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Abstract: The perception of the surrounding environment is a key requirement for autonomous
driving systems, yet the computation of an accurate semantic representation of the scene starting
from RGB information alone is very challenging. In particular, the lack of geometric information
and the strong dependence on weather and illumination conditions introduce critical challenges for
approaches tackling this task. For this reason, most autonomous cars exploit a variety of sensors,
including color, depth or thermal cameras, LiDARs, and RADARs. How to efficiently combine
all these sources of information to compute an accurate semantic description of the scene is still
an unsolved task, leading to an active research field. In this survey, we start by presenting the
most commonly employed acquisition setups and datasets. Then we review several different deep
learning architectures for multimodal semantic segmentation. We will discuss the various techniques
to combine color, depth, LiDAR, and other modalities of data at different stages of the learning
architectures, and we will show how smart fusion strategies allow us to improve performances with
respect to the exploitation of a single source of information.

Keywords: semantic segmentation; autonomous driving; multimodal; LiDAR; depth; modality
fusion; deep learning

1. Introduction

In recent years, the autonomous driving field has experienced an impressive develop-
ment, gaining a huge interest and expanding into many sub-fields that cover all aspects of
the self-driving vehicle [1,2]. Examples are vehicle-to-vehicle communications [3], energy-
storage devices, sensors [4], safety devices [5], and more. Among them, a fundamental
field is scene understanding, a challenging Computer Vision (CV) task which deals with
the processing of raw environmental data to construct a representation of the scene in
front of the car that allows for the subsequent interaction with the environment (e.g., route
planning, safety breaks engagement, packet transmission optimizations, etc.).

Scene understanding is the process of perceiving, analysing, and elaborating on an
interpretation of an observed scene through a network of sensors [6]. It involves several
complex tasks, from image classification, to more advanced ones like object detection
and Semantic Segmentation (SS). The first task deals with the assignment of a global
label to an input image; however, it is of limited use in the autonomous driving scenario,
given the need for localizing the various elements in the environment [1]. The second
task provides a more detailed description, localizing all identified objects and providing
classification information for them [7]. The third task is the most challenging one, requiring
the assignment of a class to each pixel of an input image. Due to the accurate semantic
description this problem provides, it requires complex machine learning architectures and
can be identified as the basic goal for a scene understanding pre-processor. It will be the
subject of this work.

Most approaches for semantic segmentation were originally developed by using as
input a single RGB camera (see Section 1.1 for a brief review of the task). However, the
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development of self-driving vehicles provided with many onboard sensors requires the
generalization toward different modalities. The joint employment of the various data
streams coming from the sensors (RGB, LiDAR, RADAR, stereo setups, etc.) allows a much
more in-depth understanding of the environment.

The importance of multimodal data for autonomous driving applications came under
the spotlight for the first time in the DARPA’s Grand Challenge in 2007. All three teams on
the podium underlined the necessity of such an approach, especially focusing on LiDAR
perception systems.

In later years, LiDARs found many applications in the development of large-scale
datasets for the training of deep architectures, e.g., the well-known KITTI [8] benchmark.
Although such sensors provide very high accuracy, they come with a couple of major
downsides, namely the high cost, the presence of delicate moving parts, and the fact that
the depth map produced is sparse, rather than dense as the images from standard cameras.
To tackle the first problem, more cost-effective, consumer-grade technologies have been
used, such as stereo cameras, matricial Time-of-Flight or structured-light sensors [9,10].
On the other hand, these technologies are less accurate and suffer the effect of sunlight,
claiming for approaches accounting for the unreliability of their data.

The investigation of approaches able to leverage multiple heterogeneous datastreams
(like those produced by the aforementioned sensors) is the focus of this survey, wherein we
investigate the various proposed approaches for multi-modal semantic segmentation in
autonomous driving. In particular, we will focus on 2.5D scenes (RGB and depth, including
stereo vision setups), 2D + 3D fusion (RGB and LiDAR), and also report some additional,
specific setups (e.g., by also using thermal data).

1.1. Semantic Segmentation with Deep Learning

In this section, we will report the main approaches for semantic segmentation from
a single data source, overviewing the task history and highlighting the landmarks of its
evolution. A graphic example of a possible deployment of the task in autonomous driving
scenarios is reported in Figure 1.

Figure 1. The car screen shows an example of semantic segmentation of the scene in front of the car.

Early approaches to semantic segmentation were based on the use of classifiers on
small image patches [11–13], until the introduction of deep learning, which has enabled
great improvements in this field as well.
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The first approach to showcase the deep learning potential on this task is found in [14],
which introduced an end-to-end convolutional model, the so-called Fully Convolutional
Network (FCN) model, which is made of an encoder (or contraction segment) and a
decoder (or expansion segment). The former maps the input into a low-resolution feature
representation, which is then upsampled in the expansion block. The encoder (also called
backbone) is typically a pretrained image classification network used as a feature extractor.
Among these networks, popular choices are VGG [15], ResNet [16], or the more lightweight
MobileNet [17].

Other remarkable architectures that followed FCN are ParseNet (Liu et al. [18]), which
models global context directly rather than only relying on a larger receptive field, and
DeconvNet (Noh et al. [19]) which proposes an architecture that contains overlapping de-
convolution and unpooling layers to perform nonlinear upsampling, resulting in improving
the performance at the cost of increasing the complexity of the training procedure.

A slightly different approach is proposed in the Feature Pyramid Network (FPN),
developed by Lin et al. [20], where a bottom-up pathway, a top-down pathway, and
lateral connections are used to join low-resolution and high-resolution features and to
better propagate the low-level information into the network. Inspired by the FPN model,
Chen et al. [21,22] proposes the DeepLab architecture, which adopts pyramid pooling
modules wherein the feature maps are implicitly downsampled through the use of dilated
convolutions of different rates. According to the authors, dilated convolutions allow for an
exponential increase in the receptive field without a decrease in resolution or increase in
parameters, as may happen in the traditional pooling or stride-based approaches. Chen
et al. [22] further extended the work by employing depth-wise separable convolutions.

Nowadays the current objective in semantic segmentation consists of improving the
multiscale feature learning while making a trade-off between keeping the inference time
low and increasing the receptive field/upsampling capability.

One recent strategy is feature merging through attention-based methods. Recently,
such techniques gained a lot of traction in Computer Vision, following its success in
Natural Language Processing (NLP) tasks. The most famous approach of this class is the
transformer architecture [23], introduced by Vaswani et al. in 2017 in an effort to reduce the
dependence of NLP architectures on recurrent blocks, which have difficulty in handling
long-time relationships between input data. This architecture has been adapted to the
image understanding field in the Vision Tranformers (ViT) [24,25] work, which presents a
convolution-free, transformer-based vision approach able to surpass previous state-of-the-
art techniques in image classification (at the cost of much higher memory and training data
requirements). Transformers have been used as well in semantic segmentation in numerous
works [26–28].

Although semantic segmentation was originally tackled by RGB data, recently many
researchers started investigating its application for LiDAR data [29–34]. The development of
such approaches is supported by an ever-increasing number of datasets that provide labeled
training samples, e.g., Semantic KITTI [35]. More in detail, PointNet [29,30] was one of the
first general-purpose 3D pointcloud segmentation architectures, but although it achieved
state-of-the-art results on indoor scenes, the sparse nature of LiDAR data led to a significant
performance decrease in outdoor settings, limiting its applicability in autonomous driving
scenarios. An evolution of this technique is developed in RandLANet [31], where an
additional grid-based downsampling step is added as preprocessing, together with a
feature aggregation based on random-centered KD-trees, to better handle the sparse nature
of LiDAR samples. Other approaches are SqueezeSeg [33] and RangeNet [36], wherein the
segmentation is performed through a CNN architecture. In particular, the LiDAR data is
converted to a spherical coordinate representation allowing one to exploit 2D semantic
segmentation techniques developed for images. The most recent and better-performing
architecture is Cylinder3D [34], which exploits the prior knowledge of LiDAR topologies—
in particular their cylindrical aspect—to better represent the data fed into the architecture.
The underlying idea is that the density of points in each voxel is inversely dependent on



Technologies 2022, 10, 90 4 of 29

the distance from the sensor; therefore the architecture samples the data according to a
cylindrical grid, rather than a cuboid one, leading to a more uniform point density.

Given the recent growth in the availability of heterogeneous data, the exploitation
of deep multimodal methods attracted great research interest (in Section 4, a detailed
overview is reported). RGB data carries a wealth of visual and textual information, which
in many cases has successfully been used to enable semantic segmentation. Nevertheless,
depth measurements provide useful geometric cues, which help significantly in the dis-
crimination of visual ambiguities, e.g., to distinguish between two objects with a similar
appearance. Moreover, RGB cameras are sensitive to light and weather conditions which
can lead to failures in outdoor environments [37]. Thermal cameras give temperature-based
characteristics of the objects, which can better enhance the recognition of some objects,
thereby improving the resilience of semantic scene understanding in challenging lighting
conditions [38].

1.2. Outline

In this paper, we focus on analyzing and discussing deep learning based fusion meth-
ods in multimodal semantic segmentation. The survey is organized as follows: Section 2
describes the most common sensors and their arrangements in autonomous driving setups;
in Section 3 the main datasets for this application are listed, pointing out their features
with particular attention to data diversity; finally, Section 4 reports several methods to
address data fusion. As a conclusion, in Section 5 the open challenges and future outlooks
are remarked upon.

2. Multimodal Data Acquisition and Preprocessing

One of the key aspects of an autonomous driving system is the choice of the ac-
quisition devices and the infrastructure which allows them to exchange information
among themselves and to the central perception system. Over the years many setups
have been proposed, introducing different cameras, LiDARs, RADAR sensors, GPS sys-
tems, and IMU units. In this section, we will report an overview of the most commonly
employed sensors, their placement, and the post-processing steps needed to convert the
provided data into a machine-friendly format. In Figure 2 we report an example of sen-
sor setup. The vehicle shown was used during the generation of [39]. In the work, the
authors remark how it was chosen to be close to real autonomous vehicles (such as TESLA
https://www.tesla.com/autopilot (accessed on 21 July 2022), Waymo https://waymo.com/
(accessed on 21 July 2022), and Argo https://www.argoverse.org/ (accessed on 21 July
2022), ...).

LiDAR
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Figure 2. Figure (derived from the one in [39]) showcasing the multi-sensor setup used in the data
collection.

2.1. RGB Cameras

Standard color cameras are employed in almost all setups (as underlined by the
datasets reported in Section 3). Due to their limited cost, many systems rely on the com-
bination of multiple cameras looking in different directions, both to improve the scene
understanding and to allow a 360◦ Field-of-View (which may be helpful in the identification

https://www.tesla.com/autopilot
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of obstacles/dangers coming from directions different than the heading one, but incurs
additional processing costs related to the stitching and understanding of the bigger scene).
Even if standard cameras provide an extremely useful representation of the scene, the data
they provide suffers from some key limitations. First of all, they do not provide distance
information, making it impossible to access precise information about the positions and
sizes of the objects. Secondly, they are strongly affected by the illumination and weather
conditions. Dark environments, direct sunlight, rain, or fog can strongly reduce the useful-
ness of the data provided by these devices [37]. This suggests that the combination of color
cameras with other devices is a goal worth investigating, particularly with sensors resilient
to the weaknesses of the cameras themselves.

2.2. Thermal Cameras

A thermal (or thermographic) camera is a special type of camera, which rather than
acquiring information from the visible light spectrum (380∼750 nm) captures information
in the near-infrared range (1∼14 µm) [38]. These wavelengths have the particular property
of being the vector of irradiation heat, allowing to capture the heat sources in the scene
(e.g., the heat produced by the vehicles).

This implies that they are able to work even in dark (in the usual sense) conditions
because each object can be considered as a light source. Due to this property, these cameras
can be very useful in night-time autonomous driving scenarios. A thermal camera output,
in general, has two forms: the raw heatmap of the scenes (computed from the wavelength
emitted by each object in the scene) or a color-coded post-processing. The second format
is usually more meaningful than the first because the encoding uses special perceptive
functions to map differences in temperature to differences in color [40].

2.3. Depth Cameras

Another approach to solving the problems affecting color cameras is to use depth
sensors. As in the case of thermal cameras, the idea is to change the captured quantity from
visible light to something more resilient to illumination/environmental changes. In the case
of depth cameras, the acquired quantity is the distance-from-the-camera information for
each pixel. Depth information cannot be directly inferred from a single standard image, and
this has led to the development of multiple, complementary, active and passive techniques
to acquire the depth information, e.g., stereo setups [9], matricial Time-of-Flight [10],
RADARs [41], and LiDARs [42]. The last three actually belong to the same macro-class
of techniques, which is ToF and differ in the way the time delay is computed (directly
or indirectly) and on the medium used to extract the information (radio waves or light).
In Table 1 we summarize in a qualitative manner the various sensors, classifying them
depending on:

• the resilience to environmental conditions;
• the working range;
• the sparsity of the output depthmap; and
• the cost.

Table 1. Qualitative comparison between depth sensors. More details reported at [10,41,43].

Sensor Range Sparsity Robustness Direct Sun Perf. Night Perf. Cost

Passive Stereo Far Dense Low Medium Low Very Low
Active Stereo Medium Dense Medium Medium Good Low
Matricial ToF Medium Dense High Low Good Medium

LiDAR Far Sparse High Good Good High
RADAR Far Very Sparse Medium Good Good Low
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2.3.1. Stereo Camera

Passive Stereo camera systems are one of the most common and cost-effective ap-
proaches for depth estimation. They employ two or more color cameras positioned at
a known distance with respect to each other (commonly referred to as “baseline”) to re-
construct a dense depthmap of the scene. The estimation procedure follows two main
steps. The first is pixel matching between the two images (i.e., pixels representing the same
location in the scene are found and coupled with each other). The second is the actual
depth computation, wherein the distance between coupled pixels (disparity) is converted
into the depthmap applying the well-known relation d = b f /p pixel-wise, where d is the
distance, b is the baseline, f is the camera focal length and p is the disparity. Clearly, the
challenging part in the depth computation lies in the first step, the stereo matching, and
many efficient algorithms were proposed to tackle the problem (from traditional computer
vision algorithms like SGM [44] to recent deep learning-based strategies [45–47]).

In a similar fashion as for thermal data, alternative encodings for depthmaps exist.
One example is HHA [48], which encodes in the three channels the horizontal disparity,
the height above ground, and the angle that the pixel’s local surface normal makes with the
inferred gravity direction.

Active Stereo camera systems aid the stereo matching by adding a light projector to
the stereo setup. This allows one to artificially increase the texture contrast, reducing the
number of wrongly matched pixels. These systems, however, suffer in strong sunlight
conditions, because the sunlight can overshadow or add noise to the projected light, thus
strongly limiting the performance of the approach, that can instead be quite useful at night
or in low light conditions.

2.3.2. Time-of-Flight

A matricial Time-of-Flight camera is a device able to calculate the distance between
each scene point and the device [10]. This is done by measuring the round-trip time of
the light traveling from the light transmitter, which illuminates the target to the photo-
detector. ToF sensors are categorized into indirect (iToF) and direct (dToF) sensors. In
iToF the distance is measured by calculating the shift in phase of the original emitted light
signal, which is continuously modulated, and the received light signal. iToF sensors have
demonstrated good spatial resolution with a greater ability to detect multiple objects over
a wide (but still limited by the camera optics) field of view (FoV) [49]. However, such
sensors come with a significant drawback, that being that their light source modulation
frequency is directly proportional to the maximum range, but inversely proportional to the
precision attainable, thereby constraining them to a short range of typically less than 30 m.
This limitation makes them less suited for autonomous driving applications. In dToF, the
depth information is collected by measuring the time the light pulse takes to hit the target
and return to the sensor, which requires the pulsing laser and the camera acquisition to
be synchronized. dToF are typically employed also in LiDARs due to their longer range
and reliability.

2.3.3. LiDAR

A LiDAR is a long-range, omnidirectional depth sensor, which comes with high
robustness in geometry acquisition at the expense of a higher cost [39]. It employs one or
multiple focused laser beams whose ToF is measured to generate a 3D representation of
the environment in the form of a point cloud. Generally speaking, a point cloud consists
of the 3D location and the intensity of the incident light collected at every frame. LiDARs
have different operating principles [50]. In the scanning type, a collimated laser beam
illuminates a single point at a time, and the beam is raster-scanned to illuminate the field of
view point-by-point. In the flash type, a wide diverging laser beam illuminates the whole
field of view in a single pulse. In the latter approach, the acquired frames do not need to be
patched together, and the device is not sensitive to platform motion, which allows for more
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precise imaging. Motion can produce “jitter” in scanning LiDAR due to the delay in time
as the laser rasters over the area.

Due to the sparsity and uneven distribution of point clouds, LiDAR-only perception
tasks are challenging [50]. Whereas images are dense tensors, 3D point clouds can be
represented in a variety of ways, resulting in several families of preprocessing algorithms.
Besides directly representing the 3D coordinates of the acquired points, projection methods
are the most intuitive approaches to having a direct correspondence with RGB images.
Common choices for multi-modal applications consist of:

• spherical projection;
• perspective projection; and
• bird’s-eye view.

In the first case, each 3D point is projected onto a sphere by using azimuth and zenith
angles to create a spherical map. The result is a dense representation; however, it can differ
in terms of size from the camera image. This does not happen in perspective projection
where the 3D points are projected into the camera coordinate system; hence the depthmap
has the same size. The main drawback of this method is that it leaves many pixels empty,
and upsampling techniques are required to reconstruct the image. The latter approach, as
the name suggests, directly provides the objects’ positions on the ground plane. Although
it preserves the objects’ length and width, it loses height information and, as a result, some
physical characteristics.

Point-based approaches utilize a raw pointcloud as input and provide point-by-point
labeling as output. These algorithms can handle any unstructured pointcloud. As a direct
consequence, the key challenge in processing raw pointclouds is extracting local contextual
information. Several approaches were used to create an ordered feature sequence from
unordered 3D LiDAR data, which was subsequently translated to 3D LiDAR data by by
using convolutional deep networks [51].

• Voxel-based : convert 3D LiDAR data to voxels in order to represent structured data.
These algorithms typically accept voxels as input and predict one semantic label for
each voxel [32,34].

• Graph-based: create a graph by using 3D LiDAR data. A vertex generally repre-
sents a single point or a set of points, whereas edges indicate vertexes’ adjacency
connections [52,53].

• Point Convolution: establish a similarity between points e.g., by sorting the K-nearest
points according to their spatial distance from the centers [29–31].

• Lattice Convolution: provide a transformation between pointclouds and sparse per-
mutohedral lattices so that convolutions can be performed efficiently [54,55].

Despite their high cost and moving components (in spindle-type lidars, whereas other
technologies like solid-state lidars do not have this issue), LiDARs are being used as part of
the vision systems of several high-level autonomous vehicles.

2.3.4. RADAR

RADAR (Radio Detection and Ranging) sensors can also give distance information;
however, depth information coupled with RGB data is rarely produced by them. RADARs
send out radio waves to be reflected by an obstacle, measure the signal runtime, and use
the Doppler effect to estimate the object’s radial motion. They can withstand a variety
of lighting and weather situations; however, due to their low resolution, semantic under-
standing with RADARs is difficult. Their application in driving is usually restricted to
directional proximity sensors, usually to aid in cruise control or assistive parking. Neverthe-
less, some works [56,57] propose strategies that allow their use in semantic segmentation
setups. An interesting approach to automatic RADAR samples labelling is presented in [58],
wherein the authors exploit both image- and LiDAR-labeled samples to infer the correct
RADAR-point classification.
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2.4. Position and Navigation Systems

Many devices allow the absolute position and orientation of the vehicle to be estab-
lished. Global Positioning System (GPS) receivers and Inertial Measurement Unit (IMU) are
common examples of such devices. Global Navigation Satellite Systems (GNSS) were first
utilized in cars as navigation tools in driver assistance features [59], but they are now also
used in conjunction with HD Maps for autonomous vehicle path planning and autonomous
vehicle self-localization. Internal vehicle information (i.e., “proprioceptive sensor”) is pro-
vided by IMUs and odometers. IMUs measure the acceleration and rotational rates of cars
and are currently employed in autonomous driving for accurate localization. These sensors
can be leveraged to aid camera segmentation architectures in the creation of lane-level HD
Maps [60]. On the other hand, it is possible to improve coarse GPS measurements through
camera-vision systems [61].

3. Datasets

One of the biggest challenges involved in the use of deep learning-based architectures
is the need for large amounts of labeled data, fundamental for their optimization [62]. This
is reflected in a very active and diverse field [63,64] that deals with the generation (in case
of synthetic datasets) or collection (in case of real-world datasets) and subsequent labeling
of data suitable for training deep learning models. A fundamental task for autonomous
driving that suffers greatly from the data availability problem is semantic segmentation.
In this task, the action of producing a label coincides with assigning to each pixel in an
image (or to each point in a pointcloud) a semantic class. The complexity of this task is the
main reason for the huge time and cost involved in the collection of datasets for semantic
segmentation. In Table 2 a high-level summary is reported for each of the datasets used in
the methods described in Section 4 differentiating them by the type of scene content (e.g.,
indoor or outdoor).

In the following, we will focus on semantic segmentation datasets, with special atten-
tion to the current problems and challenges of the available datasets. For a comprehensive
list of general datasets for autonomous driving applications one may refer to [63], and
to [64] for RGB-D tasks. Very few large-scale (more than 25k labeled samples) semantic
segmentation datasets are available for autonomous driving settings, and even fewer take
care of the multimodal aspect of the sensors present in vehicles.

In Section 3, we will go over the most commonly used driving datasets that support
this task, reporting their characteristics and classifying them according to the following
criteria in Table 2:

• modalities provided (i.e., type of available sensors);
• tasks supported (i.e., provided labeling information);
• data variability offered (i.e., daytime, weather, season, location, etc.); and
• acquisition domain (i.e., real or synthetic).

For the dataset description, we will follow the order reported in Table 2, which sum-
marizes the discussed datasets. Some of the dataset names were compressed into acronyms,
the expanded name can be found at the end of the document in the abbreviations listing.
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Table 2. Comparison between multi-modal datasets. Shorthand notation used: Type Real/Synthetic;
Cameras Grayscale/Color/FishEye/Thermal/Polarization/Event/MultiSpectral/Depth; Daytime
Morning/Day/Sunset/Night; Location City/Indoor/Outdoor/Region/Traffic (left/right-handed),
† indicates that the cities/regions considered belong to the same state,

†

indicates that single views
of the 3D scene are labeled, ∗ indicates variability with no control or categorization. The table is
color-coded to indicate the scenarios present in each dataset: Driving, Exterior, In/Out,
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KITTI [8,65–67] 2012 2015 R 2G/2C 1 2 - - + - - - - - - + - 1(6h) 200
Cityscapes [68] 2016 2016 R 2C - 1 - - + - - 27C † - - + - - - 5000

Lost and found [69] 2016 2016 R 2C - 1 - - - - - - - - + - - 112 2104
Synthia [70–72] 2016 2019 S 1C - - 1 - - DS + - 2 - + - - - 9400

Virtual KITTI [73,74] 2016 2020 S 2C - 1 1 - + MDS - - 4 + + + + 35 17k
MSSSD/MF [75] 2017 2017 R 1C/1T - - - - - DN - - - - + - - - 1569

RoadScene-Seg [76] 2018 2018 R 1C/1T - - - - - DN - - - - - - - - 221
AtUlm [77] 2019 2019 R 1G 4 - - - - - - - - - + - - - 1446

nuScenes [78] 2019 2020 R 6C 1 1 - 5 + - - T - - + + - - 40k
SemanticKITTI [35] 2019 2021 R - 1 - - - - - - - - - + - - 22 43,552

ZJU [79] 2019 2019 R 2C/1FE/1P - 1 - - - DN - - - - - - - - 3400
A2D2 [80] 2020 2020 R 6C 5 - - - + - - - - - + + - - 41,280

ApolloScape [81] 2020 2020 R 6C 2 1 - - + * - 4R † * - + + - - 140k
DDAD [82] 2020 2020 R 6C 4 - - - - - - 2R - - - - - - 16,600

KITTI 360 [83] 2021 2021 R 2C/2FE 1 1 - - + - - - - - + + - - 78k
WoodScape [84] 2021 2021 R 4FE 1 - - - + - - 10C - - + + - - 10k
EventScape [85] 2021 2021 S 1C/1E - - 1 - + - - 4C - - + + - 743(2 h) -

SELMA [39] 2022 2022 S 8C 3 3 7 - - DSN - 7C 9 + + + - - 31k×27
Freiburg Forest [86] 2016 2016 R 2C/1MS - 1 - - - - - - - - + - - - 336

POLABOT [87] 2019 2019 R 2C/1P/1MS - 1 - - - - - - - - + - - - 175
SRM [88] 2021 2021 R 1C/1T - - - - - - - - 2 - + - - - 2458
SSW [88] 2021 2021 R 1C/1T - - - - - - - - 2 - + - - - 1571

MVSEC [89] 2018 2018 R 2G/2E 1 1 - - + DN - IO - - - - - 14(1h) -
PST900 [90] 2019 2019 R 2C/1T - 1 - - - - - IO - - + - - - 4316

NYU-depth-v2 [91] 2012 2012 R 1C + 1D - - 1 - - - - - - - + - - - 1449

†

SUN-RGBD [92] 2015 2015 R 1C + 1D - - 1 - - - - - - - + - - - 10k

†

2D-3D-S [93] 2017 2017 R 1C + 1D - - 1 - - - - - - - + - - - 270
ScanNet [94] 2017 2018 R 1C + 1D - - 1 - - - - - - - + - - - 1513

Taskonomy [95] 2018 2018 R 1C + 1D - - 1 - - - - - - - ∼ - - - 4 m

†

Summary

KITTI [8,65–67] was the first large-scale dataset to tackle the important issue of multimodal
data in autonomous vehicles. The KITTI vision benchmark was introduced in 2012
and contains a real-world 6-h-long sequence recorded using a LiDAR, an IMU, and
two stereo setups (with one grayscale and one color camera each). Although the
complete suite is very extensive (especially for depth estimation and object detection),
the authors did not focus much on the semantic labeling process, opting to label only
200 training samples for semantic (and instance) segmentation and for optical flow.

Cityscapes [68] became one of the most common semantic segmentation datasets for
autonomous driving benchmarks. It is a real-world dataset containing 5000 finely
labeled, high-definition (2048 × 1024) images captured in multiple German cities.
Additionally, the authors provide 25,000 coarsely labeled samples—polygons rather
than object borders, with many unlabeled areas (see Figure 3)—to improve deep
architectures’ performance through data variability. The data was captured with a
calibrated and rectified stereo setup in high-visibility conditions, allowing the authors
to provide high-quality estimated depthmaps for each of the 30,000 samples. Given
its popularity in semantic segmentation settings, this dataset is also one of the most
used for monocular depth estimation or 2.5D segmentation tasks.

Lost and Found [69] is an interesting road-scene dataset that tackles lost cargo scenarios,
it includes pixel-level segmentation of the road and of the extraneous objects present
on the surface. It was introduced in 2016 and includes around 2000 samples. The
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dataset comprises 112 stereo video sequences with 2104 annotated frames in a real-
world scenario.

Synthia [70–72] is one of the oldest multimodal synthetic datasets providing labeled se-
mantic segmentation samples. First introduced in 2016, it provides color, depth, and
semantic information generated from the homonym simulator. The authors tackled
data diversity by simulating the four seasons, by rendering the dataset samples from
multiple PoVs, not only from road-view, but also from building height, and by consid-
ering day/night times. The dataset provides multiple versions, but only one supports
(partially) the Cityscapes dataset label-set; it contains 9400 total samples.

Virtual KITTI [73,74] is an extension of the KITTI dataset. It is a synthetic dataset pro-
duced in Unity (https://unity.com/ (accessed on 21 July 2022) ) which contains scenes
modeled after the ones present in the original KITTI dataset. The synthetic nature of
the dataset allowed the authors to produce a much greater number of labeled samples
than those present in KITTI, while also maintaining a higher precision (due to the
automatic labeling process). Unfortunately, the dataset does not provide labels for
the LiDAR pointclouds.

MSSSD/MF [75] is a real-world dataset and one of the few that provides multispectral
(thermal + color) information. It is of relatively small size, with only 1.5k samples,
recorded in day and night scenes. Regardless, it represents an important benchmark
for real-world applications, because thermal cameras are one of the few dense sensors
resilient to low-visibility conditions such as fog or rain for which consumer-grade
options exist.

RoadScene-Seg [76] is real-world dataset that provides 200 unlabeled road-scene images
captured with an aligned color + infrared setup. Given the absence of labels, the only
validation metric supported for architectures in this dataset is a qualitative evaluation
by humans.

AtUlm [77] is a non-publicly available real-world dataset developed by Ulm University in
2019. It has been acquired with a grayscale camera and 4 LiDARs. In total the dataset
contains 1446 finely annotated samples (grayscale images).

nuScenes [78] is a real-world dataset and one of the very few providing RADAR infor-
mation. It is the standard for architectures aiming to use such sensor modality.
The number of sensors provided is very impressive, as the dataset contains sam-
ples recorded from six top ring-cameras (two of which form a stereo setup), one
top-central LiDAR, five ring RADARs placed at headlight level, and an IMU. The
labeled samples are keyframes extracted with a frequency of 2 Hz from the recorded
sequences, totaling 40k samples. The environmental variability lies in the recording
location. The cities of Boston and Singapore were chosen as they offer different traffic
handedness (Boston right-handed, Singapore left-handed).

Semantic KITTI [35] is an extension to the KITTI dataset. Here the authors took on the
challenge of labeling in a point-wise manner all the LiDAR sequences recorded in the
original set. It has rapidly become one of the most common benchmarks for LiDAR
semantic segmentation, especially thanks to the significant number of samples made
available.

ZJU [79] is a real-world dataset and the only among the one listed supporting the light
polarization modality. It was introduced in 2019 and features 3400 labeled samples
provided with color, (stereo) depth, light polarization, and an additional fish-eye
camera view to cover the whole scene.

A2D2 [80] is another real-world dataset which focuses highly on the multimodal aspect
of the data provided. It was recorded by a research team from the AUDI car man-
ufacturer and provides five ring LiDARs, six ring cameras (two of which form a
stereo setup) and an IMU. The semantic segmentation labels refer to both 2D images
and LiDAR pointclouds, for a total of 41k samples. The daytime variability is very

https://unity.com/
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limited, offering only high-visibility day samples. The weather variability is slightly
better, as it was changing throughout the recorded sequences, but no control over the
conditions is offered.

ApolloScape [81] is a large-scale real-world dataset that supports a multitude of different
tasks (semantic segmentation, lane segmentation, trajectory estimation, depth estima-
tion, and more). As usual, we focus on the semantic segmentation task, for which
ApolloScape provides ∼150k labeled RGB images. Together with the color samples,
the dataset also provides depth information. Unfortunately the depth maps contain
only static objects, and all information about vehicles or other road occupants is miss-
ing. This precludes the possibility of directly exploiting the dataset in multimodal
settings because a deployed agent wouldn’t have access to such static maps.

DDAD [82] is a real-world dataset developed by the Toyota Research Institute, whose
main focus is on monocular depth estimation. The sensors provided include six ring
cameras and four ring LiDARs. The data was recorded in seven cities across two
states: San Francisco, the Bay Area, Cambridge, Detroit, and Ann Arbor in the USA,
and Tokyo and Odaiba in Japan. The dataset provides semantic segmentation labels
only for the validation and test (non-public) sets, significantly restricting its use-case.

KITTI 360 [83] is a real-world dataset first released in 2020, which provides many different
modalities (Stereo Color, LiDAR, Spherical, and IMU) and labeled segmentation
samples for them. The labeling is performed in the 3D space, and the 2D labels are
extracted by re-projection. In total, the dataset contains 78K labeled samples. Like
KITTI, the dataset is organized in temporal sequences, recorded from a synchronized
sensor setup mounted on a vehicle. As such, it offers very limited environmental
variability.

WoodScape [84] is another real-world dataset providing color and LiDAR information.
As opposed to its competitors, its 2D information is extracted only by using fish-eye
cameras. In particular, the dataset provides information coming from four fish-eye
ring cameras and a single top-LiDAR (360◦ coverage), recorded from more than
ten cities in five different states. In total, the dataset contains 10k 2D semantic
segmentation samples.

EventScape [85] is a very recent (2021) synthetic dataset developed by using the CARLA
simulator [96], providing color, (ground truth) depth, event camera, semantic seg-
mentation, bounding boxes, and IMU information for 743 sequences for a total of 2 h
of video across four cities.

SELMA [39] is a very recent (2022) synthetic dataset developed in a modified CARLA sim-
ulator [96] whose goal is to provide multimodal data in a multitude of environmental
conditions, while also allowing a researcher to control such conditions. It is heavily fo-
cused on semantic segmentation, providing labels for all of the sensors offered (seven
co-placed RGB/depth cameras, and three LiDARs). The environmental variability
takes the form of three daytimes (day, sunset, night), nine weather conditions (clear,
cloudy, wet road, wet road and cloudy, soft/mid-level/heavy rain, mid-level/heavy
fog), and 8 synthetic towns. The dataset contains 31k unique scenes recorded in all
27 environmental conditions, resulting in 800k samples for each sensor.

Figure 3. Example of finely (left) and coarsely (right) labeled Cityscapes [68] samples.
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4. Multimodal Segmentation Techniques in Autonomous Driving

This section is the core of this work, wherein we present a detailed review of recent
and well-performing approaches for multi-modal semantic segmentation.
We will start with a brief overview of the field and of the most common design choices,
before moving to an in-depth description of the works, starting with RGB and depth data
fusion in Section 4.1 (the most common choice). Then, we will discuss approaches combin-
ing RGB with LiDAR data in Section 4.2. Finally, approaches exploiting less conventional
data sources (e.g., RADAR, event or thermal cameras) will be discussed in Section 4.4.
Table 3 shows a summarized version of the methods discussed in the following sections,
comparing them according to

• modalities used for the fusion;
• datasets used for training and validation;
• approach to feature fusion (e.g., sum, concatenation, attention, etc.); and
• fusion network location (e.g., encoder, decoder, specific modality branch, etc.).

On the other hand, in Table 4, we report the numerical score (mIoU) attained by the
methods in three benchmark datasets, respectively: Cityscapes [68] for 2.5D SS in Table 4a,
KITTI [8] for 2D + 3D SS in Table 4b and MSSSD/MF [75] for RGB + Thermal SS in Table 4c.

Table 3. Summary of recent multimodal semantic segmentation architectures. Modality shorthand:
Dm, raw depth map; Dh, depth HHA; De, depth estimated internally; E, event camera; T, thermal; Lp,
light polarization; Li, LiDAR; Ls, LiDAR spherical; F, optical flow. Location: D, decoder; E, encoder.
Direction: D, decoder; C, color; B, bi-directional; M, other modality.
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LWM [97] 2021 [68,91,92] DmDe + - + - + + D D/C 2 + +
SSMA [98] 2019 [68,70,86,92,94] DmDhT - + + + + - E D 2 + +
CMX [99] 2022 [68,75,79,85,91–94] EDhLpT + + - + - - E D/B 2 + +

AsymFusion [100] 2021 [68,91,95] Dm + - - + - - E B 2 - +
SA-Gate [101] 2020 [68,91] Dh + - + + - - E B 2 + +
ESANet [102] 2021 [68,91,92] Dm + - - - - - E C 2 + +
DA-Gate [103] 2018 [68,91–93] DmDe - - - - + - N/A N/A 1 - -
RFBNet [104] 2019 [68,94] Dh + + + + - - E B 2 - +

MMSFB-snow [88] 2021 [68,70,88] DmT - - + + - - E D 2 + +
AdapNet [105] 2017 [68,70,86] DmT + + - + - - D D 2 - -

RFNet [106] 2020 [68,69] Dm + - - + - - E C 2 + +
RSSAWC [77] 2019 [68,77] DmLi + - + - - - E D 2 - -

PMF [107] 2021 [35,78] Li + + + + + - E M 2 + +
MDASS [108] 2019 [68,73] DmF + - - - - - E D 2/3 + +
CMFnet [109] 2021 [68,87] DmLp - + + - - - E D/B 3+ - +

CCAFFMNet [110] 2021 [75,76] T - - + + - - E C 2 + +
DooDLeNet [111] 2022 [75] T - + + - - - E D 2 + +

GMNet [112] 2021 [75,90] T + + - + - + E D 2 + +
FEANet [113] 2021 [75] T + + - - - - E C 2 - +
EGFNet [114] 2021 [75,90] T + + + + - - E D 2 - +

ABMDRNet [115] 2021 [75] T + + + + + + E D 2 - +
AFNet [116] 2021 [75] T + + - + - - E D 2 - -

FuseSeg-Thermal [117] 2021 [75] T + - + - - - E C 2 + +
RTFNet [106] 2019 [75] T + - - - - - E C 2 - +

FuseSeg-LiDAR [118] 2020 [8] LsLi - - + - - - E M 2 + +
RaLF3D [119] 2019 [8] LsLi + - + - - - E D 2 + +
DACNN [120] 2018 [91–93] DmDh + - - - - - E D 2 - -
xMUDA [121] 2020 [35,78,80] Li - - + - + + D D 2 - +
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Table 4. Architectures Performance Comparison.

Name Backbone mIoU

(a) Cityscapes dataset (2.5D SS).

LWM [97] ResNet101 [16] 83.4
SSMA [98] ResNet50 [16] 83.29
CMX [99] MiT-B4 [27] 82.6

AsymFusion [100] Xception65 [122] 82.1
SA-Gate [101] ResNet101 [16] 81.7
ESANet [102] ResNet34 [16] 80.09
DA-Gate [103] ResNet101 [16] 75.3
RFBNet [104] ResNet50 [16] 74.8

MMSFB-snow [88] ResNet50 [16] 73.8
AdapNet [105] AdapNet [105] 71.72

RFNet [106] ResNet18 [16] 69.37
RSSAWC [77] ICNet [123] 65.09
MDASS [108] VGG16 [15] 63.13
CMFnet [109] VGG16 [15] 58.97

(b) KITTI dataset (2D + 3D SS).

PMF [107] ResNet34 [16] 63.9
FuseSeg-LiDAR [118] SqueezeNet [124] 52.1

RaLF3D [119] SqueezeSeg [33] 37.8
xMUDA [121] SparseConvNet3D [125]

ResNet34 [16]
49.1

(c) MSSSD/MF dataset (RGB + Thermal SS).

CMX [99] MiT-B4 [27] 59.7
CCAFFMNet [110] ResNeXt50 [126] 58.2
DooDLeNet [111] ResNet101 [16] 57.3

GMNet [112] ResNet50 [16] 57.3
FEANet [113] ResNet101 [16] 55.3
EGFNet [114] ResNet152 [16] 54.8

ABMDRNet [115] ResNet50 [16] 54.8
AFNet [116] ResNet50 [16] 54.6

FuseSeg-Thermal [117] DenseNet161 [127] 54.5
RTFNet [106] ResNet152 [16] 53.2

Early attempts of multimodal semantic segmentation approaches combine RGB data
and other modalities into multi-channel representations that were then fed into classical
semantic segmentation networks based on the encoder–decoder framework [128,129]. This
simple early fusion combination strategy is not too effective because it struggles to capture
the different type of information carried by the different modalities (e.g., RGB images
contain color and texture, whereas the other modalities typically better represent the spatial
relations among objects). Within this reasoning, feature-level and late-fusion approaches
have been developed. Fusion strategies have typically been categorized in early, feature
and late-fusion strategies, depending on the fact that the fusion happens at the input level,
in some intermediate stage or at the end of the understanding process. However, most
recent approaches try to get the best of the three modalities by performing multiple fusion
operations at different stages of the deep network [98,115,118].

A very common architectural choice is to adopt a multi-stream architecture for the
encoder with a network branch processing each modality (e.g., a two-stream architecture
for RGB and depth) and additional network modules connecting the different branches
that combine modality-specific features into fused ones and/or carry information across
the branches [98,99,101]. This hierarchical fusion strategy leverages multilevel features via
progressive feature merging and generate a refined feature map. It entails fusing features
at various levels rather than at early or late stages.

The feature fusion can take place through simple operations e.g., concatenation,
element-wise addition, multiplication, etc., or a mixture of these, which is typically ad-
dressed as a fusion block, attention, or gate module. In this fashion, multi-level features
can be fed from one modality to another, e.g., in [102] where depth cues are fed to the RGB
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branch, or mutually between modalities. The fused content can either reach the next layer
or the decoder directly through skip connections [98].

The segmentation map is typically computed by a decoder taking in input the fused
features and/or the output of some of the branches. Multiple decoders can also be used
but it is a less common choice [121]. We also remark that both symmetrical approaches
(by using the same architecture for all modalities) and asymmetrical ones (setting a main
modality from which the output is computed and by using the others as side information)
have been proposed. Finally, the loss function can be just the cross-entropy, or any other
loss for semantic segmentation on the output maps. Furthermore multi-task strategies
employing different losses on the estimate of some of the modalities from others have also
been proposed as further described in the following sub-sections [97,103].

4.1. Semantic Segmentation from RGB and Depth Data

Wang et al. [100] claim that typical methods relying on fusing the multimodal features
into one branch in a hierarchical manner are still lacking rich feature interactions. They
design a bidirectional fusion scheme (AsymFusion) wherein they maintain the two branches
with shared weights and promote the propagation of informative features at later fusion
layers by making use of an asymmetric fusion block (see Figure 4). In their architecture,
the encoders of the two modalities are sharing convolutional parameters (except for the
batch normalization layers which are modality-specific) and at each layer a mutual fusion
is performed introducing two operations: channel shuffle and pixel shift. The authors hold
that features fused by symmetrical fusion methods at both branches tend to learn similar
representations, therefore asymmetric operations might be significant. To avoid bringing
redundant information at both the encoder branches, channel shuffle fuses two features by
exchanging features corresponding to a portion of channels, whereas pixel shift constantly
shifts one pixel on a feature map introducing zero padding.

Shuffle

Shuffle

x₁ x₂

ShiftShift

Conv 1x1

Conv 3x3

Conv 1x1

Conv 1x1

Conv 3x3

Conv 1x1

Shuffle

x₁

x₂

x₁

x₂

Shift

x₁

x₂

x₁

x₂

Figure 4. Asymmetric fusion block of [100].

Chen et al. [101] propose a unified and efficient cross-modality guided encoder whose
architecture is depicted in Figure 5. It not only effectively re-calibrates RGB feature re-
sponses, but also takes into account the noise of the depth and accurately distills its infor-
mation via multiple stages, alternately aggregating the two re-calibrated representations.
The separation-and-aggregation gate (SA-Gate) is designed with two operations to ensure
informative feature propagation between modalities. Formerly, feature re-calibration is
performed for each individual modality. It is then followed by feature aggregation across
modality boundaries. The operations are classified as feature separation and feature combi-
nation. The first consists of a global average pooling along the channel-wise dimensions
of two modalities, which is followed by concatenation and a MLP operation to obtain
an attention vector. This operation finds its motivation in filtering out exceptional depth
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activations that may overshadow confident RGB responses, reducing the probability of
misleading information propagation. The same principle is implemented as a re-calibration
step in a symmetric and bi-directional manner. Feature combination generates spatial-wise
gates for both modalities to control information flow of each modality feature map with a
soft attention mechanism. At each layer, the normalized output of the SA-Gate is added to
each modality branch; thus the refined result will be passed on to the encoder’s next layer,
resulting in more precise and efficient encoding of the two modalities.

RGB

HHA

OUT

Figure 5. Figure from [101] showing its cross-modality feature propagation scheme. Adapted with
authors’ permission from [101]. Copyright 2020, Springer Nature Switzerland AG.

Valada et al. [98] present a multimodal fusion framework that incorporates an atten-
tion mechanism for effectively correlating multimodal features at mid- and high levels,
and for better object boundary refinement (see Figure 6). Each modality is individually
fed into a computationally efficient unimodal semantic segmentation architecture, Adap-
Net++ [105], that includes a strong encoder with skip refinement phases, as well as an
efficient atrous spatial pyramid module and a decoder with multiscale residual units. By
using the proposed Self-Supervised Model Adaptation (SSMA) block, the encoder uses
a late fusion approach to join feature maps from modality-specific streams. In the SSMA
block, the features are concatenated and re-weighted through a bottleneck which is used
for dimensionality reduction and to improve the representational capacity.

Vachmanus et al. [88] adapt the SSMA architecture with the addition of another
parallel bottleneck, with the aim of better capturing the temperature feature in snowy
environments. To this end, they introduced two thermal datasets, SRM and SSW (see
Table 2), while still testing their network on depth data.

A similar approach is presented in the work by Zhang et al. [109], wherein the modali-
ties are mixed together in a central branch through cross-attention mechanisms. Differently
from SSMA, the weighting is performed in each branch separately and the features mixed
correspond to the re-weighted outputs. Moreover, the final prediction is performed ex-
ploiting a statistics-aware module, able to extract more meaningful information from the
concatenated multi-resolution features.

Figure 6. Figure from [98] that explains the work’s multimodal semantic segmentation scheme.
Reprinted with permission from the authors of [98]. Copyright 2019, Springer Nature Switzerland AG.
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Deng et al. [104] adapt the SSMA model and propose an interactive fusion structure
to compute the inter-dependencies between the two modality-specific streams and to
propagate them through the network. Their residual fusion block (RFB) is composed of
two residual units and a gating function unit which adaptively aggregates the features
and generates complementary ones. These are fed to the residual units as well as the next
layer. In this way, the gating unit exploit the complementary relationship in a soft-attention
manner (see Figure 7).

x (Fuse)

x₁ (RGB)

x₂ (Depth)
RFB Block

⊙ ⊗
⊗ ⊙

⊙

⊙

⊗

⊗

Figure 7. Architecture of the modified version of SSMA proposed by [104].

Seichter et al.’s [102] contribution, although mainly intended for indoor scenes,
achieves good segmentation performance in outdoor settings as well. They target an
efficient segmentation for embedded hardware, rather than by using high-end GPUs,
meaning that their two branches encoder (depicted in Figure 8) is optimized to enable
much faster inference than a single deep unimodal encoder. The depth encoder provides
geometric information to the RGB one at several stages by using an attention mechanism.
The latter aims for understanding which modality to focus on and which to suppress. It
consists in an addition between the features reweighted through a squeeze-and-excitation
(SA) module [130].

A similar approach is presented by Sun et al. [106], wherein the SA blocks and con-
catenation are used to merge the features into the RGB branch at multiple levels.

x₁ (RGB)

x₂ (Depth)

Conv

x₁ (RGB) x₂ (Depth)

Pool

⊗ ⊗

ResNet
Block

x₁ (RGB) x₂ (Depth)

……
N branch

Upsample

⊙

OUT

Multi-Scale Out

Residual 
Block

Figure 8. Two branches encoder architecture proposed in [102].

Kong et al. [103], differently from the common multi-scale approaches, exploit the
benefit of processing the input image at a single fixed scale, but performing pooling at
multiple convolutional dilate rates. Semantic segmentation is carried out by combining
a CNN, used as a feature extractor, and a recurrent convolutional neural network, that
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includes a depth-aware gate. The gating module selects the size over which the features
must be pooled, following the idea that larger depth values should have a smaller pooling
field to precisely segment small objects. The module works with either estimated depth
(“raw” measurements) or directly from monocular cues. A graphic representation of the
fusion architecture may be found in Figure 9.

x₁ (RGB)

CNN Backbone

⊙

DA-Gate

x₂ (Depth)

⊗⊙ OUT

Recurrent Connection

Figure 9. Fusion architecture proposed in [103].

Gu et al. [97] take a similar approach in the self-estimation of depth, noting how such
information is not always available in real case scenarios. Therefore in their network (LWM)
they establish a depth-privileged paradigm in which depth is provided only during the
training process (Figure 10). They pay special attention to hard pixels, which are defined
as pixels with a high probability of being misclassified. For this reason, they employ
at different multi-scale outputs a loss weight module whose aim is to generate a loss
weight map by additively fusing two metrics: depth prediction error and depth-aware
segmentation error. The latter have the objective of measuring the “hardness” of a pixel.
In the first case, for example, when the depth of two adjacent objects with a considerable
distance gap is mispredicted, the delineation of the depth boundary between them may fail,
resulting in the segmentation error. In the other, a local region of similar depth becomes a
hard region when the categories of distinct subregions are confused due to similar visual
appearance. Their network is based on a multi-task learning framework, which has one
shared encoder branch and two distinct decoder branches for the segmentation and depth
prediction branches. The final output, as well as four side outputs of the segmentation
decoder branch, are feeded to the loss weight module.

x₁ (RGB)

x₂ (Depth)

⊙ OUT

LWM Module (loss)
x₂ (pred)
x₂ (gt)

OUT
GT Ls

R

Z

⊛

⊗

Lh

Figure 10. Architecture of [97], exploiting the LWM module.

Rashed et al. [108] focus on sensor fusion for an autonomous driving scenario wherein
the dense depth map and the optical flow are considered. They establish a mid-fusion
network (MDASS) that performs feature extraction for each modality separately and
combines the modality cues at feature-level by using skip connections. In their experiments,
they try to fuse at different stages by using a combination of two or three modalities. In
addition, they analyzed the effect of using the ground truth measurement or a monocular
depth estimate. A graphic representation of the architecture is available in Figure 11.
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Figure 11. Architecture of [108] where the parallel, multimodal architecture is reported. Reprinted
with permission from [108]. Copyright 2019, IEEE.

Liu et al. [99] propose an architecture (CMX, Figure 12) whose fundamental goal is to
achieve enough flexibility to generalize across various multi-modal combinations (their
approach is not limited to the fusion of RGB and depth data). They do so by exploiting a
two-stream network (RGB and X-modality) with two ad-hoc modules for feature interaction
and fusion: the cross-modal feature rectification module leverages the spatial and channel
correlations to filter noise and calibrate the modalities, and the fusion module merges the
rectified features by using a cross-attention mechanism. The latter finds its motivation
behind the success of vision transformers and it is modeled into two stages. In the first
stage, a cross-modal global reasoning is performed via a symmetric dual-path structure,
and in the second stage a mixed channel embedding is applied to produce enhanced output
features. The authors achieved remarkable results not just in fusing depth with RGB color,
but also in fusing thermal data with color information.
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Figure 12. Figure from [99] where the CMX architecture and its modules are shown. Reprinted with
permission from the authors of [99]. Copyright 2022, H. Liu.

4.2. Semantic Segmentation from RGB and LiDAR Data

LiDAR acquisitions offer an accurate spatial representation of the physical world.
However, the pointclouds from these sensors are relatively sparse and lack color informa-
tion, which results in a significant classification error in fine-grained segmentation [42].
Due of the sparsity and irregular structure of LiDAR data, the combination with standard
camera data for multimodal sensor fusion remains a challenging problem. A possible
workaround is to obtain a dense pointcloud by merging multiple LiDAR sensors as in the
work by Pfeuffer et al. [77] (unfortunately the employed dataset is not public). However,
most of the existing approaches use a projection of the original pointcloud over the color
frame and try to find an alignment that can be exploited for the fusion between the cross-
modality features. Pointcloud data processing has been tackled in Section 2, whereas the
main fusion strategies for LiDAR data are now described.

Zhuang et al. [107] present an approach (PMF) whereby RGB data and LiDAR’s pro-
jected data (using a perspective projection model) are fed to a two-stream architecture with
residual-based fusion modules toward the LiDAR branch (see Figure 13). The modules are
designed to learn the complementary features of color and LiDAR data (i.e., the appearance
information from color data and the spatial information from pointclouds). The output
of the network are two distinct semantic predictions that are used for the optimization
through several losses. Among them, a perception-aware loss, based on the predictions and
on the perceptual confidence, is introduced to be able to measure the difference between
the two modalities. A similar approach is proposed by Madawi et al. [119], wherein RGB
images and LiDAR data are converted to a polar-grid mapping representation to be fed
into an hybrid early and mid-level fusion architecture. The first is achieved by establishing
a mapping between the LiDAR scan points and the RGB pixels. The network is composed
of two branches. The first uses the LiDAR measurements, whereas in the second the RGB
images are concatenated with the depth and intensity map from LiDAR. The features from
the two streams are then fused additively at different levels of the upsampling by using
skip connections.
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Figure 13. Figure from [107] showing the perception-aware multi-sensor fusion (PMF) architecture
and fusion module. Reprinted with permission of the authors from [107]. Copyright 2021, IEEE.

Krispel et al. [118], in the architecture we refer to as FuseSeg-LiDAR, adopt a multi-
layer concatenation of the features from the color information in a network for LiDAR data
segmentation as depicted in Figure 14. The LiDAR data is spherically projected; hence
alignment is required to enable a RGBD representation. Each RGB feature is the bilinear
interpolation from the pixels adjacent to a non-discrete position computed as the alignment
to the LiDAR range image by using a first-order polyharmonic spline interpolation.

Figure 14. Figure from [118] that explains the FuseSeg-LiDAR architecture. Reprinted with permis-
sion from the authors of [118]. Copyright 2020, IEEE.

4.3. Pointcloud Semantic Segmentation from RGB and LiDAR Data

An alternative to the computation of a semantic map in the image space is to produce
a semantically labeled pointcloud of the surrounding environment [51]. This approach is
particularly well suited for LiDAR data, which typically have this structure.

Early works following this strategy aimed at 3D classification problems, where 3D
representations were obtained by applying CNNs to 2D rendering pictures and combining
multi-view features [131]. Then the attention moved to 3D semantic segmentation for
indoor scenarios. Cheng et al. [132] proposed a method in which they back-project 2D
image features into 3D coordinates. Then the network learns both 2D textural appearance
and 3D structural features in a unified framework. The work of Jaritz et al. [133] instead
aggregates 2D multi-view image features into 3D pointclouds, and then uses a point-based
network to fuse the features in 3D canonical space to predict 3D semantic labels.

Jaritz et al. [121] provide a complex pipeline (xMUDA, see Figure 15) that can ex-
change 2D and 3D information to achieve an unsupervised domain adaptation for 3D
semantic segmentation, leveraging the fact that LiDAR is robust to day-to-night domain
shifts, and RGB camera images are deeply impacted by it. The architecture consists of a
2D and 3D network inspired by the U-Net model [134] that produces a feature vector of
length equal to the number of points in the pointcloud. To obtain such a representation for
the RGB image, the 3D points are projected to sample the 2D features at the corresponding
pixel location. Each vector is fed to two classifiers to produce the segmentation prediction
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of the modality and the complementary one, obtaining four distinct segmentation outputs.
With the aim of establishing a link between the 2D and 3D, they introduce a “mimicry”
loss between the output probabilities. Each modality should be able to predict the output
of the other. The final prediction is computed on the concatenated feature vectors of the
two modalities.

Similarly to the previous approach, Liu et al. [135] adopt a 2D and 3D network called
AUDA. Nevertheless, they believe that instead of sampling sparse 2D points in the source
domain, the domain adaptation may benefit from using the entire 2D picture. The semantic
prediction for the RGB image is achieved directly in this manner, and the calculated loss is
used as supervision for the 3D prediction. They also offer an adaptive threshold-moving
post-processing phase for boosting the recall rate for uncommon classes, as well as a
cost-sensitive loss function to mitigate class imbalance.
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N x Fuse Features
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2D→3D
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3D
Classify
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x₂ (LiDAR)

2D Network 
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⊙
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Figure 15. xMUDA [121] 2D/3D architecture.

4.4. Semantic Segmentation from Other Modalities

Even if color and 3D data are the two key sources of information for semantic under-
standing, other imaging techniques have also been exploited in combination with them.
Some recent works combine color and 3D data with thermal imaging, radar acquisitions,
and other sources of information.

Zhang et al. [115] employs a bi-directional image-to-image translation to reduce
modality differences between RGB and thermal features (ABMDRNet, depicted in Figure 16).
The RGB image is first fed to a feature extractor, then is upsampled and fed to a translation
network, which is an encoder–decoder architecture, to obtain the corresponding thermal
image. The same is done for the thermal image. The difference between the real and
the pseudoimages is used as supervision to another decoder which takes as input the
cross-modality features at multiple layers and fuses them. In their fusion strategy, the com-
plementary information is exploited by re-weighting the importance of the single-modality
features in a channel-dependent way, rather than in a spatial position-dependent way.
Additionally, two modules are designed to exploit the multi-scale contextual information
of the fused features.

Deng et al. [113] also addresses the fusion of RGB and thermal images by designing
an encoder with a two-stream architecture, wherein each convolutional layer is followed
by an attention module to re-weight the features. The idea is to enhance the difference
between modalities, given that an object at night may be invisible in RGB maps but clearly
visible in thermal maps. The information from the thermal branch is additively fused at
each layer in the RGB one.

In Zhou et al.’s GMNet [112] the multi-layer RGB and thermal features are integrated
by using two different fusion modules accounting the fact that deep-layer features provide
richer contextual information. For the latter case, they design a densely connected structure
to transmit global contextual inception data and a residual module to preserve original
information. As opposed to other similar strategies, their decoder has multiple streams
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wherein different level features are joined. The semantic prediction is decoupled in the
foreground, background, and boundary maps which all contribute to the optimization of
the model.
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Figure 16. Architecture of the approach of Zhang et al. [115].

Sun et al. [106] propose RTFNet, whereby the encoder and the decoder are asymmet-
rically designed. The features are extracted through a large encoder for each modality
whereas the upsampling is made by a small decoder. The modalities are combined into the
RGB branch at multiple levels of the encoder.

Sun et al. [117] propose a two-branch architecture, FuseSeg-Thermal (Figure 17), in
which the thermal feature maps are hierarchically added to the RGB feature maps in the
RGB encoder in the first step of a two-stage fusion. The fused feature maps, except for the
bottom one, are then fused again in the second stage with the matching feature maps in the
decoder by tensor concatenation, which is inspired by the U-Net design [134].

Figure 17. Figure from [117] showcasing the U-net-like architecture presented in the work. Reprinted
with permission from the authors [117]. Copyright 2021, IEEE.

Another similar approach, which exploits the coarse-to-fine U-Net architecture, is the
one presented by Yi et al. [110], wherein thermal and color modalities are mixed through
weights computed from multi-level attention blocks.

Similarly to previous approaches, in Xu et al. [116] a fusion module is used on the
features extracted from a two-stream encoder to feed a single decoder. The modalities are
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scaled via cosine similarity, obtaining a channel-wise normalized product, and then the
attention map is multiplied with the features that are then summed.

5. Conclusions and Outlooks

In this work, we overviewed the current approaches for multimodal road-scenes seg-
mentation, with particular attention to the imaging modalities and datasets used. Several
different approaches have been discussed and compared, showing how the combination of
multiple inputs allows for improving the performance with respect to each modality when
used alone. Even if there is a variety of different solutions, it is possible to notice a quite
common design strategy based on having one network branch for each modality and some
additional modules moving the information across them or merging the extracted features.

During our investigation, we were able to recognize some important issues that may
be worth tackling by the research community. First of all, as is common when employing
deep learning, data availability (and in particular labeled samples for supervised training)
is a big bottleneck. This is particularly critical for semantic segmentation wherein labeling
is extremely costly and the task itself is notably data-hungry. Therefore many—real and
synthetic—datasets are required for optimization. Many of them have been introduced,
but they are still far from being able to represent all the situations that can appear in a
real-world driving scenario. In particular, the shortage is more critical for thermal data,
where no “standard” large-scale dataset is currently available, precluding thorough training
and evaluation, and leaving open the question of whether the availability of more data
could make the exploitation of these sensors more effective (both alone or combined with
standard cameras). On the other hand, a field where data is abundant but that is still mostly
unexplored (due to the significant modality difference) is RGB+LiDAR fusion, especially
when exploiting the LiDAR samples as raw pointclouds and not after projection. In fact,
working in a fully three-dimensional environment can bring some additional understanding
capabilities with respect to the 2D projection given by images. Also, the fusion of radar
data with other approaches is still quite unexplored.

For the time being, there is no indication that one fusion scheme is preferable to the
others. The search for an optimal fusion architecture is often driven by empirical results. In
turn, current metrics compare the networks’ accuracy on the semantic prediction directly
rather than considering multi-modal resilience. The formulation of a metric for assessing
multi-modal network robustness could help future improvements.
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Abbreviations
The following abbreviations are used in this manuscript:
A2D2 Audi Autonomous Driving Dataset.
CV Computer Vision.
DARPA Defense Advanced Research Projects Agency.
DDAD Dense Depth for Autonomous Driving.
dToF Direct Time-of-Flight.
FCN Fully Convolutional Network.
FoV Field-of-View.
FPN Feature Pyramid Network.
GNSS Global Navigation Satellite Systems.
GPS Global Positioning System.
IMU Inertial Measurement Unit.
iToF Indirect Time-of-Flight.
LiDAR Light Detection and Ranging.
mIoU mean Intersection over Union.
MLP Multi-Layer Perceptron.
MSSSD Multi-Spectral Semantic Segmentation Dataset.
MVSEC MultiVehicle Stereo Event Camera.
NLP Natural Language Processing.
PoV Point of View.
RADAR Radio Detection and Ranging.
SELMA SEmantic Large-scale Multimodal Acquisitions.
SGM Semi-Global Matching.
SRM Snow Removal Machine.
SS Semantic Segmentation.
SSMA Self-Supervised Model Adaptation.
SSW Snowy SideWalk.
ToF Time-of-Flight.
VGG Visual Geometry Group.
ViT Vision Tranformers.
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