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Abstract: COVID-19 has spread rapidly across the world since late 2019. As of December, 2021, there
are over 250 million documented COVID-19 cases and over 5 million deaths worldwide, which have
caused businesses, schools, and government operations to shut down. The most common method of
detecting COVID-19 is the RT-PCR swab test, which suffers from a high false-negative rate and a very
slow turnaround for results, often up to two weeks. Because of this, specialists often manually review
X-ray images of the lungs to detect the presence of COVID-19 with up to 97% accuracy. Neural
network algorithms greatly accelerate this review process, analyzing hundreds of X-rays in seconds.
Using the Cohen COVID-19 X-ray Database and the NIH ChestX-ray8 Database, we trained and
constructed the xRGM-NET convolutional neural network (CNN) to detect COVID-19 in X-ray scans
of the lungs. To further aid medical professionals in the manual review of X-rays, we implemented
the CNN activation mapping technique Score-CAM, which generates a heat map over an X-ray
to illustrate which areas in the scan are most influential over the ultimate diagnosis. xRGM-NET
achieved an overall classification accuracy of 97% with a sensitivity of 94% and specificity of 97%.
Lightweight models like xRGM-NET can serve to improve the efficiency and accuracy of COVID-19
detection in developing countries or rural areas. In this paper, we report on our model and methods
that were developed as part of a STEM enrichment summer program for high school students. We
hope that our model and methods will allow other researchers to create lightweight and accurate
models as more COVID-19 X-ray scans become available.

Keywords: COVID-19; RT-PCR swab test; convolutional neural network (CNN); X-ray; activation
mapping; score-CAM; data augmentation

With the rapid expansion of COVID-19, many hospitals are being overwhelmed
with cases, especially in some developing countries. An important step in slowing down
the spread of the pandemic is to perform comprehensive testing to detect the virus in
individuals before they spread it. The most common testing method for detecting COVID-
19 is the RT-PCR swab test. While the swab test is cheap and easy to administer, it can
often take multiple days or even weeks for results to be returned depending on the location
of the laboratory where the tests are analyzed. Furthermore, swab tests can have a false-
negative rate ranging between 22% and 37% [1] which can result in a large number of
COVID-19 positive cases being recorded as negative and contributing to the spread of the
disease. This is because the insertion of the swab into a patient’s nose can trigger violent
coughing, which may decrease accuracy and also pose a sanitation risk to healthcare
workers [2]. Additionally, the effectiveness of the swab test varies depending on the time
after exposure. Only 1 day after exposure, there is a 100% chance of a false-negative result;
4 days after exposure, there is a 67% chance of a false-negative result; and even on the day
that symptoms onset, there is still a 38% chance of a false-negative result from a COVID-19
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infected patient [3]. While not as severe as false-negative rates, the false-positive rates
from swab tests can reach as high as 4.0% [4]. To solve these problems, some specialists
have begun analyzing CT-Scans and X-rays, with accuracies of 82% and specificities of
89% [5]. In some scenarios, this analysis has been documented to detect COVID-19 with
97% accuracy—a noticeably better performance compared to swab tests [6] and with much
quicker results. Quick test turnaround times are necessary for treating patients in critical
condition and for quarantining those with the virus. For those reasons, many hospitals
around the world have started examining X-rays as a preliminary detection method for
COVID-19 before swab test results are returned or when swab tests are not available.

Although in Figure 1a,b the differences in lung health are obvious, with large white
opacities in the infected lung, the differences between healthy lungs and lungs infected by
COVID-19 are often much more subtle. Additionally, some other illnesses like pneumonia
can appear similar in an X-ray to COVID-19, requiring intensive review to distinguish them
from the latter virus. With cases drastically increasing each day, it can take a significant
amount of time for doctors to analyze these X-rays that could be used for treating patients
instead. Couple this with the tedious work of manually analyzing hundreds of images in a
high stress environment and there is an even greater overburdening of doctors and risk
of mistakes.

(a) (b)

Figure 1. X-rays of healthy and infected patients. X-rays from [7,8]. (a) Sample X-ray for healthy
lungs (b) Sample X-ray for COVID-19-infected lungs.

Artificial Intelligence can play a large supporting role for physicians in detecting
COVID-19. Convolutional neural networks (CNNs) can point out important areas in a scan
for a physician to focus on via the use of image pre-processing and heatmap generation.
Their ability to quickly and accurately analyze X-rays also provides an invaluable service
for assisting radiologists and reducing their workloads [9]. In this paper, we trained xRGM-
NET, a custom created CNN, on the Cohen 2020 COVID-19 X-ray [8] and the NIH X-ray
databases [7] in order to detect COVID-19 in patients through X-ray images.

X-rays are a cost-effective and quick test for COVID-19 [10]. Compared to the days it
might take for swab test results to be returned, a chest X-ray scan can return results in less
than 10 min [10]. Because swab tests need to be taken to laboratories to determine a result,
there is an even longer wait time in developing countries where a lack of infrastructure
might make it more difficult to transport the swab tests. Additionally, the equipment
needed to analyze swab tests to determine whether a patient has COVID-19 or not is very
expensive, and developing countries may not have enough of this equipment to analyze
these tests in a reasonable time frame. This can be seen in India which has struggled with
backlogging of swab tests [10]. Lau et al. [11] determined that many COVID-19 epicenters
like China, Italy, USA, and Iran, among other countries, suffer from extreme under-testing
and that reported cases often range from 10× to even 45× less than estimated cases. A
solution to this was tested by Dr. Vishal Rao, a respected surgeon in Bengaluru and member
of the COVID-19 Consulate Board, who led a pilot program in India with 1000 people that
used X-rays to detect COVID-19 with over a 95% accuracy rate [10]. These tests were able
to be offered at a cost 10–20× less than a swab test in a public or private hospital [10].
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In their paper [12], Chen et al. analyzed 52 models used for predicting COVID-19 from
CT-Scans or X-rays that ranged in creation from as early as 14 February 2020 to 8 May 2020.
Some successful models used contrast enhancement and other pre-processing techniques
to improve accuracy. Many of these models used very small databases and achieved
lackluster results, but some achieved significant results, whether with custom-designed
model architectures, or just with common existing architectures.

In their paper on DarkCovidNet [13], Ozturk et al. propose a lightweight and fairly
accurate model for detecting COVID-19 from X-rays. DarkCovidNet [13] was a very strong
inspiration for our model. They were a great starting off point and had an accuracy of
98.08%, but a sensitivity of only 90.65% for detecting COVID-19 [13]. We were particularly
inspired by the expanding and contrasting number of filter patterns in their model. While
this model has a good accuracy, this accuracy is for a dataset with only 127 COVID-19
X-rays [13] and a much higher ratio of healthy lung images, which skewed the accuracy
higher despite the model’s mediocre sensitivity. Thus it is important to examine a models
sensitivity and specificity as well as its accuracy in order to get the full picture. With many
COVID-19 predicting models we have seen, very small datasets of COVID-19 X-rays often
had artificially high accuracies due to model over fitting and a lack of diverse or outlier
X-rays that can lower the accuracy of the model.

The use of machine learning techniques for detecting COVID-19 has been tested in
a few real-world scenarios to mixed results. Some techniques using neural networks
have been able to achieve accuracies of over 95% on large numbers of patients, but other
techniques, such as Random Forests, have fared significantly worse with accuracies as low
as 66% [14]. These promising results show the potential for the use of artificial intelligence
in helping doctors diagnose COVID-19, but also the importance in making sure the right
techniques are used to maximize the accuracy and efficiency of these models.

This paper formalizes and builds upon the preliminary results we presented at the
UNCG Annual Mathematics and Statistics Conference [15] and the State of North Carolina
Undergraduate Research and Creativity Symposium [16]. These broad PowerPoint style
presentations were intended to simply disseminate information to a general audience and
focused more on the concept of a CNN and how it can be applied to detect COVID-19. It
was meant to rapidly disseminate basic information to help in the fight against COVID-19.
In contrast, this manuscript goes into a deep analysis of xRGM-NET and its use of data
augmentation and lung heatmap visualization as well as covering new results generated
since those presentations. This manuscript covers the exact architecture of xRGM-NET and
the evolution of the network as layers were changed and new procedures were added to
it. It additionally covers new information comparing xRGM-NET to other similar work
and examines the effects of data augmentation on CNN models to a greater degree. These
results were not yet identified during those preliminary presentations over a year before
the publication of this work. For these reasons, this manuscript is identified for publication.

1. Materials and Methods
1.1. Procedure

The general procedure for training xRGM-NET is both time efficient and effective.
Once a clean dataset is obtained, the X-ray scan images are converted into a grey scale
227 × 227 numeric array. We then apply pre-processing and data augmentation to the image
to enhance contrast as well as improve training. The pre-processed and augmented images
are then fed into the xRGM-NET convolutional neural network to classify subjects as either
positive or negative for COVID-19. We also utilize Score-CAM on xRGM-NET to generate a
heatmap of the parts of the lung X-ray that are most indicative of COVID-19. This heatmap
is exported to assist doctors or other medical staff in diagnosing COVID-19. Lastly, the
original images are pre-processed using histogram equalization and color inversion. These
processed images help emphasize opacities and artifacts in the lung that can help doctors
identify a COVID-19 infection. Together, these three pieces of information—the COVID-19
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diagnosis, the heatmap, and the processed images—assist doctors in quickly identifying
COVID-19 in patients. This process is illustrated in Figure 2.

Figure 2. xRGM-NET Flow-Chart.

1.2. Data

In training xRGM-NET, we used two different databases: the COVID-19 X-ray Image
Database collected by Cohen et al. [8] and the NIH ChestX-ray8 Database [7]. We used the
Cohen database because it contains a relatively large number of X-rays from a variety of
locations; this ensures that our model will be more robust in many different hospitals with
different X-ray machines. The NIH database contains 108,948 frontal X-ray images from
32,717 unique patients. These subjects have a wide range of conditions and illnesses. For
our purposes, we only used 2754 healthy X-rays from the NIH database. We also cleaned
the Cohen database and used 439 COVID-19 X-ray images from the total 951 images.
Models were trained and tested on a 90% training, 10% testing validation split. When
cleaning the Cohen database, we only included images that were from a frontal COVID-19
X-ray. This removed CT-Scans, X-rays taken from the side, and images of patients that were
not infected or infected with other diseases besides COVID-19. We combined both of these
databases for the training and testing of xRGM-NET. We are limited in our training by the
lack of COVID-19 X-ray images; as more COVID-19 X-rays are collected, we can pull more
healthy X-rays from the NIH database in a similar ratio to make a more comprehensive
training dataset.

We aimed to explore different pre-processing techniques with X-ray images that would
allow features significant to the COVID-19 classification task to stand out, while those
less notable to be diminished. Such pre-processing could be used not only to improve the
accuracy of trained convolutional neural networks, but can also be analyzed by medical
professionals to gain a clearer understanding of the appearance of COVID-19 and its effects
on the respiratory system.

Although the images in the Cohen COVID-19 X-ray Database and NIH ChestX-ray8
Database are consistent in terms of lung area photographed, they vary in the physical
dimensions of the image. CNNs require a consistent image input dimension (preferably
square), so we resized each image to 277 × 277 × 1 tensors and applied anti-aliasing to not
sacrifice image quality in the process and possibly lose important details of the image. This
is seen in Figure 3b.

Contrast limited adaptive histogram equalization (CLAHE) [17] is an image pre-
processing technique that aims to improve clarity in an image and normalize irregularities
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in contrast. Unlike other contrast optimization techniques, CLAHE does not change the
contrast of the image on a global scale, but rather adjusts the contrast of different parts
of the images based on how high or low the contrast is in the region. Applied to X-rays,
vessels and other parts of the lung that previously weren’t visible become clear to the naked
eye. This is seen in Figure 3c. CLAHE did not prove very useful for image classification,
however, is still very helpful for humans who might want to analyze X-rays.

Color inversion flips the grey scale value (0–255) of each pixel in the image 255 − xi
and produces an inverted image. We found this to be mainly useful for looking at X-rays
from a human perspective, as black is easier to see against white than vice versa. Color
inversion did not prove very useful for the model accuracy, but still has importance for
helping doctors in their diagnosis. This is seen in Figure 3d.

(a) (b)

(c) (d)

Figure 3. Image Pre-processing applied to X-ray. Original X-ray from [8]. (a) Original Image.
(b) Image Reshaped to 227 × 277. (c) Histogram Equalization Applied. (d) Image Inversion.

Because COVID-19 is a relatively recent virus, there has not been enough time for
large-scale X-ray and CT-Scan data collection and anonymization. Since CNN’s need as
much data as possible for increased accuracy, it is imperative that xRGM-NET and other
COVID-19 detecting models have a way to artificially increase the amount of data to train
on. One method of this is through data augmentation. Data augmentation is a method
of altering images and adding them to the training dataset, so that there are an increased
number of slightly different images for the CNN to train on. Data augmentation also serves
to increase the versatility of a model as well as lowering over fitting. Because of all these
previously mentioned effects, data augmentation can drastically increase accuracy and
reduce the error of a model [18].

Geometric transformations are some of the earliest and most common forms of data
augmentation. Geometric transformations consist of translations, rotations, and flips of an
image. The transformations also allow xRGM-NET to better adapt to X-rays taken from the
front or back of a subject. In order to conduct these transformations, we used Keras’s inbuilt
ImageDataGenerator class. While these transformations are basic, they allow xRGM-NET
to better identify X-rays that may have certain tilts and translations—as are common in the
real world. This also served to create more data for xRGM-NET to train on. An example of
a geometric augmentation can be seen in Figure 4.

The next category of data augmentation we used involved adding noise, applying
a median filter, conducting image inpainting, and adjusting brightness. These were all
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attempts to lower image quality and add artifacts that simulate defects found in real world
scans. For noise, we randomly generated Gaussian noise and added it to the image. For
larger speckle noise, we generated the same Gaussian noise but then used a median filter
to bunch the noise up into dot-like artifacts on the image. For image inpainting, we first
generated noise and used it as a mask, deleting the parts of the image where noise was
present. We then used inpainting to take into account the nearest pixels to fill in the now
empty areas where the noise mask was on the image. Finally, for brightness, we used the
inbuilt Keras ImageDataGenerator class to randomly adjust the brightness of the image.
These data augmentation techniques all served to prepare the model for more realistic
scenarios where the X-ray may not be as clean as in a database. An example of a image
quality augmentation can be seen in Figure 5.

These data augmented images were added to the original images. This doubled
the size of our COVID-19 positive training set from 395 images (based on a 90/10 train-
ing/testing split) to 790 images. While less important for healthy lung data, it also doubled
the amount of healthy lung training images from 2479 to 4958. The amount of testing data
images remained the same, at 44 COVID-19 infected lung images and 281 healthy lung
images. This is because augmented data cannot be used to test as this can lead to artifi-
cially increased accuracy. Additionally, real X-rays would not be augmented if they were
evaluated using xRGM-NET, and so it is more accurate to test only using a non-augmented
set of images that the model has not trained with.

Figure 4. Geometric augmentation on X-ray from [8].

Figure 5. Image Quality augmentation on X-ray from [8].
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1.3. Vanishing Gradients

After the first iteration of the xRGM-NET, one aspect of the CNN we wanted to
improve upon was the time required to converge upon a local minimum of cross-entropy
loss. We also wished to converge upon a better local minimum. Because of the binary
nature of classifying COVID-19, our output layer is designed to produce a value between
0–1, thus identifying the probability that a given subject has COVID-19. In order to make
probabilistic predictions, the output neuron from the xRGM-NET is passed through a
sigmoid activation function.

However, this function suffers from the problem of vanishing gradients which can
lead to drastically slower training times, and can cause the model to stop improving all
together—which ultimately is what happened with our first iteration of xRGM-NET.

In order to resolve this issue, we implemented a popular machine learning training
technique known as batch normalization [19]. Batch normalization aims to solve the
problem of vanishing gradients by normalizing the values of a training batch’s input so that
the distribution of values is more stable. This reduces the likelihood of gradient vanishing
and also makes training less chaotic for the neural network. This is because each layer
in a neural network produces output values based on its input, and for hidden layers
(layers that are not the overall input/output layers) their inputs are derived from the
inputs from all the previous layers. This means that during training, each layer changes
its weights based on how it can modify its input to produce an output that minimizes the
cost. However, if internal covariate shift occurs and each layer changes during training
iterations, it can become difficult for the model to reach a consensus for the best weights
that reduce cost. Batch normalization solves this by normalizing values entered to the
neural network and thus decreasing the variation in input values to each layer between
training iterations. This vastly improves the ability of the model to improve, with better
performance metrics and higher accuracy. As these qualities are highly desirable, we
implemented batch normalization in the training of our model.

Additionally, to also solve the problem of vanishing gradients, we used Leaky Rectified
Linear Units (Leaky ReLU) activation functions instead of sigmoid functions. Instead of
reaching a gradient of zero at negative values like a normal ReLU function or like a sigmoid
function at its extremes, a leaky ReLU reaches a small gradient value that allows the neural
network to continue training. However, for the output layer function, we still used the
sigmoid function since it results in a value between 1 and 0 that can return the probability
of a patient being infected with COVID-19.

1.4. Visualization with Gradients

Calculated gradients for a particular weight serve not only as an indicator of how the
weights should be modified to achieve better performance metrics, but can also be used to
visualize the processes undergone by the convolutional neural network to make certain
decisions. One gradient based method for visualizing neural networks is known as saliency
maps [20]. saliency maps work by solving for the gradient of a model’s output with respect
to each pixel in the model’s input image, which would be a X-ray in this case. In solving
for this gradient, the intensity of impact a certain pixel has on the final output can be
determined through the gradient’s magnitude. There are countless saliency mapping and
feature visualization techniques and they generally can give a decent representation of
what parts of an image the model determines to be significant in solving a task, however
as seen in Figure 6, these images can be hard to interpret.
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Figure 6. Various saliency maps. Figure from [21].

Another commonly used gradient based visualization technique, which tries to solve
the issues presented by saliency maps is one known as Gradient-weighted Class Activa-
tion Mapping [22] (Grad-CAM). saliency maps analyze individual pixels to determine
their contribution to the model’s output; however, from a human perspective, larger
segments/regions of an image are what allow us to decipher what the image contains.
Grad-CAM works by utilizing the filtered image to create a visualization of the CNN. By
taking the gradient of the final convolutional layer’s filtered output image with respect
to the output, the calculated value can determine which regions of an image have the
greatest impact on the final prediction output of the CNN. Transferred to a heat-map, this
method results in a decent representation of what the model believes to areas significant to
producing accurate results in a given task.

Ultimately, we decided to use another method very similar to Grad-CAM called Score-
CAM because of its smoother, more consistent, and less noisy heatmaps [23]. Score-CAM
finds the weights connected to individual pixels and filters of the image, thus finding which
parts of the images have the most influence on the output of the CNN. Using Score-CAM,
we generated heat maps of our X-rays that showcased the areas in the lung that xRGM-NET
recognized as important for determining whether the patient was infected with COVID-19
or not. Areas in red represent opacities or spots in the lung that might indicate COVID-19
while areas in blue are parts that represent normality. As seen in Figure 7, the two COVID-
19 positive patients have large opacities on the left sides of their lungs and these are shown
in the Score-CAM images with dark red ovals. However, on the healthy patients, there is a
distinct lack of these red markers and the lungs are shown to be healthy.

1.5. CNN Models

We chose to tackle the task of COVID-19 X-ray scan classification using a supervised
machine learning model called a convolutional neural network (CNN). We chose this
type of model due to its superiority in pattern detection and image classification tasks
versus machine learning models like Random Forests and simpler types of neural networks.
We tested CNNs with a variety of architectures to determine a model that would best
fit our goals: having low computational cost and high efficiency (computers found in
low-income or developing areas as well as mobile devices may have difficulty running
high end models due to their low performance), and high performance metrics (specifically
sensitivity and accuracy). A high sensitivity may be more desirable over high specificity,
since the consequence of falsely classifying a patient as positive for COVID-19 is simply
that the patient will unnecessarily self isolate or get another test. The opposite scenario, a
false-negative diagnosis, may result in patients unknowingly spreading the disease and
worsening the COVID-19 situation. The models we used to achieve our goals ranged from
having a high number of parameters, to being simple CNN architectures that could be
trained quickly, to being the unique architecture of xRGM-NET.
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Figure 7. Score-CAM on various X-rays. X-rays from [7,8].

1.5.1. Model Comparison

The AlexNet network [24] was one of the first popularized CNN architectures and
as such is very simple. The architecture consists of only five convolutional layers and
four dense layers. The model was initially used as a test subject to see if our work with
X-rays was feasible.

The modern VGG-19 network [25] is one of the most widely used CNNs for image
classification. However, its modernity also means it is structured to utilize extremely
large datasets with millions of subjects and high performance computing power. The high
number of neurons and layers results in over 120 million trainable parameters. A model of
such size proved to be difficult to train on with our dataset of only 2000 images and, despite
decent computing power (GTX 1070 GPU used to train), resulted in the model taking
an extremely long time to converge upon a local minimum and severe over fitting. The
immense computing power required to run VGG-19 also makes it unsuitable for use in the
majority of hospitals and limits COVID-19 classification from being used in mobile devices.

xRGM-NET is the convolutional neural network designed in this study. The model
consists of 17 convolutional layers and one dense layer, totaling approximately 2 million
trainable parameters. We chose the size of the model to serve as a good balance between
the massive VGG-19 network and the much more simple AlexNet model. This balance
allows xRGM-NET to fully train in only an hour and classify X-rays in a fraction of a
second on a GTX 1070 Ti. The model implements a CNN architecture design inspired
by the DarkCovidNet neural network model created by Ozturk et al. [13] in which the
amount of filters within the convolutional layers increases between groups of three by a
binary factor as shown in Table A1. This cyclical increase and decrease in the number of
filters helps keep the model from abstracting the image too much, which allows it to better
distinguish the minute differences between a healthy and COVID-19 infected lung.

We only used 2 MaxPool layers and 2 AvgPool layers in our model. This was a key
difference between DarkCovidNet and xRGM-NET and allowed us to retain more detail.
MaxPool is much more selective by definition than AvgPool in which data it retains because
it only selects the most prominent features, which can lead to smaller details being lost.
While this is not usually a problem for most image recognition tasks with distinct objects,
when detecting COVID-19 in lungs, the smallest opacities or haze in the lungs can convey a
great deal of information about whether the patient is infected with COVID-19 or not, and
thus AvgPool’s smoother incorporation of those details is very important. Additionally,
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MaxPool layers can better handle translations in space [26] which can lead to more accurate
heatmaps of X-rays.

2. Results

Following the creation and training of xRGM-NET Version 1, we aimed to achieve
further improved subject diagnoses of COVID-19. Our goals with the second iteration
of xRGM-NET were to increase accuracy and sensitivity while increasing, or at least not
compromising, specificity. It was also important to maintain similar or even better model
computation costs.

The first changes we made to our model stemmed from our implementation of Grad-
CAM [22], discussed in Section 1.4. Because Grad-CAM uses the output of the final
convolutional layer to solve for its gradients, we were able to get a better understanding of
how the convolutional layers altered the original image and how it did so to train. When
producing heat-maps for xRGM-NET Version 1, the heat-map was simply a 2 × 2 image
with no useful information as seen in Figure 8, which also means our convolution operations
were oversimplifying the image to the point where it became almost meaningless due most
likely to the use of too many MaxPool layers as mentioned in Section 1.5.1.

Figure 8. xRGM-Version 1 Heat-Map. X-ray from [8].

To tackle this issue we reduced the number of max pooling layers, which increased the
image shape of the final convolution layer’s output and had a drastic effect on improving
training performance. It additionally allowed for a much better heatmap, as visible in
Figure 7. Another aspect of our model that we improved on is the use of batch normaliza-
tion. Because of our non-linear activation functions, especially our sigmoid activation at
the end of the model, our training on xRGM-NET Version 1 was suffering heavily from van-
ishing gradients and after just two epochs of training, the model began to train extremely
slowly and eventually plateaued with negligible improvement to training or testing per-
formance metrics. To solve this issue, we implemented batch normalization, discussed in
Section 1.3, which helped our model converge upon a lower local minimum of cost at a
much faster rate as inputs to the activation functions were no longer residing in saturated
regions. These changes can be seen in Table A2.

These changes resulted in xRGM-NET V.2 having the lowest loss, highest accuracy,
and highest specificity among the analyzed models with the sensitivity being only slightly
lower than VGG-19’s sensitivity. The accuracies for each model can be seen in Table 1.

Our next improvement to our model was using data augmentation. As seen in Figure 9,
geometric augmentation improved our sensitivity by 3% without any effect on accuracy and
only a minuscule effect on the specificity of xRGM-NET V2. However, our image quality
augmentations hurt the model and made it perform worse. While we are not sure as to why
this is, we speculate that some of the noise might have appeared to be very similar to some
of the opacities in the lungs and that this confused the model. Additionally, the changes in
brightness and the median filter which blurred the X-ray might have degraded the image
so that it lost its useful information. Another finding was that adding data augmentation
will not necessarily improve a model as seen when we combined both data augmentation
methods. Even though geometric augmentation improved our model, adding it to image
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quality augmentation made the model perform worse than either geometric or image
quality augmentation on their own.

Table 1. xRGM-NET vs. other models with base data: no augmentation.

Model Loss Accuracy Sensitivity
(True Positive)

Specificity
(True Negative)

AlexNet 0.264 93.1% 85.7% 94.2%

VGG-19 0.223 95.9% 91.5% 96.7%

xRGM-NET V. 1 0.344 91.9% 74.1% 95.5%

xRGM-NET V. 2 0.188 96.7% 90.9% 97.2%

Figure 9. Effect of data augmentation on xRGM-NET V.2.

To further confirm the validity of these results and analyze the effects of geometric
augmentation on other models, we performed geometric augmentation on VGG-19 and
AlexNet. These are visible in Table 2. As seen, geometric augmentation improved AlexNet’s
accuracy, sensitivity, and specificity but negatively affected VGG-19s accuracy, sensitivity,
and specificity. These inferior results for VGG-19 are reasonable given that VGG-19 has too
many parameters for the training size, and so it overfitted the data. While normally, as it
did for AlexNet and xRGM-NET, conducting geometric augmentations can help reduce
overfitting, because VGG-19 has so many parameters, it overfitted the augmented data
which explains the worse performance.

Table 2. xRGM-NET vs. other models with geometric augmentation.

Model Loss Accuracy Sensitivity
(True Positive)

Specificity
(True Negative)

AlexNet 0.480 94.7% 94.9% 94.7%

VGG-19 0.194 94.4% 90.4% 95.0%

xRGM-NET V. 2 0.188 96.6% 93.6% 97.1%

Table 3 compares the results obtained from our method with results from various other
COVID-19 detection algorithms. As visible, our method performs equivalently or better
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than most other models that use X-rays or CT-Scans to detect COVID-19. The sensitivity of
our model is also much better than most other models.

Table 3. Comparison between various COVID-19 detection algorithms.

Method Images Accuracy Sensitivity Specificity

Brunese et al. [27] X-ray 0.97 0.92 0.96
Ozturk et al. [13] X-ray 0.98 0.91 0.98
Aslan et al. [28] X-ray 0.98 0.98 0.99
Wang et al. [29] X-ray 0.93 - -
Ismael et al. [30] X-ray 0.93 0.88 0.98
Li et al. [31] CT-Scan 0.96 0.90 0.96
Song et al. [32] CT-Scan 0.95 0.96 0.77
Panwar et al. [33] CT-Scan 0.95 - -
Our Method X-ray 0.97 0.94 0.97

3. Discussion

Our xRGM-NET Version 2 CNN architecture seemed to be an ideal model for the
COVID-19 classification task given the limitations of our dataset and computing power.
xRGM-NET V.2 had the highest accuracy, at 97%, with AlexNet at 93% and VGG-19 at
96%. Each model seemed to reach a certain number of training epochs where the accuracy
would remain the same, and likewise for the cross-entropy loss. As with any supervised
machine learning task, this behavior from a model being trained is expected.

Our model had the highest performing X-ray COVID-19 classification accuracy out of
the models that we trained and also performed better or equal to most other COVID-19
diagnosis methods found in literature. Our pre-processing techniques and use of heat-map
CNN visualization can be used not only to improve the performance of our model, but to
serve as an aid for doctors who perform manual analysis of X-rays, saving them time and
resources that could otherwise be spent aiding patients in the emergency room.

An additional contribution was the use of data augmentation for improving the
detection of COVID-19. While data augmentation is not a new technique, until very
recently, we did not find any other models that used data augmentation to help solve the
problem of a lack of COVID-19 X-rays. Even then, these papers did not compare different
data augmentation techniques to the base model that did not use data augmentation.
Geometric augmentation had a large effect in improving the sensitivity (true positive) rate
of our model. While an increase of 3% may not seem like much, at the scale of COVID-19, it
can mean thousands more people are correctly identified as having COVID-19. Achieving
a high sensitivity for COVID-19 detecting models is the hardest task due to a lack of
COVID-19 X-rays images and so an increase in sensitivity due to geometric augmentation
is a very noteworthy achievement. Additionally, high sensitivity rates from xRGM-NET
allow it to be a viable COVID-19 screening method [34]. While high specificity rates are
also important, in the case of COVID-19 diagnoses, the consequences of a false-negative
result are much worse than a false-positive, due to the fact that a false-negative individual
has the potential to continue spreading COVID-19, while a false-positive individual may
only be subject to additional testing and unnecessary quarantine.

The combination of xRGM-NET’s high COVID-19 diagnosis accuracy with Score-CAM
heatmaps and pre-processing provides a invaluable tool for radiologists and doctors to
help them quickly diagnose COVID-19 in patients. This process should not be considered
as a replacement for RT-PCR swab tests or manual radiologist diagnosis, but instead as a
complement [35]. Scanning a patient for an X-ray still requires machinery that needs to be
cleaned and may take more time to conduct each individual test compared to the swab test.
However, especially for cases where test results are needed quickly in order to determine
what to treat a patient for, or whether to place a patient in a quarantine ward, CNNs like
xRGM-NET and X-rays can play an important role.
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4. Conclusions

Moving forwards, we suggest a focus on increasing the accessibility of CNN models
for detecting COVID-19. Although our model is more efficient on average than other
computationally heavy models like VGG-19, it can still be further improved to work with
low-end computers and even portable/mobile devices. While through our databases and
data augmentation we have been able to make our model robust at detecting COVID-19
from a variety of sources, there is still room to reduce the impact of non-standardized
qualities of X-rays fed into our model with more COVID-19 X-ray data as well as additional
data augmentation techniques.

One significant obstacle in the development of machine learning models to detect
COVID-19 is the shortage of pre-existing X-ray scan data on potential COVID-19 patients.
Since hospitals are overloaded with treating patients, scans cannot be made readily avail-
able to the public.

To remedy this issue, it may be beneficial to develop a Generative Adversarial Network
(GAN) that is capable of generating new X-ray scans from scratch based on the appearances
of X-rays already present in the dataset. A GAN would be able to generate realistic X-ray
scans that simulate the lungs of patients both with and without the virus, which will greatly
increase the size of a model’s training data set. We predict that, by augmenting xRGM-
NET’s training dataset, a model will produce more accurate outputs and learn to handle
more variability and imperfections in scans. GANs are exceptional in data augmentation
for datasets that are imbalanced [36] and have been shown to greatly increase performance
of COVID-19 detection algorithms [37]. This imbalance is one of the major issues plaguing
COVID-19 detection from X-rays as there are much more X-ray images of healthy patients
than of COVID-19 infected patients. GAN data augmentation also solves the problem of
sensitive data and the requirement for the anonymization of COVID-19 X-ray data [36].
Because GANs generate these images, there is no person that they come from and thus
there is no sensitive data that needs to be anonymized.

It may also be interesting to examine the best ratio of augmented images to non-
augmented images in training a CNN. In our paper, we found that adding too many and
too heavily augmented images could decrease the performance of our model. Thus, it
may be important to find the optimized number of augmented images to maximize the
accuracy of a CNN. It may also be important to find how heavily augmentation should be
applied in order to maximize accuracy. For example, how much should brightness in an
image be adjusted? At what point are images translated too much where they begin to lose
information and begin harming the model? These are questions that may help improve the
results of models that use data augmentation.

Regardless of these questions, xRGM-NET has shown its potential as a great tool for
assisting doctors and radiologists in the rapid detection of COVID-19. It may be useful to
test xRGM-NET in a hospital setting for diagnosing patients with COVID-19 to see how
this real-world setting affects the accuracy of its diagnoses. Additionally, the lightweight
yet robust architecture of xRGM-NET could be trained on other databases for other similar
purposes, such as detecting pneumonia or various other lung diseases in patients.
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Appendix A

Table A1. Layers of xRGM-NET Version 1.

Layer Function Shape Parameters

CNN leaky relu 225, 225, 8 80

Maxpool

CNN leaky relu 110, 110, 16 1168

Maxpool

CNN leaky relu 53, 53, 32 9248

CNN leaky relu 51, 51, 32 4640

CNN leaky relu 49, 49, 32 9248

Maxpool

CNN leaky relu 22, 22, 64 18,496

CNN leaky relu 22, 22, 32 2080

CNN leaky relu 20, 20, 64 18,496

Maxpool

CNN leaky relu 8, 8, 128 73,856

CNN leaky relu 8, 8, 64 8256

CNN leaky relu 6, 6, 128 73,856

CNN leaky relu 4, 4, 256 73,856

CNN leaky relu 4, 4, 128 8256

CNN leaky relu 2, 2, 256 73,856

Flatten relu 1024

Dense sigmoid 338 346,450

Dropout (0.4)

Dense sigmoid 2 339
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Table A2. Layers of xRGM-NET Version 2.

Layer Function Shape Parameters

CNN leaky relu 225, 225, 8 80

Maxpool

CNN leaky relu 225, 225, 8 1168

CNN leaky relu 110, 110, 16 4640

CNN leaky relu 108, 108, 32 528

CNN leaky relu 108, 108, 16 4640

CNN leaky relu 106, 106, 32 4640

CNN leaky relu 104, 104, 64 18,496

CNN leaky relu 104, 104, 32 2080

CNN leaky relu 102, 102, 64 18,496

CNN leaky relu 100, 100, 128 73,856

CNN leaky relu 98, 98, 128 73,856

Maxpool 73,856

CNN leaky relu 47, 47, 256 8256

CNN leaky relu 47, 47, 128 73,856

Avgpool 295,168

CNN leaky relu 21, 21, 256 32,896

Avgpool 295,168

CNN leaky relu 10, 10, 128

CNN leaky relu 8, 8, 256 346,450

Flatten

Dropout (0.4)

Dense Leaky relu 5,538,130

Dense Relu 339

Dense Sigmoid 2
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