly large changes) may require an
additional local legalization step [6,7] and local rerouting of certain nets [8].

Inserting buffers is still an option at this step [9–11]. However, buffer insertion may
ruin local placement and routing, which may be hard to fix later in highly congested
designs. Other highly powerful optimization steps such as useful clock skewing are also
considered hard to apply at the end of the flow, unless there is no other practical way to
solve the remaining timing violations [10,12,13].

Gate sizing and VT assignment algorithms have a long history in physical synthesis
flows. Initial works assumed continuous sizes for the gates [14] but these approaches had
delay inaccuracies compared to that of the real discrete gate sizes [15]. Coudert et al. [16]
was from the first ones that proposed a gate sizing method that handles such discrete sizes.
Many different methods were studied to solve the size selection problem effectively. For
example, linear programming (LP) was used widely in the literature [17–20]. Simulated
annealing was also used to solve the gate sizing problem because it can be applied on
circuits containing million gates [21]. Daboul et al. [22] used the formulation of resource
sharing to select gate sizes. Other approaches proposed to apply dynamic programming
(DP) [23–26]. Alternative works use sensitivity functions, and from the available sizes, select
the size that maximizes the power reduction with the minimal timing degradation [27,28].
Some of these works were extended to handle multiple timing corners and scenarios for
more realistic designs [3,29]; even machine learning was used for gate sizing. The latest
work of [30] uses deep reinforcement learning to change the sizes and shows high-quality
final results.

Among the large set of available solutions, those that rely on Lagrangian Relaxation
(LR) achieve significantly better result [15,31–35]. However, when applied incrementally
they need many iterations to converge even if the number of timing violators is small.
Most LR-based sizers assume that they are allowed to initialize every cell of the design to a
chosen initial state, e.g., initialize all cells to their minimum size [36], before beginning the
optimization. This design disruption may seem reasonable at the early steps of the flow
but is not allowed close to the the end.

In this work, we propose a novel initialization strategy for multicorner LR-based
timing/power optimizers across multiple operating conditions that combines two useful
benefits: on one hand, we enjoy the optimization efficiency of an LR-based gate sizer and
on the other hand we enjoy fast runtimes and true incremental operation, i.e., the optimized
design is only marginally different from the original design, but with the timing violations
of multiple corners repaired.

The proposed approach was compared to a fully-fledged LR-based gate sizer on
optimized versions of the benchmarks of the ISPD2013 contest [37] across single and
multiple corners by enhancing the work in [38]. The used benchmarks experience small
timing violations due to local changes of their routed wires. In both single and multicorner
cases, the proposed initialization strategy successfully optimizes the timing with reduced
runtime. Each design has 37% better timing performance on average with reduced leakage
power and the runtime is reduced by more than 43% on average, since it simplifies the
convergence of the algorithm.

Technologies 2021, 9, 92 3 of 17

2. Basics of LR-Based Gate Sizing

A timing-driven optimizer tries to minimize the power (or area) of the design given a
set of timing constraints.

minimize ∑
i

leakagei (1)

subject to ai + dij ≤ aj ∀ i→ j

ak ≤ rk ∀ endpoints k

Variable ai denotes the arrival time at the output pin of cell i while di,j is the sum of
wire and cell delay of the timing arc i→ j which is defined from the output pin of the gate
i to the output pin of the gate j. Figure 1 depicts the delays involved in the computation of
dij for different cases. For combinational gates in the middle of a logic netlist, as shown in
Figure 1a, dij is the summation of the wire delay and the gate delay from output of gate i to
the output pin of gate j.

Pin j may represent also a timing endpoint. Timing endpoints can be the primary
outputs (POs) of a design or the inputs of flip-flops. When pin j belongs to the set of
primary outputs (POs), as highlighted in Figure 1b, delay dij is equal to the wire delay
connecting the output pin of driver i and primary output j. Similarly, when pin j is a
flip-flop input, shown in Figure 1c, delay dij involves only the wire delay from driver i to
the input D-pin of the flip-flop j. Parameter rk is the required arrival time at any timing
endpoint k [39].

wire delay gate delay

PO

wire delay

D Q

wire delay

(a) (b) (c)

Figure 1. Definition of arrival times ai, aj and delay di,j for (a) combinational gates, (b) primary outputs and (c) flip-flops.

Associating the constraint for each timing arc with a non-negative Lagrange Multiplier
(LM) λij, that acts as a penalty factor when the respective constraint gets violated, and
computing the KKT optimality conditions [15,40,41], allows us to simplify the constrained
minimization problem (1) to the equivalent unconstrained minimization problem (2).

minimize ∑
i

leakagei + ∑
i→j

λijdij (2)

The KKT optimality conditions with respect to the values of LMs impose that Equa-
tion (3) should hold during optimization for all pins of the design

∑
i→j

λij = ∑
j→k

λjk (3)

For the example shown in Figure 2, Equation (3) for gate 6 implies that λ36 + λ46 =
λ67 + λ68.

Technologies 2021, 9, 92 4 of 17

2

3

6

4

5
1

7

8

Figure 2. Example design to show which LMs are considered in computation of local cost and to
present LM equalities to preserve optimality KKT conditions, which imply that sum of input LMs
must be equal to sum of output LMs. Thus, for highlighted gate 6, LMs λ13, λ23, λ24, λ35, λ36, λ46, λ67

and λ68 multiplied with their corresponding delays will form local cost. For LM propagation, for
gate 6, we should guarantee that λ36 + λ46 = λ67 + λ68.

State-of-the-art LR-based optimizers [15,31–34] try to minimize the global cost func-
tion (2) using many iterations of local gate resizing and VT reassignment steps. The overall
optimization flow is depicted in Figure 3.

Initial Design

Initial Sizing

LM Initialization

Find Critical Corner

Yes
No

Final Design

Converge?

Timing Recovery

Power Recovery

Gate Sizing

LR-based

Timing Update
Incremental

R
e

c
o

v
e

ry
S

te
p

s
L

R
 o

p
tim

iz
a

tio
n

LM Update &
LM Propagation

Figure 3. Overall LR-based gate sizing optimization flow.

Initially, all gates are downsized to their least leakage power option (lowest size and
highest VT) [36,42] that does not violate any design rule constraint. Solving design-rule
violations early, simplifies the following local logic tuning steps. In the following, all LMs
are set to a starting value, usually to 1, and the main LR optimization loop starts. Each
iteration of LR-based gate sizing begins with a full incremental timing update and then
evolves in two phases. In the first phase, the LMs are updated and propagated to all gates
to reflect the new criticality of the corresponding timing arcs. In the second phase, for each
gate, examined in topological order, all possible discrete cell sizes and threshold voltages
are tried, assuming constant LMs. The new version selected for the resized gate is the one
that minimizes the cost function (2) and does not introduce any design-rule violations.

At each iteration, a full incremental timing update on all examined corners is needed
to reflect the new timing violations. From all the available corners, the most critical corner
is identified [10] for the current iteration. When there aren’t any timing violations in any
corner, we name critical the timing corner that gives the lowest total slack.

Technologies 2021, 9, 92 5 of 17

With the new timing information updated, the LMs should be updated too. The update
may take different forms and can be either additive (λnew =γ + δλold) or multiplicative
(λnew = γλold) [43]. Following the proposal of [31] we use a multiplicative LM update
depicted in (4):

λij =λij

(
1 +

aj − rj

T

)1/M
∀ timing arc i→ j with aj ≥ rj

λij =λij

(
1 +

rj − aj

T

)−M
∀ timing arc i→ j with aj < rj

(4)

Once the LMs were updated, LMs must be propagated from output to input following
a reverse topological order. In this way, the timing criticality measured at the timing end-
points should be transferred gradually to the internals gates of the design. LM propagation
updates the LM values of internal timing arcs while still respecting KKT conditions (3).

The value of each LM reflects the timing criticality of each timing arc. LMs increase
fast for critical timing arcs and reduce for noncritical timing arcs to favor power reduction.
Implicitly, LMs keep also historic information (for the lifetime of an optimization run) with
respect to the criticality of each timing arc. If a timing arc remained critical for multiple
iterations it is still assumed critical by keeping a high value of LM, even if the slack at its
output becomes positive in a certain iteration. In this way, drastic oscillations between
critical and noncritical timing arcs are avoided and the optimization evolves smoothly
reducing power while satisfying timing constraints.

Later on, and assuming constant LMs, all gates are visited in topological order and
for each gate the best size is selected using the same procedure described in Algorithm 1.
Firstly, the initial size of the gate is stored and then, each equivalent size of the gate
is tried. If the new tried size violates any design rule constraint, this size is rejected.
Otherwise, the timing is updated locally, recomputing the new delays and slews of all nets
that the examined gate is connected to. To avoid timing degradation, sizes that violate
timing constraints are also rejected. If not, the local cost is calculated as the summation
of the leakage power of the new size and the neighbor arc delays multiplied by their
corresponding LMs.

In the local cost, only the arcs whose delay may have changed are included. These are
the arcs of the immediate fanin and fanout cells of the examined gate and the arcs of cells
driven by the gates fanin cells. Referring to Figure 2, changing the size of the highlighted
gate 6, the local cost consists of the arcs of its immediate fanin cells (1→ 3, 2→ 3, 2→ 4),
its immediate fanout cells (6→ 7, 6→ 8) and the arcs of gates driven by the fanin cells of
gate 6 (3→ 5, 3→ 6, 4→ 6). After trying all the equivalent sizes, the size that minimizes
the local cost is selected.

The iterative optimization flow stops when the maximum number of iterations is
reached or when the Total Negative Slack (TNS) and total leakage power are assumed
unchanged. Some timing violations may still remain, if the gate sizing exchanged some
marginally positive slack to further reduce the power. The timing recovery step that follows
will solve these violations resizing only specific gates that affect many timing endpoints.
For these gates, only the next bigger size is tried and full incremental timing update is
performed. Once the timing is closed, the final power recovery step will try to save leakage
power without creating new timing violations. Again, each gate is resized only to its either
next smaller size or exact higher VT and an incremental timing update is performed after
each try, to have the accurate timing information.

Technologies 2021, 9, 92 6 of 17

Algorithm 1: Find best size for gate g.

1 min_cost← inf ;
2 best_size← size(g) ;
3 foreach equivalent size s of g do
4 resize g to s ;
5 if violates_Design_Rule_Constraint(g) then
6 skip s ;
7 end
8 update_timing_locally(g) ;
9 if timing_degradation_around(g) then

10 skip s ;
11 end

// Using Equation (2)
12 cost← leakageg + ∑i→j around g λijdij ;
13 if (cost < min_cost) then
14 min_cost← cost;
15 best_size← s;
16 end
17 end
18 resize g to best_size ;
19 update_timing_locally(g) ;

3. Incremental LR-Based Gate Sizing

The overall effectiveness of an LM-based gate sizer is the combined result of the
initialization of gate sizes, the strength of the local optimization, and the appropriate
update of LMs.

Initializing all cells to their minimum size simplifies the removal of any design rule
violations and also may alleviate the design from timing violations because some gates
are faster due to the less output load. After initialization, the total leakage power in cost
function (2) assumes its minimum value. Thus, the sum of λij dij products determine
which cell should be selected for each gate. This conclusion holds even if leakage and
delay participate normalized to the cost function. Increasing fast the LMs of critical timing
arcs guides the optimization to reduce their corresponding delay to minimize their λij dij
product. As long as timing constraints are not satisfied, LMs keep increasing thus leading
to cells with improved delay.

3.1. What Is the Problem?

In an incremental optimization scenario, which is the focus of this work, the first step
of the state-of-the-art LR-based gate sizing flow as depicted in Figure 3 cannot be applied.
Since the design is almost finalized, the gate sizer is not allowed to “reset” the state of
the design and initialize every gate to its minimum size. Therefore, since all gates keep
their already decided size the sum of leakage power in (2) may possibly dominate the cost
function. The LMs that fit to this occasion are unknown and initializing all of them to an a
priori value, e.g., 1, may not be the best choice.

Inevitably, at the first iterations of LR-based gate sizing, lower power cells would
be preferred for each gate since they would minimize local cost at the expense of timing.
Once timing would starting getting much worse and the corresponding LMs start to
take higher values, only then the λijdij products would favor the selection of the delay-
optimal cells. Due to improper initialization, state-of-the-art LR-based gate sizers exhibit a
counterproductive behavior. The less timing critical is the initial state of the design, the
more time an LR-based gate sizer would need to optimize it, when resetting the state of the
design is not allowed.

To highlight this behavior, we performed an experiment using the pci_bridge32_fast
design of the ISPD13 benchmark set. Figure 4 depicts the evolution of the design’s Total

Technologies 2021, 9, 92 7 of 17

Negative Slack (TNS) during LR-based gate sizing for three different cases. When the
design suffers from many timing violations (case A), the LR-based gate sizer is able to find
fast the way to improve timing, leading to almost closed timing after the first six iterations.
The remaining iterations are used to improve leakage power without degrading timing in
the meantime.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
N

S
 (

n
s
)

Iterations

case A

case B

case C

Figure 4. Evolution of TNS on each iteration of a LR-based gate sizer for three cases of the same
design. In case A, design is not optimized. In cases B and C, it is partially optimized, thus exhibiting
initially less TNS.

On the other hand, if the design had initially less TNS (case B), LR-based gate sizer
prefers to improve power by degrading timing in the first six iterations before it starts
solving timing violations and achieving timing closure in iteration eleven. Similarly, if
LR-based gate sizing is applied on an already optimized design with only few timing
violations (case C), it will first convert many nontiming critical paths to critical before
actually reducing TNS to almost zero.

Regardless of the initial TNS, LR-based gate sizing is powerful enough to solve all
timing violations. However, due to improper initialization, it fails to do this fast in cases
that it should have. Therefore, for the case of partially optimized designs with a small set
of timing violations, like case C of Figure 4, we need to derive an incremental version of
the LR-based gate sizer that would achieve high quality-of-results and fast convergence.

3.2. What Can We Do about It?

To improve the applicability of the LR-based discrete gate sizer in an incremental
optimization context, we propose an efficient method for initializing the values of the LMs
so that the value of each LM is adaptive to the initial design state. In this way, the LMs
are not set to an a priori chosen value but the values of the LMs would reflect the proper
timing criticality of each gate relative to its already selected size, as seen near the end of the
physical synthesis flow. The proposed approach is nonintrusive, since it deals only with
the initialization of the LMs, and can be used with any LR-based gate sizer [15,31,32].

Determining the initial values of the LMs should not be based solely on the criticality
of the corresponding timing arcs. Assume, for instance, that the design contains a very large
gate that contributes a lot to its leakage power and currently has zero timing violations. In
fact, we may assume that its output pin has a small positive slack. If we assign to this gate a
small initial LM due to its positive slack, we would lead the optimizer to downsize it in the
first iterations to save power. This choice may seem reasonable but it fails to answer one
critical question: why this gate has not been downsized earlier by the multiple optimization
steps that preceded? The most probable answer is that this gate originally belonged to a set
of critical timing paths. Optimizing those paths in the first steps of the flow, resulted in

Technologies 2021, 9, 92 8 of 17

selecting for this gate a fast (with small delay) but large cell. Thus, any trial to reduce its
size at the end of the flow would directly translate to new timing violations.

Based on this intuition, we choose to initialize the LMs following a balanced approach.
We assign increased LMs to timing arcs that are either critical at the moment or belong
to high-power cells assuming that those cells may were timing critical in the past. This
approach may lead to a temporary power overhead to cells that are indeed not critical but
remained large for the wrong reasons (e.g., a previously applied optimization skipped
them to save runtime). However, the first iterations of LR-based gate sizer would identify
this by gradually reducing their corresponding LMs thus turning them to good candidates
for power reduction.

The initial value for the LM of timing arc i→ j is set to:

λij =

(
ai + dij

aj

P(g)
min P(g)

)K

∀ arc i→ j of gate g (5)

Gate g refers to the gate where the timing arc i → j belongs. The starting value for
each LM is the product of two ratios. The first ratio reveals the timing criticality of the arc
i→ j. If the corresponding timing arc is responsible for the late arrival time at the output
pin of gate j, the sum of ai and the delay di,j will be equal to aj thus setting the ratio to 1. In
any other case, aj will be greater than the numerator and thus the ratio will result to a value
less than 1 signifying the non criticality of the arc. The second ratio describes how much
more power the current version of the cell spends P(g) relative to the minimum possible
leakage power that it can spend using any compatible library cell for gate g. Overall, when
timing critical arcs are coupled with high power cells will get much greater LM values.
The exponent K helps to make faster the assigned LMs’ values, and we empirically set it to
K = 2.

Similarly, for the LMs that correspond to the timing arcs i→ k, where k is a timing end-
point:

λik =

(
ak
rk

∑gates P(g)

∑gates min P(g)

)K

∀ timing endpoint k (6)

If the signal arrives at the timing endpoint k earlier than its required time rk, i.e.,
ak < rk, signaling that there is no timing violation, the first ratio will result in a value less
than one. On the contrary, in cases that late timing is violated, with ak > rk, the first ratio
will be as big as the actual violation. For the power ratio in the case of timing endpoints,
we suggest that it should consider the design as a whole. For this reason, the power ratio
that is multiplied to the the timing ratio, divides the current total leakage power of the
design relative to the minimum leakage power that the design can achieve after replacing
each gate with a minimum leakage power cell. This ratio actually quantifies how far the
design is from its virtually minimum leakage power.

Once the LMs were initialized, they need to be scaled to respect the KKT conditions as
described in (3). Following (3) the sum of LMs of the output timing arcs of a gate should
be equal to the timing arcs at its input. For instance, for the gate 6 shown in Figure 2, we
should guarantee that λ67 + λ68 = λ36 + λ46.

To achieve this, each one of the input LMs λ36 and λ46 receive a percentage of the
sum of output LMs λ67 + λ68. How much of the sum of output LMs would flow to each
input LM is determined by the initial values λinit

36 and λinit
46 of timing arcs 3→ 6 and 4→ 6,

respectively.

λ36 =
λinit

36

λinit
36 + λinit

46
(λ67 + λ68) λ46 =

λinit
46

λinit
36 + λinit

46
(λ67 + λ68) (7)

Technologies 2021, 9, 92 9 of 17

The initial values of λinit
36 and λinit

46 are derived using Equation (5). When all gates were
visited in reverse topological order and the LMs of the timing endpoints are propagated
internally, the optimization can start.

4. Results

The proposed method was implemented in C++ inside the open-source RSyn physical
design framework [44] after extending it for multicorner timing analysis. The evaluation
involves already optimized benchmarks with only few timing violations. For this purpose,
we used the fully optimized versions of the benchmarks of the ISPD 2013 gate sizing
contest [37]. Those designs exhibit closed timing and minimized leakage power. To intro-
duce additional timing violations, we randomly changed the resistance and capacitance
of each net by ±10%, thus mimicking local rerouting operation at the end of the physical
synthesis flow.

Our approach is experimentally validated using the benchmarks of the ISPD 2013 gate
sizing contest considering a single and a multiple-corner scenario. For the case of multiple
corners, we created two artificial (but realistic) timing libraries representing the fast (timing
derate 1.05) and the slow version (timing derate 0.95) of the main typical library used in
the single-corner case. Each cell in timing library has 10 sizes available at 3 Vth, with a
total of 30 sizes per cell.

4.1. Quality-of-Results and Runtime Comparisons

Initially, we report the quality-of-results achieved for the proposed method (New)
relative a state-of-the-art LR-gate sizer [31] (called Base) without allowing it to reset the
state of the design. In other words, the optimization flow is the same as depicted in
Figure 3 without performing the initial sizing step. Both cases actually utilize the same
LR-based gate sizer. Their only difference is on how they initialize the value of the LMs.
The obtained results are shown in Table 1 for single corner designs and in Table 2 for
multicorner designs. Columns initially correspond to the design produced after randomly
perturbing the resistance and capacitance of the wires. In all cases, the optimization stops
if the improvement in terms of timing and leakage power across two iterations is less than
1%. Tables 1 and 2 report the late Worst Negative Slack (WNS), the late TNS and the total
leakage power of each design under single and multiple corners, respectively. The final
reported timing results are validated by OpenTimer [45]. ISPD2013 benchmarks do not
exhibit early timing violations, and thus, early timing information is omitted.

The first noticeable result is that “New” offers better timing results than “Base” in the
majority of the designs. With the proposed LM initialization, WNS is further decreased by
24% on average, while TNS is improved by more than 36% on average compared to the
corresponding results of “Base” with only one corner. In multicorner designs, “New” helps
improve WNS by a further 27% on average, while TNS improves by more 39%. In these
cases, when timing slack reported is zero it means that timing constraints are satisfied in
all corners. In all other cases, timing refers to the negative slack of the most critical corner.

“New” also achieves slightly better leakage power than “Base”. For fair comparison,
we take into account only the leakage power savings from designs where both the “Base”
and the “New” flow succeeded to resolve all timing violations. In those cases, in single
corner designs “New” is 2% better on average, and 1% better on average in multicorner
designs. The reason for choosing only the timing closed designs is that whenever there
are timing violations, the design’s power is lower than the power of the design with
closed timing.

Figure 5 compares the two approaches in terms of runtime when the designs have
one corner. All experiments were performed on the same Linux-based workstation using a
3.6 GHz Intel Core i7-4790 with four cores and 32 GB of RAM. “New” is able to save up to
45% of runtime on average achieving also better quality-of-results. In terms of absolute
runtime, the single corner “Base” finishes optimizing all designs in 9 h, while the proposed

Technologies 2021, 9, 92 10 of 17

flow needs 5 h for the same task. The runtime of “Base” and “New” methods for designs
usb_phy (slow and fast) is similar due to their small size of the designs.

Table 1. Timing and leakage power of all designs under single corner initially (Init) and at end of incremental LR-based
sizer without (Base) and with (New) proposed LM initialization.

Design #Cells

Single Corner

Late WNS (ps) Late TNS (ps) Leakage (mW)

Init Base New Init Base New Init Base New

usb_phy_slow 623 −1.53 0.00 0.00 −1.53 0.00 0.00 1 1 1
usb_phy_fast −0.61 0.00 0.00 −0.61 0.00 0.00 2 2 2

pci_bridge32_slow 30,763 −11.21 0.00 0.00 −333.10 0.00 0.00 58 58 58
pci_bridge32_fast −16.66 −0.44 0.00 −614.66 −0.96 0.00 98 97 100

fft_slow 33,792 −16.35 0.00 0.00 −320.92 0.00 0.00 88 88 87
fft_fast −18.18 −6.58 −1.88 −234.28 −63.37 −4.25 217 228 228

cordic_slow 42,937 −13.99 −14.43 −1.24 −801.84 −116.70 −2.11 306 349 309
cordic_fast −13.26 −4.26 −6.94 −752.72 −30.00 −31.40 1139 1142 933

des_perf_slow 113,346 −30.40 −1.88 0.00 −11,920.00 −5.26 0.00 449 410 420
des_perf_fast −25.80 −3.51 −4.10 −11,412.20 −49.94 −8.69 609 522 556

edit_dist_slow 129,227 −54.44 0.00 0.00 −21,881.50 0.00 0.00 452 447 445
edit_dist_fast −63.59 −3.34 0.00 −36,639.50 −15.16 0.00 624 630 610

matrix_mult_slow 159,642 −44.00 0.00 0.00 −3292.93 0.00 0.00 481 487 476
matrix_mult_fast −33.07 0.00 0.00 −2694.75 0.00 0.00 1056 1230 1020

netcard_slow 984,094 −30.19 0.00 0.00 −1477.58 0.00 0.00 5160 5101 5102
netcard_fast −28.97 0.00 0.00 −6394.27 0.00 0.00 5203 5144 5141

Average −25.14 −2.15 −0.89 −6173.27 −17.59 −2.90 996 996 968

Table 2. Timing and leakage power of all designs under multiple corners initially nd at end of incremental LR−based sizer
without (Base) and with (New) proposed LM initialization.

Design

Multiple Corners

Late WNS (ps) Late TNS (ps) Leakage (mW)

Init Base New Init Base New Init Base New

usb_phy_slow −0.03 0.00 0.00 −0.03 0.00 0.00 1 1 1
usb_phy_fast −6.38 −4.99 0.00 −14.39 −8.57 0.00 3 2 3

pci_bridge32_slow −14.76 0.00 0.00 −485.44 0.00 0.00 60 59 59
pci_bridge32_fast −21.40 −4.25 0.00 −280.77 −14.78 0.00 194 151 153

fft_slow −10.74 −0.14 0.00 −194.37 −0.27 0.00 96 97 98
fft_fast −8.21 0.00 0.00 −449.16 0.00 0.00 356 426 391

cordic_slow −24.57 −0.68 −2.06 −1000.51 −1.09 −2.06 518 561 527
cordic_fast −122.26 −92.07 −66.50 −5412.47 −2954.33 −1710.28 2604 3189 3220

des_perf_slow −34.07 −29.24 −14.08 −11,391.80 −42.13 −26.27 723 704 715
des_perf_fast −77.49 −46.25 −33.07 −19,884.50 −737.60 −216.15 1272 926 1038

edit_dist_slow −67.66 0.00 0.00 −36,892.70 0.00 0.00 477 473 471
edit_dist_fast −68.96 −11.22 0.00 −39,745.10 −77.41 0.00 766 791 754

matrix_mult_slow −43.79 0.00 0.00 −3254.51 0.00 0.00 576 591 574
matrix_mult_fast −36.16 −45.23 −33.02 −3243.41 −107.50 −41.07 1876 2357 2302

netcard_slow −42.25 0.00 0.00 −2251.09 0.00 0.00 5163 5105 5105
netcard_fast −28.96 −1.23 0.00 −10,606.80 −2.34 0.00 5245 5187 5183

Average −37.98 −14.71 −9.3 −8444.19 −246.63 −124.74 1246 1289 1287

Technologies 2021, 9, 92 11 of 17

Similarly, Figure 6, reveals the runtime savings of the proposed approach in a multi-
corner timing scenario. The runtime of “New” is by 42% on average less than the average
runtime of “Base”. Multi-corner “Base” finishes optimizing all designs in 12 h. When the
proposed initialization method is used, the total execution time is reduced to 6hrs. The
overall increased execution time of multicorner optimization relative to the single corner
scenario is due to the increased runtime of performing timing analysis on all corners.

slow fast

usb_phy

slow fast slow fast slow fast slow fast slow fast slow fast

pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast

Base New

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Figure 5. Runtime of both methods under comparison for all benchmarks when considering only
one corner. Runtime is normalized to runtime of “Base” run. In all cases, “New” allows faster
convergence saving up to 45% execution time on average in single corner benchmarks.

slow fast

usb_phy

slow fast slow fast slow fast slow fast slow fast slow fast

pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast

Base New

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Figure 6. Runtime of both methods under comparison for all benchmarks when considering mul-
tiple corners. Runtime is normalized to runtime of “Base” run. In all cases, “New” allows faster
convergence saving up to 42% on average with multiple corners.

4.2. Exploring in Depth the Proposed LM Initialization

Additional experimental results reveal that the way the LMs are initialized is crucial
for the fast convergence and the overall timing QoR. Figure 7 compares the normalized
late TNS of fft_fast design with one corner for different exponents K of the proposed
Equations (5) and (6). As the value of exponent K increases, higher LMs are initialized
to the timing critical arcs of the design. This means that the timing improves faster with
better overall QoR. For all our experiments, we selected K = 2 because exponent values
above K = 2 does not improve any further the QoR.

To observe more clearly how the proposed LM initialization helps the convergence
of an LR-based gate sizer, we monitor the evolution of TNS across consecutive iterations
initializing the LMs to different values. For the des_perf_fast design, shown in Figure 8,
“Base” starts degrading the timing until iteration four where the TNS reaches 80 ns. From
this point, the actual optimization starts and the timing closure is achieved in iteration
ten. Applying the proposed Equations (5) and (6) (“New”), the optimizer starts reducing
the timing violations immediately without degrading the initial state of the design and
the timing constraints are met in iteration five. To further evaluate our work, we also
tried to initialize the LMs to different values where the starting value of each LM was
randomly selected (“Random”). In this case, the peak of the TNS is increased compared to
the “Base” run. More specifically, the TNS in iteration four is increased from 80 ns to 110 ns,

Technologies 2021, 9, 92 12 of 17

and thus, 3 more iterations were needed, compared to that of “Base”, to close the timing.
Finally, we tested the performance of the LR-based gate sizer adopting the initialization
method of work [31], in which the authors start all the LMs from 12. Even though this
modification could slightly decrease the highest value of the TNS (compared to “Base”),
the optimization showed slower convergence. The TNS improvement delayed to start
and the timing constraints were finally met after multiple iterations, in iteration 15. From
all the LM initialization trials, “New” showed the fastest convergence of all closing the
timing really soon. Similar results are obtained for all other designs. The proposed LM
initialization successfully “predicts” the value of the LM that fits better to the status of the
design, thus avoiding unnecessary power reductions at the first iterations that would hurt
timing initially and delay convergence later on.

0.2

0.4

0.6

0.8

1

N
o

r
m

a
li

z
e

d
 L

a
te

 T
N

S

0 1 2 3 4 5 6 7 8

Iterations

K = 1

K = 2

K = 3

K = 4

Figure 7. TNS comparison for different values of exponent K for LM initialization as proposed in
Equations (5) and (6) for representative design, fft_fast. Higher values of K increase LMs of critical
arcs leading to faster TNS improvement during optimization iterations. Beyond K = 2, there are not
sufficient savings.

To be certain for the quality-of-results of the proposed approach, we repeated the
same experiment for each benchmark 100 times. Each time, the methods under comparison
were applied on designs produced after perturbing randomly the wire parasitics of the
already optimized version of each benchmark. The histogram of TNS for the initial design,
and the ones produced after applying “Base” and “New” methods are depicted in Figure 9
for benchmark fft_fast, while similar results are obtained for all other benchmarks.

T
N

S
 (

n
s

)

0

20

40

60

80

100

120

Iterations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base

New

Random

Ref [31]

Figure 8. Progression of late TNS on des_perf_fast design using different LM initialization methods;
initializing LMs to 1 (Base), using proposed method (New), initializing each LM to a random value
(Random) and using initialization of [31] (Ref [31]).

Technologies 2021, 9, 92 13 of 17

5

10

15

20

25

Init Base New

2840 142 21371 106 24835 177

N
u

m
b

e
r

o
f

D
e
s

ig
n

s

TNS (ps)

0

Figure 9. Histogram of late TNS initially (Init) and at end of LR-based gate sizing without (Base)
and with (New) proposed LM initialization. Histograms correspond to 100 versions of fft_fast with
randomly perturbed RC characteristics.

TNS histograms reveal that both approaches successfully decreased the original TNS.
“Base” decreased the mean of initial TNS from 225 ps to 65 ps, while “New” managed to
compress the TNS histogram to the left side of the diagram, with the majority of samples
gathered close to 5 ps.

4.3. Optimization with a Restricted Number of Available Gate Sizes

For completeness, we evaluated both “Base” and “New” methods under comparison
in a more restrictive scenario. In this case, gate sizing is only allowed to resize cells only
to their next bigger or smaller size without limiting VT swapping options, since they do
not alter the physical layout. This restriction makes sense at the final steps of physical
design flow to preserve as much as possible the already defined detailed wire routes. The
obtained results of single corner and multicorner benchmarks are depicted in Table 3 and
in Table 4, respectively. Besides the restricted availability of gate sizes, “New” achieves
considerable improvements. In single corner designs, late WNS is improved by 36% on
average while the savings in TNS reach 39% on average, when compared to that of the
baseline single corner LR-based gate sizer. In terms of leakage power, the restricted “New”
method achieves less leakage power by 2% on average, when considering only the designs
without negative slack at both methods under comparison. For multiple corners, late
WNS is improved by 35% on average, while late TNS improves by 39% on average when
compared to the corresponding timing results of “Base”. Also “New” achieves slightly less
leakage power by 2% on average.

Table 3. Timing and leakage power of all designs under single corner with gate size selection
restriction without (Base) and with (New) proposed LM initialization.

Design

Single Corner

Late WNS (ps) Late TNS (ps) Leakage (mW)

Base New Base New Base New

usb_phy_slow 0.00 0.00 0.00 0.00 1 1
usb_phy_fast 0.00 0.00 0.00 0.00 2 2

pci_bridge32_slow 0.00 0.00 0.00 0.00 58 58
pci_bridge32_fast −1.65 0.00 −6.13 0.00 98 98

fft_slow 0.00 0.00 0.00 0.00 88 87
fft_fast −6.87 −1.01 −20.18 −2.24 224 221

cordic_slow −8.79 −2.96 −67.21 −2.96 378 310
cordic_fast −17.06 −2.73 −133.10 −4.81 1209 942

des_perf_slow −27.50 −1.40 −67.53 −4.52 480 464
des_perf_fast −14.41 −7.61 −47.42 −23.30 637 611

Technologies 2021, 9, 92 14 of 17

Table 3. Cont.

Design

Single Corner

Late WNS (ps) Late TNS (ps) Leakage (mW)

Base New Base New Base New

edit_dist_slow 0.00 0.00 0.00 0.00 450 449
edit_dist_fast −20.77 −1.95 −698.80 −2.16 623 619

matrix_mult_slow 0.00 0.00 0.00 0.00 478 479
matrix_mult_fast 0.00 0.00 0.00 0.00 1174 1020

netcard_slow 0.00 0.00 0.00 0.00 5152 5153
netcard_fast 0.00 0.00 0.00 0.00 5197 5194

Average −6.07 −1.10 −65.02 −2.50 1016 982

Table 4. Timing and leakage power of all designs under multiple corners with gate size selection
restriction without (Base) and with (New) proposed LM initialization.

Design

Multiple Corners

Late WNS (ps) Late TNS (ps) Leakage (mW)

Base New Base New Base New

usb_phy_slow 0.00 0.00 0.00 0.00 1 1
usb_phy_fast −12.81 0.00 −42.00 0.00 2 2

pci_bridge32_slow 0.00 0.00 0.00 0.00 62 60
pci_bridge32_fast −22.20 −21.24 −189.58 −154.97 170 170

fft_slow 0.00 0.00 0.00 0.00 100 98
fft_fast −22.48 0.00 −92.88 0.00 366 365

cordic_slow −1.48 0.00 −1.86 0.00 705 516
cordic_fast −113.97 −112.70 −5604.24 −4867.80 3325 3389

des_perf_slow −30.88 −18.45 −207.30 −125.34 728 713
des_perf_fast −68.24 −47.37 −1520.11 −386.81 1205 1229

edit_dist_slow 0.00 0.00 0.00 0.00 478 477
edit_dist_fast −3.11 −0.48 −3.11 −0.85 824 758

matrix_mult_slow 0.00 0.00 0.00 0.00 602 580
matrix_mult_fast −26.23 −27.31 −42.98 −43.54 2214 2154

netcard_slow 0.00 0.00 0.00 0.00 5172 5158
netcard_fast −4.70 0.00 −7.60 0.00 5250 5236

Average −19.13 −14.22 −481.98 −348.71 1325 1307

5. Conclusions

Efficient incremental and minimally disruptive optimization steps at the end of the
design flow are crucial for the overall success of automated physical synthesis. In this work,
instead of relying on custom-made timing and power optimization heuristics, we leverage,
for the first time—to the best of our knowledge—LR-based optimizers used for the global
optimization of the design as fast incremental optimizers after appropriate initialization.
Initialization involves selecting appropriate values for the LMs after taking into account
both their timing criticality, in a multicorner context, as well as the current size of the gates.
In this way, we expedite successfully the convergence of the LR-based gate sizer, when
applied in an incremental optimization context, without affecting any part of its internal
functions and without reducing the achieved quality-of-results.

Experimental results also showed that relying on constant LM initialization values
as done by similar state-of-the-art optimizers or using randomly selected constants do
not achieve the smooth convergence needed in the case of last-mile incremental timing
optimizations. Initializing the LMs with hand-selected constants provides an inaccurate

Technologies 2021, 9, 92 15 of 17

picture of the design to the LR optimizer. This picture translates to unnecessary power
reductions and timing degradation at the beginning of the optimization and inevitably
leads to many more iterations before reconverging back to an timing optimized solution.
This deficit was corrected by the proposed approach and allows LR-based global optimizers
to be successfully used as fast incremental timing optimizers.

Our future plans are to incorporate the proposed LM initialization strategy into similar
timing-driven placement engines that tradeoff placement density and wirelength for better
timing performance.

Author Contributions: All authors have contributed equally and substantially to all parts of this
manuscript. Conceptualization, D.M. and G.D.; methodology, D.M. and G.D.; writing—original
draft preparation, D.M. and G.D. All authors have read and agreed to the published version of
the manuscript.

Funding: Dimitrios Mangiras is supported by the Onassis Foundation—Scholarship ID: G ZO
014-1/2018-2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lavagno, L.; Martin, G.; Markov, I.L.; Scheffer, L.K. Electronic Design Automation for IC Implementation, Circuit Design, and Process

Technology; Taylor and Francis Group: Boca Raton, FL, USA, 2016.
2. Liu, Y.; Hu, J.; Shi, W. Multi-Scenario Buffer Insertion in Multi-Core Processor Designs. In Proceedings of the 2008 International

Symposium on Physical Design, Portland, OR, USA, 13–16 April 2008; pp. 15–22.
3. Roy, S.; Liu, D.; Um, J.; Pan, D.Z. OSFA: A new paradigm of gate-sizing for power/performance optimizations under multiple

operating conditions. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015;
pp. 1–6.

4. MacDonald, N.D. Timing Closure in Deep Submicron Designs. In Proceedings of the Design Automation Conference (DAC),
Anaheim, CA, USA, 13–18 July 2010.

5. Chinnery, D.G.; Keutzer, K. Linear Programming for Sizing, Vth and Vdd Assignment. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), San Diego, CA, USA, 8–10 August 2005; pp. 149–154.

6. Spindler, P.; Schlichtmann, U.; Johannes, F.M. Abacus: Fast legalization of standard cell circuits with minimal movement.
In Proceedings of the International Symposium on Physical Design (ISPD), Portland, OR, USA, 13–16 April 2008; pp. 47–53.

7. Puget, J.C.; Flach, G.; Reis, R.; Johann, M. Jezz: An effective legalization algorithm for minimum displacement. In Proceedings of
the Symposium on Integrated Circuits and Systems Design (SBCCI), Salvador, Brazil, 31 August–4 September 2015; pp. 1–5.

8. Chowdhary, A.; Rajagopal, K.; Venkatesan, S.; Cao, T.; Tiourin, V.; Parasuram, Y.; Halpin, B. How Accurately Can We Model
Timing in a Placement Engine? In Proceedings of the ACM/IEEE Design Automation Conference (DAC), Anaheim, CA, USA,
13–17 June 2005; pp. 801–806.

9. Alpert, C.; Chu, C.; Gandham, G.; Hrkić, M.; Hu, J.; Kashyap, C.; Quay, S. Simultaneous Driver Sizing and Buffer Insertion Using
a Delay Penalty Estimation Technique. In Proceedings of the International Symposium on Physical Design (ISPD), San Diego,
CA, USA, 7–10 April 2002; pp. 104–109.

10. Stefanidis, A.; Mangiras, D.; Nicopoulos, C.; Chinnery, D.; Dimitrakopoulos, G. Autonomous Application of Netlist Transforma-
tions inside Lagrangian Relaxation-based Optimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 1672–1686.
[CrossRef]

11. Jiang, Y.; Sapatnekar, S.S.; Bamji, C.; Kim, J. Interleaving buffer insertion and transistor sizing into a single optimization. IEEE
Trans. VLSI Syst. 1998, 6, 625–633. [CrossRef]

12. Fishburn, J.P. Clock Skew Optimization. IEEE Trans. Comput. 1990, 39, 945–951. [CrossRef]
13. Kim, S.; Do, S.; Kang, S. Fast Predictive Useful Skew Methodology for Timing-Driven Placement Optimization. In Proceedings of

the ACM/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; pp. 55:1–55:6.
14. Fishburn, J.P.; Dunlop, A.E. TILOS: A posynomial programming approach to transistor sizing. In ICCAD 2003; Springer: Boston,

MA, USA, 2003.
15. Ozdal, M.M.; Burns, S.; Hu, J. Algorithms for Gate Sizing and Device Parameter Selection for High-Performance Designs. IEEE

Trans. CAD 2012, 31, 1558–1571. [CrossRef]
16. Coudert, O. Gate Sizing for Constrained Delay/Power/Area Optimization. IEEE Trans. VLSI Syst. 1997, 5, 465–472. [CrossRef]

http://doi.org/10.1109/TCAD.2020.3025541
http://dx.doi.org/10.1109/92.736136
http://dx.doi.org/10.1109/12.55696
http://dx.doi.org/10.1109/TCAD.2012.2196279
http://dx.doi.org/10.1109/92.645073

Technologies 2021, 9, 92 16 of 17

17. Nguyen, D.; Davare, A.; Orshansky, M.; Chinnery, D.; Thompson, B.; Keutzer, K. Minimization of Dynamic and Static Power
Through Joint Assignment of Threshold Voltages and Sizing Optimization. In Proceedings of the 2003 International Symposium
on Low Power Electronics and Design (ISLPED ’03), Seoul, Korea, 25–27 August 2003; pp. 158–163.

18. Bhattacharya, K.; Ranganathan, N. A Linear Programming Formulation for Security-Aware Gate Sizing. In Proceedings of the
ACM Great Lakes Symposium on VLSI (GLSVLSI ’08), Orlando, FL, USA, 4–6 May 2008; pp. 273–278.

19. Berkelaar, M.; Jess, J. Gate sizing in MOS digital circuits with linear programming. In Proceedings of the European Design
Automation Conference, Glasgow, UK, 12–15 March 1990; pp. 217–221.

20. Jeong, K.; Kahng, A.B.; Yao, H. Revisiting the linear programming framework for leakage power vs. performance optimization.
In Proceedings of the 2009 10th International Symposium on Quality Electronic Design, San Jose, CA, USA, 16–18 March 2009;
pp. 127–134.

21. Reimann, T.; Posser, G.; Flach, G.; Johann, M.; Reis, R. Simultaneous gate sizing and Vt assignment using Fanin/Fanout ratio and
Simulated Annealing. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China,
19–23 May 2013; pp. 2549–2552.

22. Daboul, S.; Hähnle, N.; Held, S.; Schorr, U. Provably Fast and Near-Optimum Gate Sizing. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 2018, 37, 3163–3176. [CrossRef]

23. Hu, S.; Ketkar, M.; Hu, J. Gate Sizing For Cell Library-Based Designs. In Proceedings of the 2007 44th ACM/IEEE Design
Automation Conference, San Diego, CA, USA, 4–8 June 2007; pp. 847–852.

24. Ozdal, M.M.; Burns, S.; Hu, J. Gate sizing and device technology selection algorithms for high-performance industrial designs.
In Proceedings of the 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–10
November 2011; pp. 724–731.

25. Rahman, M.; Tennakoon, H.; Sechen, C. Library-Based Cell-Size Selection Using Extended Logical Effort. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 2013, 32, 1086–1099. [CrossRef]

26. Liu, Y.; Hu, J. A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2010, 29, 223–234. [CrossRef]

27. Hu, J.; Kahng, A.B.; Kang, S.; Kim, M.C.; Markov, I.L. Sensitivity-guided metaheuristics for accurate discrete gate sizing. In
Proceedings of the IEEE International Conference CAD, San Jose, CA, USA, 5–8 November 2012; pp. 233–239.

28. Kahng, A.B.; Kang, S.; Lee, H.; Markov, I.L.; Thapar, P. High-performance Gate Sizing with a Signoff Timer. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 18–21 November 2013; pp. 450–457.

29. Fatemi, H.; Kahng, A.B.; Lee, H.; Li, J.; Pineda de Gyvez, J. Enhancing sensitivity-based power reduction for an industry IC
design context. Integration 2019, 66, 96–111. [CrossRef]

30. Lu, Y.C.; Nath, S.; Khandelwal, V.; Lim, S.K. RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforcement
Learning. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9
December 2021; pp. 733–738.

31. Flach, G.; Reimann, T.; Posser, G.; Johann, M.; Reis, R. Effective Method for Simultaneous Gate Sizing and Vth Assignment Using
Lagrangian Relaxation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2014, 33, 546–557. [CrossRef]

32. Sharma, A.; Chinnery, D.; Bhardwaj, S.; Chu, C. Fast Lagrangian Relaxation Based Gate Sizing Using Multi-Threading. In
Proceedings of the IEEE Inter. Conf. on Computer-Aided Design, Austin, TX, USA, 2–6 November 2015; pp. 426–433.

33. Sharma, A.; Chinnery, D.; Dhamdhere, S.; Chu, C. Rapid gate sizing with fewer iterations of Lagrangian Relaxation. In
Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16
November 2017; pp. 337–343.

34. Livramento, V.S.; Guth, C.; Güntzel, J.L.; Johann, M.O. A Hybrid Technique for Discrete Gate Sizing Based on Lagrangian
Relaxation. ACM Trans. Des. Autom. Electron. Syst. 2014, 19. [CrossRef]

35. Shklover, G.; Emanuel, B. Simultaneous Clock and Data Gate Sizing Algorithm with Common Global Objective. In Proceedings
of the 2012 ACM International Symposium on International Symposium on Physical Design, Napa, CA, USA, 25–28 March 2012;
pp. 145–152.

36. Li, L.; Kang, P.; Lu, Y.; Zhou, H. An efficient algorithm for library-based cell-type selection in high-performance. In Proceedings
of the 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 5–8 November 2012;
pp. 226–232.

37. Ozdal, M.; Amin, C.; Ayupov, A.; Burns, S.M.; Wilke, G.R.; Zhuo, C. An Improved Benchmark Suite for the ISPD-2013 Discrete
Cell Sizing Contest. In Proceedings of the International Symposium on Physical Design, Stateline, NV, USA, 24–27 March 2013;
pp. 168–170.

38. Mangiras, D.; Dimitrakopoulos, G. Incremental Lagrangian Relaxation based Discrete Gate Sizing and Threshold Voltage
Assignment. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 5–7 July 2021; pp. 1–5.

39. Bhasker, J.; Chadha, R. Static Timing Analysis for Nanometer Designs: A Practical Approach; Springer: Boston, MA, USA, 2009.
40. Mangiras, D.; Stefanidis, A.; Seitanidis, I.; Nicopoulos, C.; Dimitrakopoulos, G. Timing-Driven Placement Optimization Facilitated

by Timing-Compatibility Flip-Flop Clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 2835–2848. [CrossRef]
41. Berkelaar, M.; Buurman, P.; Jess, J. Computing the entire active area/power consumption versus delay tradeoff curve for gate

sizing with a piecewise linear simulator. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1996, 15, 1424–1434. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2018.2801231
http://dx.doi.org/10.1109/TCAD.2013.2247657
http://dx.doi.org/10.1109/TCAD.2009.2035575
http://dx.doi.org/10.1016/j.vlsi.2019.01.008
http://dx.doi.org/10.1109/TCAD.2014.2305847
http://dx.doi.org/10.1145/2647956
http://dx.doi.org/10.1109/TCAD.2019.2942001
http://dx.doi.org/10.1109/43.543774

Technologies 2021, 9, 92 17 of 17

42. Montiel-Nelson, J.; Sosa, J.; Navarro, H.; Sarmiento, R.; Núñez, A. Efficient method to obtain the entire active area against circuit
delay time trade-off curve in gate sizing. IEE Proc.-Circuits Dev. Syst. 2005, 152, 133–145. [CrossRef]

43. Tennakoon, H.; Sechen, C. Nonconvex Gate Delay Modeling and Delay Optimization. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 2008, 27, 1583–1594. [CrossRef]

44. Flach, G.; Fogaça, M.; Monteiro, J.; Johann, M.; Reis, R. Rsyn: An Extensible Physical Synthesis Framework. In Proceedings of the
International Symposium on Physical Design, Portland, OR, USA, 19–22 March 2017; pp. 33–40.

45. Huang, T.W.; Wong, M.D.F. OpenTimer: A high-performance timing analysis tool. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015; pp. 895–902.

http://dx.doi.org/10.1049/ip-cds:20040779
http://dx.doi.org/10.1109/TCAD.2008.927758

	Introduction
	Basics of LR-Based Gate Sizing
	Incremental LR-Based Gate Sizing
	What Is the Problem?
	What Can We Do about It?

	Results
	Quality-of-Results and Runtime Comparisons
	Exploring in Depth the Proposed LM Initialization
	Optimization with a Restricted Number of Available Gate Sizes

	Conclusions
	References

