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Abstract: In recent years, propagation channel characteristics have been effectively used in several
applications such as motion sensing and position detection. Considerable attention has been paid
to channel-sounding methods that are easy to utilize using low-cost devices. This paper presents a
device-free indoor location estimation method using the spatio-temporal features of radio propaga-
tion channels using a 2.4 GHz-band three-by-three multiple-input-multiple-output (MIMO) channel
sounder developed using commodity wireless local area network (WLAN). The measurement results
demonstrated a reasonable performance of the proposed method with a small number of antennas.

Keywords: WiFi sounder; channel state information (CSI); MIMO; indoor location estimation; array
signal processing; machine learning; support vector machine (SVM)

1. Introduction

The technical development of the Internet of Things (IoT) has enhanced people’s
demand for location services. In the IoT era, position information is crucial. Among these
services, indoor positioning-as-a-service, closely related to people’s lives, has attracted a
great deal of attention. The indoor positioning system (IPS) can be widely used in home
surveillance systems, nursing care for the elderly, and patient monitoring in hospitals [1].
Most existing surveillance systems use cameras for monitoring purposes [2]. However,
these have insufficient coverage and blind areas. To improve the performance, it is neces-
sary to increase the number of cameras. However, this also brings an excessive cost and
complex configuration. Further, privacy is still a problem that cannot be ignored.

To address these problems, various methods utilizing radio waves have been con-
sidered. By capturing the fluctuation of wireless communication channel characteristics
due to a person’s movement and applying machine learning, the estimation of a person’s
position and behavior pattern can be achieved. However, positioning in an indoor envi-
ronment still has many technical challenges owing to different propagation conditions
from outdoor applications [3]. For example, angle-of-arrival (AOA)-based localization has
received great attention in the past decades. However, the major difficulty of AOA-based
positioning is the influence of multipath propagation. The complexity of estimating the
unknown channel parameters (amplitudes, delays, and angles) grows as the number of
paths increases [4]. The time-of-arrival (TOA)-based system also has many challenges in
obtaining high localization accuracy due to the difficulty of the order of one nanosecond
measuring of the TOA using low-cost hardware in multipath-rich environments. Such sys-
tems suffer from time and frequency offsets between the local clocks in different nodes [5].
Furthermore, the range-based indoor positioning system is easily degraded in non-line-of-
sight (NLOS) propagation environments [6]. In addition, the commonly used localization
technologies such as the Global Positioning System (GPS) do not work effectively (due to
low accuracy, a bad signal, and other issues) in an indoor environment owing to signal
fading and multipath effects caused by building structures. Therefore, we focused on
wireless devices that have already been widely deployed, such as WiFi (WLAN using
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IEEE802.11 standards). WiFi is widely used in homes, hotels, cafes, airports, shopping
malls, and other various types of large or small buildings, which makes it very attractive
for indoor positioning applications. The universality and affordability of WiFi devices will
enable the popularization of indoor localization systems.

Recently, various studies researching indoor localization systems using WiFi devices
have been reported. For instance, the IPS using the fingerprint method of received signal
strength indication (RSSI) has been discussed [7,8]. However, owing to the temporal and
spatial variation of the indoor environment [9], several access points (APs) are required to
improve the accuracy; moreover, the configuration would become complex [10]. Channel
state information (CSI)-based IPS has been developed [11–14]. However, owing to the
limited bandwidth of WiFi devices, several APs are required to maintain the performance of
the system [15]. Note that the latest WiFi standards allow a greater bandwidth, but no open-
source tools for CSI acquisition have been provided. Therefore, we still need to use specific
chipsets for CSI acquisition such as Qualcomm Atheros 9380/9580 and Intel 5300 [16],
which support only IEEE 802.11n. Moreover, a microwave system using an antenna array
has already been developed [17] where predetermined events are identified by monitoring
the fluctuation of the signal subspace spanned by the eigenvectors. Because the eigenvector
represents the spatial structure of the multipath propagation, spatial filtering by the first
eigenvector can reduce the effects of noise, but a large number of antennas is needed
to resolve the multipath components more precisely. In device-free localization (DFL)
techniques, the performance is significantly influenced by the strong line-of-sight (LOS)
path and is prone to bias depending on the person’s location [18].

To cope with these problems, this study developed an indoor DFL system based on
commodity WiFi devices, which achieves a reasonable performance by using machine
learning for the spatio-temporal features of wireless channels. The technical contributions
of this study are as follows. First, a 2.4 GHz-band three × three MIMO channel sounder
was developed where the channel bandwidth was extended to approximately 68 MHz by
concatenating the CSI taken at six consecutive WiFi channels to achieve high resolution
in the delay time domain. Second, we developed an indoor location estimation method
using the spatio-temporal features of multipath propagation characteristics, which were
obtained by separating the multipath components into three angle taps and two delay taps.
This can reduce the dependency of the performance on the change in the LOS path. Third,
a support vector machine (SVM) was applied to identify a person’s location.

The remainder of this paper is organized as follows. In Section 2, a channel-sounding
system based on IEEE 802.11n wireless LANs is presented. Next, we present an indoor
location estimation method in Section 3. The identification results of the sub-area where
a person is present via two measurement campaigns are presented in Section 4. This
demonstrates the performance of the proposed system and its feasibility. Finally, Section 5
concludes the paper.

2. Channel Sounding Using IEEE 802.11n Wireless LANs
2.1. IEEE 802.11n

IEEE 802.11n has been standardized [19] as a MIMO-OFDM-based wireless LAN
standard and is the successor to IEEE 802.11a/g. The backward compatibility of existing
standards provides a mixed mode [20] to achieve MIMO transmission, extending the
legacy mode. The frame format of the mixed mode is shown in Figure 1. After L-SIG
(legacy signal field), which sends wireless LAN frame information such as the total length
of the wireless LAN frame, it sends the HT-SIG (high-throughput signal field), which
includes transmission parameters for spatial multiplexing transmission. Furthermore,
after HT-STF (high-throughput short training field) and HT-LTF (high-throughput long
training field), it estimates the CSI, which is necessary for spatial multiplexing transmission.
In IEEE 802.11n, the number of subcarriers over the 20 MHz bandwidth is increased from
54 to 56. Furthermore, it provides a 40 MHz-mode using channel bonding as an option.
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Consequently, by four-stream spatial multiplexing with a 40 MHz bandwidth, it can achieve
transmission throughput up to 600 Mbps (64QAM, Code Rate 5/6).

Figure 1. Frame format of IEEE 802.11n hybrid mode.

2.2. CSI Acquisition

In this study, we used an open-source software package called the CSI tool [21] to
build our system. In IEEE 802.11n, the CSI was estimated in the receiver and then fed
back to the transmitter, so the transmitter can use the CSI to complete calibration and
beamforming. In other words, by setting the CSI estimate flag in the transmit packet, we
can manage the receiver to report the CSI estimation to the transmitter. The CSI tool is
a device driver for the Atheros network interface cards (NICs), ath9k (kernel module),
to extract the CSI using IEEE 802.11n. In the CSI tool, the transmitter repetitively sends the
CSI estimate flag packet for CSI acquisition, and the receiver reports the CSI acquisition
result to the user space program whenever the CSI is acquired. Here, the CSIs acquired for
every combination of transmitter and receiver antennas are estimated as complex numbers
for 56 subcarriers, including transmitter/receiver characteristics, propagation channel
characteristics, and antenna characteristics.

The CSI report in one packet transmitted with a bandwidth of 20 MHz is obtained
in the form of a complex matrix of size NR × NT × NC; if the number of antennas at the
receiver and transmitter is NR and NT , respectively. Furthermore, information such as
the timestamp, channel number, transmission rate, number of antennas (NR, NT), number
of sub-carriers NC, noise floor, PHY error, the received signal strength indicator (RSSI)
of every antenna at the receiver, and the length of the payload is added. Because the
real and imaginary parts of the CSI are each represented by 10 bits, their amplitude is
automatically scaled according to the magnitude of the received power. Further, the phase
of CSI fluctuates independently for each packet, but the amount of offset is common to all
subcarriers (common phase offset).

2.3. MIMO Channel Sounding

Figure 2 shows the MIMO transceiver configuration of the IEEE 802.11n wireless
LAN. The stream parser creates Nst spatial streams from the encoded bit stream, and the
quadrature is modulated to the symbol stream by constellation mapping. The transmitter
can send Nst (≤ rank(H) ≤ min(NT, NR)) parallel streams, where NT and NR denote the
number of antennas in the transmitter and receiver, respectively. Then, the spatial streams
are shifted cyclically by cyclic delay diversity (CDD), extending the communication area by
transmitting the same signal at different carrier frequencies. This prevents beamforming
that might be made in a specific direction when all the antennas send the signal with
common header information. Spatial mapping (SM) is performed when the number of
antennas is larger than the number of spatial streams (NT > Nst). The frequency samples of
each transmission branch are transformed into time-domain signals by the inverse Fourier
transform and are transmitted simultaneously by all antennas.
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Figure 2. IEEE 802.11n transceiver configuration.

The MIMO propagation channel matrix H is estimated using the training signal (HT-
LTF), which is contained in the frame format as shown in Figure 1. Figure 3 shows the block
diagram of the three × three MIMO channel-sounding system. Assuming that the number
of spatial streams and the number of transmit antennas are the same (NT = Nst = 3),
the received signal vector at the kth (k = 1, . . . , Nc = 56) sub-carrier is expressed as:

y(k) = GagcH(k)Φ(k)dx(k) + n(k) ∈ C3×1 (1)

where Gagc, H(k), and Φ(k) denote the gains of the automatic gain control (AGC), MIMO
channel matrix, and CDD matrix, respectively. They are expressed as:

Gagc = diag
([ √

Gagc,1
√

Gagc,2
√

Gagc,3
]T
)

, (2)

H(k) =

 H(k)
11 H(k)

12 H(k)
13

H(k)
21 H(k)

22 H(k)
23

H(k)
31 H(k)

32 H(k)
33

, (3)

Φ(k) = diag
([

1 e−j 2π
Nf

δ2k e−j 2π
Nf

δ3k
]T
)

, (4)

where x(k) is the transmitted signal and n(k) =
[

n(k)
1 n(k)

2 n(k)
3

]T
is the noise vector.

Here, δ2 and δ3 are specified as δ2 = 8 (400 ns) and δ3 = 4 (200 ns), and Nf is the number of
FFT points and is set to 64.

Figure 3. Three times three MIMO channel sounding.
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To separate the transmitted signals from multiple transmitting antennas, the sig-
nal x(k) is transmitted four times with each transmitting antenna by setting d as d[1] =[

1 1 1
]T , d[2] =

[
−1 1 1

]T , d[3] =
[

1 −1 1
]T , d[4] =

[
1 1 −1

]T in
Equation (1), then the matrix of the received signal can be obtained as:

Y (k) = GagcH(k)Φ(k)Dx(k) + N(k) ∈ C3×4, (5)

where:

Y (k) =
[

y(k)[1] y(k)[2] y(k)[3] y(k)[4]
]
, (6)

N(k) =
[

n(k)[1] n(k)[2] n(k)[3] n(k)[4]
]
, (7)

and:

D =

 1 −1 1 1
1 1 −1 1
1 1 1 −1

. (8)

Then, the CSI is obtained using Equation (5) as:

Ĥ(k)
CSI = Y (k)D−1/x(k). (9)

Note that unlike data transmission, the signal-to-noise power ratio (SNR) should
sufficiently be large in channel sounding because the target to be discovered is not data,
but the unknown radio channel. However, in a low-SNR regime, the SNR can be improved
by taking the average of the channel snapshots under the static channel condition. It is
necessary to remove the effects of the amplifier and CDD to obtain the MIMO channel
matrix, which is expressed as:

Ĥ(k)
= G−1

agcĤ(k)
CSIΦ̄

(k). (10)

Owing to the nonlinear distortions of the transmitter and receiver circuits in the CSI,
further calibration to Equation (10) is required.

2.4. Developed System

The bandwidth of IEEE 802.11n is approximately 20 MHz with an optional 40 MHz
mode. Therefore, the delay time resolution is theoretically limited to 50 ns (=1/20 MHz),
which is not sufficient to apply WiFi to sensing with subtle variation of the propagation path.
Bandwidth expansion with channel bonding has been proposed [22], and the toolkit has
been published as open-source [23]. Utilizing this toolkit, the channel bandwidth could be
extended to approximately 67.8125 MHz (delay resolution: approximately 15 ns, distance
resolution: approximately 4.5 m) by concatenating the CSIs taken at six consecutive WiFi
channels, as shown in Figure 4.
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Figure 4. Bandwidth extension by six-channel bonding.

2.4.1. System Configuration

The system specifications are listed in Table 1. Two Linux PCs equipped with an
Atheros AR9380 WLAN card were used for the transmitter and receiver, as shown in
Figure 5. To extend the bandwidth, fifty packets are transmitted and received continuously
at every channel while sweeping the channel from 1 to 11 at two-channel intervals. Sepa-
rately averaging the amplitude and phase of the CSI value at each subcarrier filters out
abrupt fluctuations and improves the SNR. Here, the beacon interval was set to a minimum
value of 15 ms for fast channel switching.

Table 1. System setup.

Item Values

Hardware Linux (Kernel 4.1 Modified version) PC× 2
(equipped with Rabortw AR9380 WiFi card)

Software AP (transmitter): hostapd, hostapd_cli
STA (receiver): WPA_supplicant

1 ch (2412 MHz), 3 ch (2422 MHz),
WiFi channels 5 ch (2432 MHz), 7 ch (2442 MHz),

9 ch (2452 MHz), 11 ch (2462 MHz)

Sub-carriers 217

Extend bandwidth 67.8125 MHz (bonded by 6 channels)

Beacon interval 15 ms (usually, 100 ms)

Packet transmission method Send 50 packets in a row, and wait for 50 ms
Repeat while switching channels
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(a)

(b)

Figure 5. Developed channel sounding system. (a) Hardware setup. (b) Software.

2.4.2. Back-To-Back Calibration

The phase variation of the CSI occurs because of hardware imperfections such as
the nonlinear distortion of the amplifiers, power control uncertainty, and phase ambigu-
ity [22,24], which should be removed to obtain the genuine propagation channel character-
istics. However, because the six CSIs taken at consecutive WiFi channels are concatenated
to extend the bandwidth, it is necessary to calibrate the inter-channel discontinuity in the
amplitude and phase values.

To remove the hardware imperfections contained in the CSI, we measure the system
characteristics including the hardware imperfection in advance by back-to-back measure-
ment. This measurement is conducted by connecting the transmit and receive antenna ports
directly via an RF cable with known characteristics. We then obtain the channel transfer
function by dividing the CSI by the system characteristics, which is called back-to-back
calibration (B2B calibration). Here, CSI Ĥ(k)

CSI,B2B,j,i is obtained by connecting the ith transmit
and jth receive antenna ports directly with a cable and is performed for every antenna
combination. The MIMO channel matrix can be obtained as:

Ĥ(k)
j,i =

Ĥ(k)
CSI,j,i/

√
Gagc,j

Ĥ(k)
CSI,B2B,j,i/

√
Gagc,B2B,j

ej 2π
Nf

δik, (11)
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where Gagc,j denotes the gain of the AGC amplifier of the jth receiving branch. It is assumed
that the values of the denominator in Equation (11) should usually be measured in advance
(upon initial setup). In commodity WiFi devices, the AGC amplifier operates automatically
according to the received signal level to maintain the signal power at a certain level; thus,
the CSI values are scaled as in Equation (11). The gain of the AGC amplifier can be deduced
by referring to the amplitude of the CSI and RSSI as:

Gagc,j =
1
Pj

10
RSSIj

10 , (12)

where Pj = E
[
|y(k)j |

2
]
.

The B2B calibration allows the CSIs acquired on multiple channels to be connected
continuously because the phase and amplitude should become zero and unit after calibra-
tion. However, a phase jump occurs between adjacent channels owing to the independent
random offset of the CSI phase characteristics in every packet. This can be removed by
calculating the inter-channel phase difference using overlapped sub-carriers in adjacent
channels. The amplitude of each channel also fluctuates owing to the AGC gain uncertainty.
Using the averaged values of the overlapped subcarriers, the amplitudes were concatenated
smoothly. The calibration procedure is shown in Figure 6a,b.

(a)

Figure 6. Cont.
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(b)

Figure 6. B2B calibration. (a) Calibration procedure. (b) Calibration result.

2.5. Evaluation

The channel impulse response test was conducted for system validation purposes.
An unmatched T-junction (BL41-6203-00, Orient Microwave Corp.) [25] was used for the
measurements. Figure 7a shows the measurement configuration. Transmitter antenna
port 1 (Tx1) was connected to a power splitter. Port 1 of the splitter was connected to
receiver antenna port 1 (Rx1), which was used for the reference measurement. Port 2 of the
splitter was connected to port A of the T-junction, and the signal from port B was input
to receive antenna port 2 (Rx2). Here, port C was connected to a 6 m cable that left the
end opened, which generated reflected waves at the cable end. The attenuation per 1 m of
the cable used (Enviroflex_316, Huber Shuner, Corp.) [26] was approximately 1.62 dB/m.
The measurement results are shown in Figure 7b. Only direct waves were observed
in Tx1-Rx1, and the first reflected wave from the cable end could also be observed in
Tx1-DUT-Rx2, which was in good agreement with the calculated value. Here, the calculation
was done considering the propagation speed of electromagnetic waves in coaxial cables to
be about 77 % of that in a vacuum and the path length and attenuation rate of the cable
(delay time: 12

3×108×0.77 = 52 ns, power attenuation: 12× 1.65 = 20 dB).
To evaluate the inter-channel phase stability, the Tx1 signal was distributed to Rx1, Rx2,

and Rx3 using a splitter. After B2B calibration, two-hundred ten channel transfer functions
were obtained. The variation of ∠Ĥ2,1 and ∠Ĥ3,1 based on the reference value of Ĥ1,1 is
shown in Figure 8. The left figure shows the relative phase difference of 217 sub-carriers
for 210 time samples, and the right figure shows the phase difference of all sub-carriers
acquired for 210 time samples. It can be seen that the phase variation was less than
approximately 20 degrees.
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(a) (b)

Figure 7. DUT test. (a) DUT test setup. (b) DUT test result.

Figure 8. Phase stability.

3. DF Indoor Location Estimation

The DF indoor location estimation system was developed using the WiFi sounder
described above. The receiving antennas were arranged linearly at approximately 6.3 cm in-
tervals (half-wavelength of the minimum frequency 2.403 GHz). The bandwidth-broadened
channel impulse responses were obtained by concatenating the CSIs taken at six consecu-
tive WiFi channels to extend the bandwidth to approximately 68 MHz (delay resolution:
approximately 15 ns, distance resolution: approximately 4.5 m).

3.1. Experiment Scenario

The experiment was conducted in a small office and a medium-sized conference room.
The measurement specifications are presented in Table 2. Note that WiFi communication
was performed between the access point (AP) and station (STA) fixed in the environment,
and a target person moving in the environment was not equipped with any device. Here,
the CSI was acquired 10 times for each target position and averaged to reduce the effects
of noise.
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Table 2. Measurement specifications.

Room Type Small Office Conference Room

Size 4.0×4.6 (m2) 7.8×8.8 (m2)

Bandwidth 67.813 MHz (6 channel bonding)

Transmitting antennas 1 2

Receiving antennas 3-element linear array

Element pattern Omni-directional

3.1.1. Small Office

The room model of the small office and the position of the antenna are as shown in
Figure 9a,b. The receiving and transmitting antennas were placed at a height of 0.9 m and
1.9 m, respectively. For this environment, thirty CSIs were captured while a person moved
randomly in a sub-area; thus, one-hundred eighty samples were captured in total.

(a) (b)

(c)

Figure 9. Small office condition. (a) Room model. (b) Antenna position. (c) Defined area.

3.1.2. Conference Room

The room model of the conference room and the position of each antenna are shown in
Figure 10a,b. The receiving antenna was a 3-element linear array placed at a height of 2.0 m.
One transmitting antenna (Tx1) was placed at a height of 0.9 m inside the room, and one
antenna (Tx2) was placed at a height of 1.6 m outside the room. In this environment, the CSI
was captured at each position when a person moved along a predetermined route. Here,
the person moved at 0.5 m intervals with a random orientation. One-hundred fifty-one
CSIs were captured in total.
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(a) (b)

(c)

Figure 10. Conference room condition. (a) Room model. (b) Antenna position. (c) Human position.

3.2. Signal Processing

The array output y(t) of the K-element linear array is expressed as:

y(t) = wHx(t), (13)

x(t) = [x1(t), x2(t), · · · , xK(t)]
T , (14)

w = [w1, w2, · · · , wK]
T . (15)

where [·]H denotes the complex conjugate transpose and x(t) and w denote the input signal
and the weight of each antenna, respectively. Then, the output power can be expressed as:

Pout =
1
2

E
[
|y(t)|2

]
=

1
2

wH Rxxw. (16)

where Rxx denotes the correlation matrix of the received signal and is expressed as:

Rxx = E
[

x(t)xH(t)
]
. (17)

To direct the main beam of the array antenna to an arbitrary angle φ, each weight expressed
in Equation (15) can be set as:

wk = exp
(
−j

2π

λ
dk sin φ

)
, (18)

then the weight vector can be expressed as:

w =

[
exp

(
−j

2π

λ
d1 sin φ

)
, · · · , exp

(
−j

2π

λ
dK sin φ

)]T
≡ a(φ). (19)

Here, a(φ) denotes the mode vector, and angle φ is a variable. Then, the output power
is expressed as:

Pout =
1
2

aH(φ)Rxxa(φ). (20)
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3.2.1. Existing Method

This subsection describes an existing method that uses spatial features [17]. We
assumed that L waves were arriving from angles θ1, · · · , θL. According to Equation (14),
the array signal can be expressed as:

x(t) = As(t) + n(t), (21)

A = [a(θ1), · · · , a(θL)], (22)

where A denotes the direction matrix, a(φ) denotes the mode vector defined by
Equation (19), and s(t) and n(t) denote the signal vector and internal noise, respectively.
We assumed that the internal noise component was independent in each antenna with
mean = 0 and variance = σ2. Then, the correlation matrix of the input signal is ex-
pressed as:

Rxx = E
[

x(t)xH(t)
]
= ARss AH + σ2 I. (23)

The eigenvalue λk and eigenvector ek (k = 1, 2, · · · , K) can be obtained via the eigen-
value decomposition (EVD) of the correlation matrix Rxx, which satisfies the
following equation:

Rxxek = λkek (k = 1, 2, · · · , K). (24)

Then, Equation (23) can be expressed as:

Rxx = EΛEH =
K

∑
k=1

λkekeH
k , (25)

where:
E := [e1, e2, · · · , eK], (26)

Λ := diag{λ1, λ2, · · · , λK}. (27)

Since Rxx is a Hermitian matrix, the eigenvalues can be sorted as:

λ1 ≥ λ2 ≥ · · · ≥ λL ≥ λL+1 = · · · = λK = σ2. (28)

Because rank
[

ARss AH
]
= 1, the eigenvalue distribution is:

λ1 > λ2 = · · · = λL > λL+1 = · · · = λK = σ2. (29)

Thus, the space spanning by the eigenvector matrix E can be separated into a signal
subspace and a noise subspace.

The first eigenvalue separated by the process above and the corresponding vector (first
eigenvector) were used in machine learning. The feature value for machine learning [17] is
expressed as:

P = |vH
0 · v|, (30)

Q = 1−
λ′ − λ′0

λ′0
, (31)

v := e1 ∝ a(φ), (32)

λ′ := λ1, (33)

where v0 and λ′0 denote the first eigenvector and first eigenvalue obtained in advance,
respectively. The first eigenvector is considered the optimal weight vector for the maximum
ratio combination to maximize the output SNR. Therefore, it is strongly influenced by
the direct wave. However, there is a problem in that the features hardly fluctuate when
blocking the multipath component with low power.
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3.2.2. Proposed Method

To address the problem mentioned above, we proposed a method that treats the multi-
path components separately in the delay time domain and beam space. Here, beamforming
with three orthogonal beams was used to separate the multipaths in the three beamspaces.
The output signal obtained at multiple delay taps and multiple beamspaces is expressed as:

ym,n(t) = wH
m xn(t) = γm,n(t)ejθm,n, (34)

where wm ∈ C3×1 denotes the weight vector for the mth orthogonal beam (m = 1, 2, 3)
and xn(t) ∈ C3×1 denotes the nth delay tap of the channel impulse responses (n = 1, 2).
The weight vector is obtained by (18) where φ ∈ {−42◦, 0◦, 42◦}, and the beam patterns are
as shown in Figure 11a. The target space was divided into three parts to receive multiple
waves. γ and θ denote the resulting amplitude and phase, respectively. Figure 11b shows
the condition when the single-bounce reflection wave is blocked by a human body. Here,
because the multipath components were treated separately and received, its fluctuation
can be detected when blocked, as seen in Figure 11c. Finally, the amplitude and phase of
the received signal obtained at multiple delay taps and multiple beamspaces were used as
spatio-temporal feature values for machine learning.

(a) (b)

(c)

Figure 11. Concept of the proposed method. (a) Beam pattern. (b) Event detection. (c) Multipath separation.

4. Result and Discussion

The machine learning used to create the classification model was the support vector
machine (SVM) [27,28] and random forest [29]. The implementation used scikit-learn [30]
Python [31] library and the hyperparameters for the model were determined by a frame-
work called Optuna [32]. Figure 12 shows the impulse response captured by the WiFi
channel sounder under different conditions (with and without a person). It was observed
that the channel bonding extended the delay resolution to approximately 15 ns. Therefore,
the first delay tap was set to 0 ns, and the second delay tap was set to approximately 15 ns
considering the dimension of the room.
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(a) (b)

Figure 12. Fluctuation of the impulse response. (a) Without a human. (b) With a human.

4.1. Small Office

Figure 13a shows the features obtained by the existing method in the same office.
Here, the first eigenvector and the first eigenvalue obtained in the environment without
a person were used as reference data to calculate the features. The features, P, which are
the correlation of the eigenvector obtained in environments with and without a person,
fluctuated significantly in three locations, in Area 1 due to the shielding effect of the direct
wave. However, Areas 3 and 0 were relatively stationary compared to Area 1, even though
the direct wave also passed these areas due to the height of the transmitting antenna, which
was higher than the subject. Therefore, the direct wave might not be shielded in Area 3
and not completely shielded depending on the orientation of the person’s body in Area 0.

Figure 13b shows the features obtained by the proposed method in a small office.
The solid and dotted lines denote Delay Taps 1 and 2, respectively. The colors blue, orange,
and green represent Beams 1, 2, and 3, respectively. Relatively large phase fluctuations can
be seen on the first delay tap of Beam 1, as the direct wave was shielded. Furthermore,
many fluctuations can also be confirmed at the second delay tap, which was considered to
be the result of shielding the single-bounce reflection wave showing that the events can be
detected even when multiple waves with a small power were blocked.

The classification results of the existing and proposed methods are shown in Figure 14.
The classification was performed using the support vector machine. For the existing
method, the success rate was 35.8%. The average F-score was 0.31, which was not correctly
classified due to insufficient features, feature P being relatively stationary. For the proposed
method, the success rate and average F-score improved to 64.5% and 0.63, respectively.
However, misclassification occurred and was considered to be due to the effect of similar
propagation channel conditions, which could improve if the specific area of the room,
such as the area covered by the sofa, table, and corridor, were well-defined rather than
considering the room to be equally divided.

(a)

Figure 13. Cont.
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(b)

Figure 13. Features of the small office. (a) Existing method. (b) Proposed method.

(a) (b)

Figure 14. Classification result. (a) Existing method. (b) Proposed method.

4.2. Conference Room

Figure 15 shows the features obtained by the proposed method in the conference
room. As shown in Figure 15b, the amplitude of Tx2 fluctuated as it was placed outside the
room and was greatly affected by noise. The classification results are shown in Figure 16a.
The success rate was 88.2, and the average F-score for each area was 0.84. Here, the features
of 76 positions were used to build the machine learning model, and the rest were used as
test data. Notably, the positions of each area were randomly selected. However, the ratio
of positions used for training to those used for prediction should be the same. As shown in
Figure 16b, most of the misclassified positions were near the subarea boundary.

(a)

Figure 15. Cont.
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(b)

Figure 15. Features of the conference room. (a) Features of Tx1. (b) Features of Tx2.

(a) (b)

Figure 16. Classification result. (a) Classified position. (b) Misclassified position.

5. Conclusions

In this study, a three-by-three MIMO channel sounder was built, and the CSI taken
at six consecutive WiFi channels was concatenated to extend the bandwidth and improve
the delay time resolution. Based on this, a practical indoor location estimation system was
proposed to cope with the problem that the features are significantly influenced by the
strong LOS path. Then, we experimented with a small office and a conference room, and the
results of person position estimation by machine learning were presented. The classification
result showed that a rough classification of the subarea in a room where a target person is
present is possible using a commodity WiFi device.
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