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Abstract: In recent decades, wireless sensor networks (WSNs) have become a popular ambient
sensing and model-based solution for various applications. WSNs are now achievable due to the
developments of micro electro mechanical and semiconductors logic circuits with rising computa-
tional power and wireless communication technology. The most difficult issues concerning WSNs are
related to their energy consumption. Since communication typically requires a significant amount
of energy, there are some techniques/ways to reduce energy consumption during the operation of
the sensor’s communication systems. The topology control technique is one such effective method
for reducing WSNs’ energy usage. A cluster head (CH) is usually selected using a topology control
technique known as clustering to control the entire network. A single factor is inadequate for CH
selection. Additionally, with the traditional clustering method, each round exhibits a new batch of
head nodes. As a result, when using conventional techniques, nodes decay faster and require more
energy. Furthermore, the inceptive energy of nodes, the range between sensor nodes and base stations,
the size of data packets, voltage and transmission energy measurements, and other factors linked to
sensor nodes are also completely unexpected due to irregular or hazardous natural circumstances.
Here, unpredictability represented by Triangular Fuzzy Numbers (TFNs). The associated parameters
of nodes were converted into crisp ones via the defuzzification of fuzzy numbers. The fuzzy number
has been defuzzified using the well-known signed distance approach. Here, we have employed a
multi-criteria decision-making (MCDM) approach to choosing the CHs depending on a bunch of
characteristics of each node (i) residual energy, (ii) the number of neighbors, (iii) distance from the
sink, (iv) average distance of cluster node, (v) distance ratio, and (vi) reliability. This study used
the entropy-weighted Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS)
approach to select the CH in WSNs. For experiments, we have used the NSG2.1 simulator, and based
on six characteristics comprising residual energy, number of neighbor nodes, distance from the sink
or base station (BS), average distance of cluster nodes, distance ratio, and reliability, optimal CHs
have been selected. Finally, experimental results have been presented and compared graphically with
the existing literature. A statistical hypothesis test has also been conducted to verify the results that
have been provided.

Keywords: wireless sensor networks; base station; TOPSIS; entropy; multi-criteria-decision-making;
NSG2.1 simulator; NS2 simulator

1. Introduction

WSNs have become popular as model-based ambient sensing solutions for various
applications. Due to the advancements in microelectromechanical logic circuits, semicon-
ductor logic circuits, growing computing power and communication capabilities, wireless
sensor networks have recently become more popular. A WSN is mainly composed of
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sensor devices from different geographical locations. The sensor node may perform some
functionalities, including accumulating sensed information and communicating with other
interconnected sensors [1]. Various WSN development efforts aim to address sensor nodes’
design, implementation, and deployment issues depending on a specific need for mon-
itoring and sensing in real-time applications. A WSN type casting depends on the type
of environment in which it is applied, like environment monitoring [2], industrial ap-
plications [3], surveillance [4], military applications, automation in transportation, and
healthcare systems [5]. It has been observed that a WSN comprises of many detecting nodes
and a base station (BS). The detecting nodes must transmit data to the base station through
diverse areas. Source and sink are other names for the BS and the sensing node, respectively.
The sink must gather and analyze the data from all source nodes in the network. The WSN
may be used to connect to the base station, which may not have any energy restrictions.

On the other hand, the sensor nodes are completely dependent on their batteries, and
they become inactive when they run out of power. Effective battery backup is critical for any
WSN strategy based on the difference between WSN protocols and conventional wireless
systems. By incorporating diverse clustering techniques, various techniques/methods have
been proposed to effectively allocate nodes’ energy in WSNs [6,7]. Non-stationary sensors
gradually replace individual smart sensors, which sense, process, and transmit significant
information. The merger of several sensors, processors, and other communication devices
into a single sensor node component has allowed this to happen. Sensor nodes in large num-
bers are distributed to form a sensor network. WSNs are extensively used in several sectors
viz. green agriculture, healthcare monitoring systems, environmental surveillance [8,9],
smart homes [10], air purifiers [11], and disaster management systems [12,13], due to their
easy integration, self-organization, and real-time tracking characteristics. Sensor nodes
are usually deployed in vulnerable conditions, making battery replacement and node
restoration difficult.

Moreover, enhancing the battery performance of nodes is very expensive. As a result,
researchers have paid more attention to improving network lifetime and stability using
existing network protocols [14]. In WSNs, one of the conventional relaying strategies is flat
architecture or hierarchical architecture. Flat architectural techniques experience enormous
amounts of information as a network’s hubs grow, resulting in inefficient power generation
and a lack of flexibility. Due to this, hierarchical routing algorithms have become more
prevalent. Low-Energy Adaptive Clustering Hierarchy (LEACH) [15] is the hierarchical
protocol for WSNs. LEACH tends to be the most prominent and commonly used protocol
compared to the other protocols.

Moreover, it is a challenging task to obtain information from the interconnected
network environment. While transmission will occur, receiving this data at the BS si-
multaneously is impossible. Using techniques like time division multiple access, node
information synchronizes in LEACH-Fuzzy Clustering (LEACH-FC) [16] to acquire the
remaining energy information across networks. Along with making a range of informa-
tion accessible, LEACH-FC also increases the BS’s computing capability compared to the
nodes. Consequently, such a centralized process can be used to enhance clustering. Energy
consumption depends on their connection while data is transmitted from a node to a BS.
Nodes that are not CHs, which aggregate and distribute data from neighboring nodes, can
transmit information farther due to clustering. As a result, good CH selection provides
improved energy efficiency.

Clustering is the method used in WSNs for wireless communication. Each cluster’s
controller also called the “cluster head, “ collects all the data from each sensor node in that
cluster and transfers it to the intended location. The node that gets the message from the
cluster head joins the cluster after every successive round. If the cluster contains many
nodes, the CH will reduce the message’s intensity so fewer nodes may receive it. On the
other hand, if the cluster size is small, the CH will increase the message strength to enable
many nodes to receive the message [17]. Sensor nodes are distributed relatively densely to
meet coverage requirements, allowing some nodes to be idle and extending the network’s
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life. The number of neighbors, the residual energy level, the distance between the cluster
head (CHs) and the receiving station, the rate at which charge is diminished over data
transmission, and the average distance between nodes of the same cluster are only a few
of the variables that are taken into consideration when selecting a CH. Utilizing multiple
attribute decision-making (MADM) techniques helps simplify the difficult and occasionally
laborious process of choosing CHs [18–21]. Various MADM/MCDM techniques address
different decision-making problems in engineering, science, and even social science. This
strategy’s guiding premise is to select options based on many qualities or criteria, which
frequently causes problems in real-world applications because estimating the exact value
of all the traits or features is difficult. Fuzzy-based techniques can also be used to lessen
these kinds of challenges [22,23]. Cluster head selection is vital for efficient data aggrega-
tion, network scalability, load balancing, accurate decision-making, and ensuring security
in wireless sensor networks. It determines energy distribution, reduces communication
overhead, extends network lifetime, and enhances data fusion. Proper selection maxi-
mizes network performance and optimizes resource utilization. Several studies have been
made to select CHs based on a single parameter. It has been observed that CHs selected
by a single parameter may decrease the network lifetime. Therefore, we have included
six characteristics/parameters used to determine the CHs in this research. These character-
istics are mainly (i) residual energy (ii) the number of neighbors (iii) distance from the sink,
(iv) average distance from cluster node, (v) distance ratio, and (vi) reliability. In this study,
we have adopted the entropy weighted TOPSIS method [24–26] to select the cluster head in
WSNs depending on each node’s mentioned characteristics.

Here, we have applied these approaches to extend the network’s lifetime. Generally,
the CHs selection problem is solved, assuming that the initial energy and other related
parameters are precisely determined. Also, due to the non-availability of the distribution
function of the measurement system, all the parameters can be measured in terms of some
special values. However, in reality, the irregular/dangerous natural conditions also cause
completely unanticipated changes in the initial energy of nodes, the distance between
sensor nodes and base stations, the size of data packets, voltage and transmission energy
measurements, and other elements connected to sensor nodes [27,28]. Therefore, the possi-
bility of adjusting the parameter is quite important. Therefore, erroneous parameter values
result in uncertainty measures. As a fuzzy set is very helpful in representing uncertainty,
Triangular Fuzzy Numbers (TFNs) were used in this work to convey uncertainty [29,30].
The associated parameters of nodes were then converted into crisp ones via the defuzzifica-
tion of fuzzy numbers. The commonly accepted signed distance technique was used for
defuzzification in this scenario. For experiments, we considered a hundred nodes of WSNs
where all the nodes were randomly distributed within a 100× 100 m2 area and utilized the
OPNET modeler to assess the MAC layer functionality of 802.15.4 slotted CSMA/CA. Here,
we also considered uncertain parameters for the entire network setup. Overall, the work
conducted for this study can be summed up as follows: (i) Cluster head selection in the
WSN has been conducted using the entropy-weighted TOPSIS approach. (ii) TFNs were
utilized to express all the metrics, including initial node energy, the distance between sensor
nodes and base stations, data packet size, voltage and transmission energy measurements,
and other aspects related to sensor nodes. (iii) We used uniform distribution to create all
nodes in the network design. (iv) The NSG2.1 Simulator was employed for the simulation
process. (v) For experiment purposes, the Ad hoc On-Demand Distance Vector (AODV)
routing protocol [31] was employed. Finally, experimental results were presented and
compared graphically.

The rest of the work is presented as follows. The fundamental mathematical under-
pinnings and approaches used to build the entire work and theoretical background are
presented in Section 2. Section 3 gives certain assumptions and notations to help with the
investigation. The mechanism for forming cluster heads for WSNs has been explained in
Section 4. Numerical experiments and discussions have been made in Section 5. Section 6
of this study contains its concluding observations.
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2. Theoretical Background and the Related Work

This section presents related work as well as some essential concepts that have been
employed throughout the investigation.

2.1. Background and Related Work

MCDM and TOPSIS [32] are highly useful in WSN applications. MCDM [33] en-
ables informed decision-making by assessing multiple criteria, such as energy efficiency,
coverage, and cost [34]. Meanwhile, TOPSIS ranks alternative WSN solutions based on
their similarity to an ideal solution. By employing these methodologies, decision-making
processes and optimization in WSN deployments can be significantly enhanced. In WSN,
energy consumption is a major issue for several researchers [35,36]. The MCDM approach
using TOPSIS has been used to select efficient CHs that enhance accuracy, extend net-
work lifetime, and reduce CH-associated energy consumption overhead [37,38]. Another
approach, cluster protocols [39], provides improved energy efficiency, scalability, fault toler-
ance, data aggregation, extended network lifetime, and efficient routing in WSNs, making
them a valuable choice for WSN deployments. There are several clustering protocols, like
LEACH, Adaptive Periodic Threshold-based Energy-Efficient Network (APTEEN) [40],
Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [41], Centralized
LEACH (LEACH-C) [42], Cross-Layered Clustering and Cooperative Communication Hy-
brid Architecture (C3HA) [43], Hybrid Energy-Efficient Distributed Clustering (HEED) [44],
Modified LEACH (LEACH-M) [45], and Adaptive LEACH (ALEACH) [46], have been
applied to extend the network’s lifetime. LEACH introduced the concept of clustering in
WSNs, utilizing a randomized rotation of cluster heads to distribute energy consumption
evenly. It offers energy efficiency and scalability. The main issue related to LEACH is that it
chooses the CHs randomly, directly impacting the network lifespan. Compared to LEACH,
APTEEN uses a dynamic threshold-based approach to select cluster heads, considering
residual energy and distance to the base station. It improves network lifetime and energy
efficiency. PEGASIS is another popular clustering protocol that optimizes data aggregation
and transmission by forming a series of sensor nodes. It reduces energy consumption
and extends the network lifetime. Another important factor that improves the quality
of WSN communication is reliability. The above protocol omitted the reliability factor
introduced by C3HA. C3HA integrates cross-layer information exchange and cooperative
communication to enhance network performance, reliability, and energy efficiency. LEACH-
M addresses the shortcomings of LEACH by incorporating a mobility-based clustering
approach. It adapts to node mobility and improves network stability, whereas ALEACH
enhances the LEACH protocol by dynamically adjusting cluster formation based on net-
work conditions, energy levels, and data requirements. The selection of CHs using several
network parameters has been introduced by HEED, which incorporates residual energy
and node proximity as basic criteria for selecting CHs. Upon reviewing multiple WSN
studies focused on extending network lifetime, a clear correlation has been found between
clustering mechanisms and selecting suitable CHs. This study aims to extend the network
lifetime by dividing the network into an appropriate number of clusters and employing
the entropy-weighted TOPSIS technique to select CHs based on six network parameters.
Additionally, this study introduces uncertainty using triangular fuzzy numbers (TNF) for
defuzzifying experimental parameters, enhancing the research’s depth and complexity.

2.2. Basic Concepts of Fuzzy Sets

Let X be a universal set. A fuzzy set is formed by a function µÃ(x), that corresponds
each element x in X to a real number in the interval [0, 1]. The function µÃ(x) is designated
as a membership function in the fuzzy set Ã. An α-cut of a fuzzy set Ã is a crisp set Aα

that covers all the points of X that have a membership grade in Ã greater than or equal
to the prefixed value α. It is defined as Aα =

{
x ∈ X : µÃ(x) ≥ α

}
, where µÃ(x) is the

membership function of Ã, α ∈ [0, 1]. A fuzzy set Ã is normal if there exists at least one
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element x ∈ X such that µÃ(x) = 1. Ã is convex if every α-cut of Ã is a convex set. A fuzzy
set is called fuzzy number when it is convex and normal.

A fuzzy number Ã = (a, b, c), where a ≤ b ≤ c is called a Triangular Fuzzy Number
(TFN), and its membership function µÃ(x) : X → [0, 1] is as follows:

µÃ(x) =


x−a
b−a if a ≤ x ≤ b
1 if x = b
c−x
c−b if b ≤ x ≤ c

Let Ã = (a, b, c) be a triangular fuzzy number, then α-level set of Ã is
Aα =

{
x ∈ X : µÃ(x) ≥ α

}
= [A−α , A+

α ] where A−α = a + (b− a)α and A+
α = c− (c− b)α,

α ∈ [0, 1]. Now, we can represent Ã as Ã = ∪
α∈[0,1]

Aα. Here, we can derive the signed

distance [47] from [A−α , A+
α ] to 0̃ as D(Aα, 0̃) = 1

2 (A−α + A+
α ). If Ã = (a, b, c) is the TFN,

then we have D(Ã, 0̃) = 1
2

1∫
0
(A−α + A+

α )dα = 0.25(a + 2b + c).

2.3. Computation of Criteria Weights Based on Entropy Measure

To determine the criteria weights, we have used the entropy weighted approach. The
entropy weighted approach measures the capacity of each criterion to contain decision
information in order to estimate the relative importance of characteristics. The amount of
entropy value reflects how unpredictable a message is. One could investigate the work of
Clausius [48] and Shannon [49] for additional information.

If Π =
(
πij
)

m×n is the decision matrix and w = (w1, w2, . . . , wn) be the weight vector,
and 0 ≤ wj ≤ 1 and ∑ wj = 1 are in relation to the m alternatives and n criteria then the
weight wj, j = 1, 2, . . . , n can be obtained as follows:

Step 1: calculate Ωj = − 1
log(m)

m
∑

i=1
pij log(pij), j = 1, 2, . . . , n where pij =

πij
m
∑

i=1
πij

.

Here, it is stated that lim
pij→0

pij log pij → 0 ;

Step 2: calculate Ψj = 1−Ωj, j = 1, 2, . . . , n;

Step 3: calculate wj =
Ψj

n
∑

j=1
Ψj

, j = 1, 2, . . . , n.

2.4. Finding the Best Alternative Using TOPSIS Method Based on TFNs

To overcome an issue involving MCDM, this section describes how to use the TOPSIS
strategy when the weights of the criteria are unknown and can be estimated by using
Shannon entropy method.

Assume that there exist m alternatives A1, A2, . . . , Am and n criteria C1, C2, . . . , Cn
with a weight vector w = (w1, w2, . . . , wn), where 0 ≤ wj ≤ 1 and ∑ wj = 1. A decision
matrix Z̃ =

(
z̃ij
)

m×n might be used to convey an alternative’s characteristics in relation to
the criteria expressed by a TFN z̃ij = (z1

ij, z2
ij, z3

ij) where i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Employing the signed distance method, mentioned in Section 2.2, the MCDM decision
matrix (1) has been formed as follows:

(D(Z̃, 0̃))m×n =


D(z̃11, 0̃) D(z̃12, 0̃) · · · D(z̃1n, 0̃)
D(z̃21, 0̃) D(z̃22, 0̃) . . . D(z̃2n, 0̃)

...
...

...
...

D(z̃m1, 0̃) D(z̃m2, 0̃) . . . D(z̃mn, 0̃)

 (1)

Let I+ = (1, 1, . . . , 1) and I− = (0, 0, . . . , 0) represent consequently, the positive and
negative ideal solutions for the m alternatives A1, A2, . . . , Am. Here, we used the following
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formula to compute the separation measures smi
+ = smi

+(I+, Ai) and
smi
− = smi

−(I−, Ai) of each alternative from positive ideal and negative ideal solutions:

smi
+ =

√√√√ n

∑
j=1

(wj(1− D(z̃ij, 0̃))
2

(2)

and

smi
− =

√√√√ n

∑
j=1

(wjD(z̃ij, 0̃))
2

(3)

Here D(z̃ij, 0̃) = 0.25(z1
ij + 2z2

ij + z3
ij), i = 1, 2, . . . , m, j = 1, 2, . . . , n, and

wj, j = 1, 2, . . . , n are calculated using the entropy-weighted method discussed in Section 2.3.
Using Equations (2) and (3), the relative closeness of m alternatives A1, A2, . . . , Am

with respect to the positive ideal solution I+ is computed as follows:

RCi(Ai) =
sm−i

sm−i + sm+
i

, i = 1, 2, . . . , m (4)

The best alternative among a group of specified possible alternatives can be identified
using Equation (4), which also determines the ranking order of all alternatives. The
alternatives may then be ranked according to the closeness coefficient, with the alternative
with the higher rank being considered the best choice.

3. Some Assertions and Symbols

We have considered a WSN here under the following assertions:

• Nodes are distributed at random places inside a square area;
• The base station is positioned outside the square’s bounds, enabling communica-

tion with nodes inclined to multi-path attenuation. Multi-path attenuation does not
influence communication between nodes;

• The nodes are cohesive because they share the same capabilities and initial battery
energy while performing different tasks depending on the time of day;

• Communication between any node, the BS, or any other node is possible.
• The nodes are immobile;
• Every node senses its environment and emits a signal of the same length;
• Numerous aspects of sensor nodes, including the primary energy of nodes, the distance

between sensor nodes and receiving stations, the size of information packets, and
estimates of voltage and transmission power, among others, have imprecise values
due to erratic/dangerous natural conditions.

Table 1 provides a list of symbols used in the paper.

Table 1. List of symbols.

Symbol Description

db Distance to the base station
db0 Fixed measuring distance to the base station
ds Distance from the sink
dnc A node’s distance from each node in a cluster or its number of neighbors
(X, Y) Position of CHs in a WSN
(Wx, Wy) Position of nodes in a WSN
Ienergy Initial energy
ELe Electronics energy
ETe The energy used for data transmission
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Table 1. Cont.

Symbol Description

e f s Amplification of energy to overcome open space
emp Amplification of energy to navigate the multi-path
EDrx The usage of energy during data receipt
Oc The optimal number of cluster heads
Z The dimensions of the square area
Nnode The total number of nodes in the network
Nc The number of nodes in a cluster
R The reliability of a cluster

4. Cluster Heads Formation Method for WSN

The nodes designated to serve as CHs should inform the rest of the nodes in the
network that they have been selected for such a function. To achieve this, each of the chosen
CHs transmits an appropriate signal throughout the network announcing their selection as
cluster heads. This brief message provides the network node identification and a header,
characterizing it as an update message. Each non-cluster head node selects the CH that is
closest to it and uses the least amount of transmission energy to form its cluster. The link is
connected to the CH with the shortest distance and received signal amplitude. The node
and base station (BS) will respond directly if the distance between it and the CH is longer
than its distance from the BS. Otherwise, it connects the cluster using the shortest distance.
Here, we have considered the shortest distance measure as Euclidean distance.

If db is the distance between CH and a designated node, then db can be measured
using the formula as follows:

db =
√
(X−Wx)

2 + (Y−Wy)
2 (5)

where (X, Y) and (Wx, Wy) are the position of cluster head (CH) and node location.
The BS, which is situated outside of the network area, is a node with improved pro-

cessing abilities and no limited battery life. In order to obtain an appropriate signal-to-noise
ratio (SNR), a k bit of information is transmitted over a distance db using a conventional
radio energy dissipation model [23]. During data communication, the data transmission
energy consumption (ETe) and energy consumption due to data reception (EDrx) are ap-
proximated using Equations (6) and (7).

ETe =

{
k× ELe + k× e f s × db2 i f db ≤ db0
k× ELe + k× emp × db4 i f db ≥ db0

(6)

EDrx = k× ELe (7)

It is to be noted that the electronic energy ELe depends on various features, viz. coding
of digital devices, modulation, filtering, and bandwidth of the signal, whereas e f sdb2 and
empdb4 are dependent on the distance to the receiver and acceptable bit-error rate.

Following the creation of the clusters, the CH, after receiving all CH connect signals
from every node, assigns a timeframe for each designated node. The responsibility of
gathering information from all cluster nodes belongs to each cluster head. The CH transmits
the message to the BS after applying data aggregation when a packet of data from all
the individuals is received. It has been observed that several protocols have been used
for re-clustering strategy and choosing CHs using a probabilistic approach rather than a
deterministic approach. Data transmission and re-clustering proceed for several cycles until
all nodes are still alive. As dead nodes begin to appear, the number of active nodes in the
cluster diminishes, and the smaller clusters that have lesser power than the predetermined
threshold are combined with the larger ones. As a result, the cluster size starts to slow
down anytime the number of active nodes diminishes. Determining the number of CHs in
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each cycle is crucial for increasing the WSN’s lifetime and energy efficiency. Here, we have
calculated the requisite number of clusters [42] Oc, distance ratio, and reliability using the
following equations:

Oc =

√
e f s

π(empdb4 − ELe)
Z
√

Nn (8)

dr =
ds + dnc

ds× dnc
(9)

R = 1− Nc

Nnode
(10)

4.1. Node Selection Criteria:

In our experiment, we have calculated reliability, residual energy, the number of
neighbor nodes, the distance from the sink (BS), the average distance of cluster nodes,
and the distance ratio (see Table 2). Following the first simulation round, the best CHs
were chosen based on six criteria: residual energy, number of neighbors, distance from the
sink (BS), average distance of cluster nodes, distance ratio, and reliability. Based on our
hypothesis, we divided the network into 14 clusters for this study, with a cluster head in
each cluster. We have utilized the NSG2.1 simulator and tool command language for this
simulation. Here, we have generated 100 nodes within 100× 100 m2 and run the simulation
on NS2 for the first round. For the subsequent round, the selection of CHs has been made
by using our proposed algorithm (see Section 4.2). We have plotted the node, and it has
been depicted in Figure 1.
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Figure 1. Distribution of 100 nodes over the area 100× 100 m2.

4.2. WSNs Lifetime Extension Algorithm via MCDM and TOPSIS Technique

We proposed an algorithm based on MCDM and TOPSIS techniques to extend the
lifetime of WSNs. This algorithm has been termed Algorithm 1. Algorithm 1 is as follows:
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Algorithm1. WSN Lifetime Extension Algorithm

Step 1: Distribute 100 nodes in an entire network with BS location (50,175) and spread nodes
randomly over 100× 100 m2 areas.
Step 2: In order to find the values of different parameters, all nodes will send the data to BS for the
first round of simulation.
Step 3: The network is divided into Oc a number of clusters using Equation (8).
Step 4: Weight is assigned to each node using the entropy-weighted approach. The TOPSIS
technique is used to select CHs from each cluster for the second round of simulation based on the
weight of predefined parameters for CH selection.
Step 5: Repeat steps 6 to 13 until the residual energy of all the nodes has yet to be finished.
Step 6: When a node’s residual energy exceeds all other nodes in the same cluster, the counter
increases.
Step 7: When a node’s distance from the sink is less than that of all other nodes in the same cluster,
the counter increases.
Step 8: When a node’s number of neighbors exceeds that of all other nodes in the same cluster, the
counter increases.
Step 9: When the average distance of cluster nodes is smaller than that of all other Cluster nodes
within the same cluster, the counter increases.
Step 10: When the distance ratio of a node is smaller than the distance ratio of all other nodes
within the same cluster, the counter increases.
Step 11: The node with the largest counter value is designated as a CH for the next round.
Step 12: If a cluster has fewer than three nodes, nodes will be added to the closest cluster,
considering each cluster’s reliability.
Step 13: Jump to the next round.
Step 14: Stop.

5. Numerical Experiment and Discussions

Unsafe or unreliable communication has yielded detrimental consequences, including
increased noise and adverse effects on sensor node batteries. The battery life directly affects
the network’s longevity, which is closely tied to residual energy. Furthermore, the presence
of noisy data necessitates extra caution and thorough processing. Lastly, the distance
between sensors, logic, and actuators is critical in facilitating replacements. This incident
represents the uncertainty of WSNs. For computational experiments, we used a thousand
nodes of WSNs where all the nodes were randomly distributed within a 100× 100 m2 area
and ran the simulation on NS2 for the first round. In our experiment, we utilized the OPNET
modeler to assess the MAC layer functionality of 802.15.4 slotted CSMA/CA. Here, we also
considered uncertain parameters for the entire network setup, which has been shown in
Table 3. Also, we estimated the optimum range of Oc. Here, we considered Nn = 100 nodes,
Z = 100 m, e f s = 10 pJ, emp = 0.0013 pJ, and 76 m < db < 168 m. Therefore, the expected
optimum number of clusters was in the range (1, 10), i.e., 1 < Oc < 10.

Table 2. Decision parameter for selecting cluster heads.

Cluster Head Residual Energy Number of
Neighbors

Distance from
the Sink

Average Distance of
Clusters Nodes Distance Ratio Reliability

CH1 0.9695 8 157.203 13.232 0.0819 0.92
CH2 0.9654 4 77.223 15.527 0.0774 0.96
CH3 0.9698 8 141.173 26.937 0.0442 0.92
CH4 0.9653 7 135.059 31.049 0.0396 0.93
CH5 0.9688 4 92.444 47.752 0.0318 0.96
CH6 0.9641 3 115.069 22.688 0.0528 0.97
CH7 0.9647 4 85.988 22.348 0.0564 0.96
CH8 0.9657 5 106.367 24.433 0.0503 0.95
CH9 0.9649 6 102.181 15.694 0.0735 0.94
CH10 0.9656 10 93.391 33.724 0.0404 0.9
CH11 0.9698 9 119.436 17.016 0.0671 0.91
CH12 0.9688 6 109.224 28.863 0.0438 0.94
CH13 0.9698 2 85.158 29.5 0.0456 0.98
CH14 0.9656 10 147.868 17.706 0.0632 0.9
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Table 3. The experimental parameter utilized for WSNs.

Parameters Parametric Value as per
Assumptions Defuzzified Value

Nn 100
Ĩi (0.7, 1, 1.2) 0.975

Coordinate of BS (50, 175)
Size of the data packet (495, 500, 510) 501.25

Hello/broadcast/CH join
message (22,25,28) 25

ẽ f s (8, 10, 12) 10
ẽmp (0.001, 0.0013, 0.0015) 0.001275
ẼLe (47, 50, 52) 49.75

It ought to be noted that the signed distance method mentioned in Section 2.2 has been
used to transform fuzzy parameters into defuzzified values. For example, Ii = (0.7, 1.0, 1.2)
and D( Ĩi, 0̃) = 0.25(0.7 + 2× 1.0 + 1.2) = 0.25× 3.9 = 0.975. Other parameters have
undergone a similar computation.

Using Equation (8), we have calculated the value of Oc. It is to be noted that the value
of Oc lies between 1 < Oc < 10, and consequently, we have chosen the value of Oc = 9
for the purpose of the numerical experiment. Hence, we have selected nine cluster heads
based on six criteria: residual energy, number of neighbors, distance from the sink, average
distance of cluster node, distance ratio, and reliability using the MCDM approach. Here,
Table 3 is a decision matrix of our proposed problem. Using Table 3, we have calculated
weight vectors using the entropy method described in Section 2.3. The weight vector
w using Section 2.3 has been computed as w = ( 0.156, 0.176, 0.167, 0.175, 0.170, 0.156).
Further, we have calculated sm+

i and sm−i using Formulas (2) and (3). These are shown
in Table 4.

Table 4. Separation evaluates sm+
i and sm−i of each alternative in relation to positive ideal and

negative ideal solutions.

CHs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sm+
i 26.20 12.99 23.88 23.02 17.33 19.43 14.69 18.08 17.12 16.53 20.03 18.74 14.92 24.75

sm−i 107.11 26.33 88.94 82.68 46.87 58.88 33.65 51.01 45.70 42.65 62.57 54.79 34.70 95.57

Using separation measures of each alternative, we have calculated the closeness
coefficient using Equation (4), which has been shown in Table 5.

Table 5. Closeness coefficient of each alternative.

CHs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RCi(Ai) 0.80 0.67 0.79 0.78 0.73 0.75 0.70 0.74 0.73 0.72 0.76 0.75 0.70 0.79

The alternative with the highest rank is regarded as the best choice. Therefore, we
have chosen nine cluster heads based on the closeness coefficient. Table 6 (Option 1) and
Table 7 (Option 2) provide these nine cluster heads.

Table 6. Selection of the nine cluster heads as per the highest closeness coefficient of each alternative
for Option 1.

RCi(Ai) 0.80 0.79 0.79 0.78 0.76 0.75 0.75 0.74 0.73

Rank 1 2 3 4 5 6 7 8 9
CHs 1 3 14 4 11 6 12 8 5
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Table 7. Selection of the nine cluster heads as per the highest closeness coefficient of each alternative
for Option 2.

RCi(Ai) 0.80 0.79 0.79 0.78 0.76 0.75 0.75 0.74 0.73

Rank 1 2 3 4 5 6 7 8 9
CHs 1 3 14 4 11 6 12 8 9

The network lifespan is expressed in the number of cycles until its single node exhausts
its remaining energy. The experimental results depending on Options 1 and 2 are shown in
Figures 2 and 3 respectively. On a setup area, sensor nodes were distributed at random.
Network lifetimes, which show the number of active nodes over time in cycles, have
been plotted.
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Figure 2 shows that the remaining energy diminished after 1900 cycles, whereas
Figure 3 shows that the remaining energy diminished completely after 2200 cycles. Con-
sequently, Option 2 is acceptable as compared to Option 1. However, both are acceptable
compared to the LEACH protocol. Figure 4 presents comparative results between the
LEACH protocol and our proposed method. In this research, it has been found that the
proposed strategy with both alternatives shows 31% and 40% network lifetime in compari-
son with LEACH, where 31% indicates 1900 simulation rounds and 40% to 2200 rounds.
The CH selection in LEACH is random, potentially resulting in selecting nodes with low
residual energy as CHs. When CHs die after a few simulation rounds, the cluster formation
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collapses, necessitating data exchange and consuming significant residual energy. This re-
duces the network’s longevity. To address this, our study with uncertain parameter values
compares the proposed approach with LEACH regarding cluster residual energy. The find-
ings indicate that in LEACH, the residual energy of all nodes depletes after 1300 rounds,
whereas our proposed approach takes 2200 rounds to exhaust all residual energy shown in
Figure 5. Compared with energy utilization, our proposed approach consumes 29% less
energy than LEACH due to determining the right CHs.
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5.1. Time Complexity of Our Proposed Algorithm

In our proposed approach, we have Oc clusters and Nc nodes in each cluster; the
algorithm necessitates around Θ(Oc) operations to access Oc clusters. Determining the
reliability of each cluster takes approximately Θ(Nc

2) time. Additionally, the algorithm
involves constant time operations for calculating residual energy, distance from the sink,
number of neighbors, average distance of cluster nodes, and the distance ratio denoted as ∂.
Thus, the overall time complexity of the algorithm can be approximated as Θ(OcNc

2 + ∂)
or simplified as Θ(OcNc

2).

5.2. Result Validation

We have validated our proposed result using a statistical hypothesis in this subsection.
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Null Hypothesis (Ho): the average number of simulation rounds falls within the 95%
confidence interval, specifically between 1800 and 2300.

Alternate Hypothesis (H1): the number of simulation rounds does not fall within the
95% confidence interval.

We set the significance level at α = 0.05, and T represents a random variable following
the t-distribution. The 95% confidence interval is between 1800 and 2300. The simulation
was executed 50 times, and the average result obtained was 2200. Using statistical calcula-
tions, we have determined that the T-Score is 0.3496 and p (the probability of T being greater
than 0.3496) is 0.7968.

Since (p > α = 0.05), we do not have sufficient evidence to reject the null hypothesis
(Ho). Therefore, we can conclude that the average number of simulation rounds falls within
the 95% confidence interval, i.e., 1800 and 2300.

6. Concluding Remarks

The MCDM method for cluster head selection in WSNs under uncertainty has been
examined in this paper. TOPSIS, an entropy-based technique, is used to choose the CHs in
WSNs. The number of clusters/cluster heads is optimized by considering six parameters:
reliability, residual energy, the number of neighbor nodes, the distance from the sink (BS),
the average distance of non-cluster nodes, and the distance ratio. We employed Triangular
Fuzzy Numbers to express all the characteristics, including initial node energy, the distance
between sensor nodes and base stations, the size of data packets, voltage, and transmission
energy measurements, and other matters about sensor nodes (TFNs). For the context of
this research, we segregated the entire network into 14 clusters, with a cluster head in
each cluster, based on our hypotheses. For this experiment, we used the NSG2.1 simulator
and tool command language. We also used the AODV protocol for simulation. The nodes
in this network topology were generated using a uniform distribution, and a technique
for choosing cluster heads was also proposed. The lifespan achieved by the LEACH
protocol was compared to the lifetime achieved by the simulated network. Simulation
results show that our suggested approach, based on the entropy-weighted TOPSIS method,
significantly extends network lifetime and saves energy compared to the LEACH protocol.
Finally, the overall strategy used in this work will serve well enough for the selection of
cluster heads as well as other network design aspects associated with WSNs, including
uncertain parameters.
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