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Abstract: Conductive tracks are key constituents of wearable electronics and e-textiles, as they form 

the interconnective links between wearable electrical devices/systems. They are made by coating or 

printing conductive patterns or tracks on textiles or by weaving, knitting, or embroidering conduc-

tive yarns into textiles. Screen printing is a mature and cost-effective fabrication method that is used 

in the textile industry. It allows a high degree of geometric freedom for the design of conductive 

patterns or tracks. Current screen-printed conductive textiles have the limitations of low durability 

when washed or when placed under bending, and they typically require encapsulation layers to 

protect the printed conductor. This paper presents a printable paste formulation and fabrication 

process based on screen printing for achieving a flexible and durable conductive polyester–cotton 

textile using an inexpensive carbon as the conductor. The process does not require an interface, the 

smoothing of the textile, or an encapsulation layer to protect the conductor on the textile. A resistiv-

ity of 4 × 10−2 Ω·m was achieved. The textile remains conductive after 20 standard washes, resulting 

in the conductor’s resistance increasing by 140%. The conductive textile demonstrated less than 

±10% resistance variation after bending for 2000 cycles. 
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1. Introduction 

Smart textiles, which are also known as intelligent or electronic textiles (e-textiles), 

combine electronic functionality with textiles [1] and are important in the area of flexible 

electronics. Textiles with integrated conductors are essential for many e-textile devices, 

such as printed circuits [2], sensors (e.g., gas [3], pressure [4]), thin-film transistors [5], 

wireless power transfer [6], energy harvesters [7], and electrical storage devices [8,9]. Con-

ductive textiles should ideally be flexible, washable, and chemically and mechanically 

stable in order to meet the requirements of most textile-related applications, such as in 

sports/fitness training and for workwear. 

Conductivity is implemented in a nonconductive textile by adding electrically con-

ductive materials. It can be achieved by weaving, knitting, or embroidering conductive 

yarns into textiles [10] or by printing. Potential yarn materials include metal wires and 

fibers with coatings of conductive materials, which are achieved through casting or spin-

ning. For printing, typical conductive materials are conductive polymers [11] or metal–

polymer composites [12]. 

In the case of weaving, since the yarn forms the structure of the textile, conductive 

yarns can only be added orthogonally following the warp and weft within the textile. This 

significantly limits the options for the placement of interconnections. Similarly, for knit-

ting, the structure of the textile/garment defines the route that the yarn must follow. Em-

broidery overcomes this limitation, since an embroidered conductor can have any 
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orientation within the textile. However, embroidery—like weaving/knitting—adds each 

conductor in turn in a serial process. This significantly slows the manufacturing process, 

particularly as the number of conductors increases, and this results in complex circuits 

with many interconnections, making it impractical. Further, if a conductor pattern is re-

peated, each pattern is formed one after the other, potentially reducing the repeatability. 

Screen printing overcomes these limitations—the conductors can have any orientation 

with respect to the underlying textile; further, all conductors are printed simultaneously 

in a single print pass, which speeds up the printing process, makes complex circuits fea-

sible, and increases the repeatability. 

The screen printing of conductive materials on textiles to achieve a conductor there-

fore offers a flexible and scalable solution. Hong et al. [13] presented a screen-printed con-

ductive circuit on a textile that was achieved by printing a UV-curable silver material that 

was formulated into a screen-printable paste. The paste contained silver nanoflakes, an 

ultraviolet (UV)-curing binder system consisting of polyurethane acrylate, trime-

thylolpropane triacrylate and tripropylene glycol diacrylate as diluents, 1-(2-hydroxy-5-

methylphenyl)-1-propanone as a photoinitiator, and other functional additives for im-

proving the print quality. The conductive textile achieved a resistivity of 16.6 μΩ·cm. 

However, as silver reacts with oxygen, its electrical and mechanical performance changes 

over time. Further, the read distance of a textile RFID antenna that was made using this 

paste was reduced to ~40% after five washes, which was attributed to mechanical defor-

mation during washing. Lakshitha et al. [14] implemented a stretchable conductive textile 

by screen printing a carbon black dispersion and a stretchable polyurethane coating, 

achieving a liner resistance of less than 71 Ω·cm-1, which was stable up to 25% strain. How-

ever, washing the carbon-black-based conductive textile twice with detergent at 40 °C for 

30 min at a spin speed of 645 rpm caused a 16% resistance increase due to the poor adhe-

sion of the carbon black to the textile. Ali et al. [15] demonstrated a conductive textile 

using screen-printed carbon black paste printed with different thicknesses on a textile. 

The conductive textiles all demonstrated a sheet resistivity of less than 100 Ω/sq. 

The key limitations of a screen-printed conductor on a textile are its mechanical du-

rability under bending and its ability to withstand washing, both of which are particularly 

important for wearable e-textiles. Previously, these limitations were addressed by imple-

menting a screen-printed three-layer design. The three layers were a polymer interface 

layer, which was first printed on the textile to overcome the textile’s surface roughness, 

the conductive layer, and then an encapsulation layer for mechanical protection and elec-

trical insulation. The encapsulated silver tracks remained undamaged after eight washes 

in a washing machine with liquid detergent, and they demonstrated good flexibility [16]. 

Therefore, to avoid a multiple-layer design and improve the conductive textile’s mechan-

ical durability under bending and washing, a single conductive layer printed on a textile 

must be mechanically flexible, overcome the surface roughness of the textile, achieve an 

acceptable electrical conductivity, demonstrate good adhesion to the textile, and have ex-

cellent resistance to chemical detergents. These factors are important for achieving a flex-

ible, washable, and conductive textile consisting of a single layer, thus avoiding the need 

for additional interface and encapsulation layers. 

This work demonstrates a textile with a single screen-printed conductive carbon 

black layer that is washable and bendable. The carbon black paste used ethylene vinyl 

acetate (EVA) as the binder and was printed directly on the textile, without the need for 

pre-coating or a printed interface layer, which is often used to smooth the textile, or an 

encapsulation or protection layer. The developed paste can be used in many e-textile ap-

plications where conductive tracks are required to connect electronic components or as an 

active component on its own. 

In this paper, the justifications of the conductor and binder materials are presented 

in Section 2 on the materials and methods. The paste formulation and the textile that were 

selected are detailed, and the methods that were used are also presented. In Section 3, the 

printed conductive textile samples are examined with a scanning electron microscope 
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(SEM), and six different conductive material paste formulations that were printed on tex-

tiles with four curing methods are investigated. The influence of the conductive textile 

track’s resistivity as a function of the carbon concentration is also investigated. These sam-

ples were bent for 2000 cycles and washed 20 times in a washing machine using everyday 

washing liquid. The application of the screen-printed conductive textile is demonstrated 

via an LED-based light-emitting textile. The conclusions are presented in Section 4. 

2. Materials and Methods 

The conductive paste in this work was formulated from carbon, the EVA polymer, 

and a low-flammability solvent, 1,2,4-Trichlorobenzene, with a flash point at 110 °C. 

2.1. Justification of the Conductive Material  

Examples of conductive materials include gold [17], silver [18], nickel [19], conduc-

tive polymers, such as poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) [20], 

and carbonized materials, such as carbon nanotubes [21], graphene [22], graphite [23], and 

carbon black [24]. Among these materials, conductive textiles made with coated micro- or 

nano-scaled metal particles achieve an extremely low resistivity (less than 1 × 10−7 Ω·m 

[25]) when compared with carbonized materials and conductive polymers, but they re-

quire complex processes, such as metal particle synthesis and/or purification. Conductive 

polymer approaches have poor processability, so they are not suitable for large-scale ap-

plication [26]. Carbon black is inexpensive and has a high thermal stability, is non-toxic, 

and offers UV degradation resistance. Carbon black offers an alternative to carbon nano-

tubes, graphene, and graphene oxide, which are of a significantly higher cost and have a 

lower electrochemical stability [27]. Rashedul et al. [28] reported a simple, low-cost, and 

scalable way of implementing a conductive cotton textile through dip coating with a car-

bon-black-based ink/paste. The conductive textile achieved a sheet resistivity of between 

25 and 28 kΩ/sq, and its resistance did not increase after bending for 1000 cycles; after 12 

washes, its resistance increased to 5 times. 

The conductive carbon black powder with a medium particle diameter of 35 nm used 

in this work was supplied by Smart Fabric Inks, UK [29]. 

2.2. Justification of the Binder Material Selection  

Various carbon black pastes using polymer binder formulations have been devel-

oped to fabricate conductive textiles. Examples of polymer binders include polyaniline 

[21], polyamide [30], polypyrrole [19], and polyurethane [15]. Examples of additive agents 

are sodium/cetyltrimethyl ammonium bromide [20] and the anionic wetting and dispers-

ing agent DELTA- DC 4242 [31]. The binder and agent are used to formulate a uniform 

and stable carbon black paste by using an appropriate solvent. EVA is a copolymer of 

ethylene and vinyl acetate. It has good adhesion to textiles, demonstrates good mechanical 

properties and chemical stability, and is non-toxic and hydrophobic. 

Previously, EVA has been applied in flexible electrical devices, such as spray-coated 

conductive films for solar cell electrodes [32], spin-coated transparent electrodes [33], 

screen-printed conductors for paper-based electronics [34], and a dip-coated conductive 

membrane for energy storage [35]. This environmentally friendly copolymer is also 

widely used in food packaging, as an encapsulation material for flexible photovoltaic de-

vices [36], as a hot-melt adhesive [37], and as a flexible adhesive layer between textile 

insole pads [38]. EVA is soluble in organic solvents, including xylene [33], butyl acetate 

[32], toluene [39], and chlorobenzene [29]. However, these solvents are flammable with 

flash points below 40 °C, which limits the paste’s curing temperature. 

EVA beads (vinyl acetate 25 wt%) and the solvents, 1,2,4-trichlorobenzene and iso-

propyl alcohol, were supplied by Sigma-Aldrich. All chemicals used in this study were of 

analytic grade without any further purification or treatment. 
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2.3. Textile Material 

The textile used in this research was selected as typical of that used for the realization 

of clothing. It was obtained from Klopman, Italy [40], and was woven from cotton and 

polyester with fiber diameters of 12 and 15 μm, respectively. The textile was plain weave 

with 16.5 ends per inch or 9.05 picks per inch without further treatment. The thickness of 

the textile selected was 150 μm. 

2.4. Formulation of the Carbon Black Paste  

The screen-printable carbon paste was prepared by adding 0.66 g of EVA polymer 

beads and 1 g of carbon black into 6 mL of the solvent 1,2,4-trichlorobenzene. In this com-

bination, there was 60% of carbon black by weight in the mixed carbon paste after solvent 

evaporation. Six different carbon pastes were prepared, resulting in a range of 30% to 80% 

of carbon black in the dried paste. The carbon black/EVA paste was mixed using a mag-

netic stirring bar at 80 °C on a hotplate for 6 h. The paste formulation process was per-

formed in a fume cabinet with an air ventilation system. 

2.5. Printing of the Carbon Black Paste  

The fabrication process of the conductive textile is shown in Figure 1. The carbon 

black paste was printed onto the textile using a standard DEK248 semi-automatic screen 

printer. The textile was mounted on an alumina tile to provide a flat and rigid support for 

screen printing. A stainless-steel screen with a mesh size of 250 μm was used. The printing 

gap was 1 mm and the printing pressure was equivalent to 5.5 kg weight over the squee-

gee area. Each carbon composite film consisted of 4 depositions. The printing process was 

undertaken with an air ventilation system. 

 

Figure 1. Fabrication process of the carbon black conductive textile. 
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After printing, the printed carbon composite film was sprayed with isopropyl alcohol 

(IPA) solution for 30 s. IPA solution is one of the anti-solvents used in the phase inversion 

process for polymer membrane preparation [41,42], and the same anti-solvent was used 

because the EVA polymer is not soluble in IPA and because the 1,2,4-trichlorobenzene 

solvent is sparingly soluble in IPA. The IPA spray helps the carbon black/EVA to solidify 

before subsequent heating evaporates the solvent. It also prevents the carbon black/EVA 

composite conductive film from penetrating deeper into the textile, effectively stopping 

the conductive pattern from spreading during curing. After the evaporation of IPA at 

room temperature (23 °C) for 10 min, the textile samples were cured in a fan oven at 130 

°C for 5 min. A carbon composite film with a thickness of ~50 μm was achieved on the 

surface of the polyester–cotton textile. In addition, to evaluate the electrical performance 

of only the conductive paste, it was also printed in 1, 2, 3, and 4 layers on a polyurethane-

coated polyester–cotton textile. The polyurethane film was used to smooth the surface of 

the textile before subsequent printing while maintaining good flexibility [43]. This al-

lowed the evaluation of the intrinsic electrical performance of the carbon film. It should 

be noted that the interface was not required for the carbon film that was printed directly 

on the textile for all of the results, except for those presented in the last paragraph in sec-

tion 3.2. 

Three alternative curing methods were evaluated: room temperature (23 °C) drying 

in air for 6 h, fan oven curing at 130 °C for 5 or 15 min, and vacuum oven curing at 50 

mbar pressure at 100 °C for 2 h. 

2.6. Electrical Conductivity and Scanning Electron Microscope (SEM) Testing 

The electrical resistivity ρ (Ω·m) of the carbon composite conductive film on the tex-

tile was measured in 5 samples that were 50 mm in length, �, and 40 mm in width, �, 

both on the textile and on the polyurethane-film-coated polyester–cotton textile. The sam-

ple thickness, t, varied with the curing conditions, the number of layers, and the carbon 

paste formulation. SEM views of the polyester–cotton textile were obtained using a Zeiss 

EVO LS25 scanning electron microscope. The conductor’s thickness was measured by us-

ing the cross-sectional SEM views for the textile samples or by using a micrometer for the 

carbon composite film on the polyurethane-film-coated textile. The resistance of the con-

ductor was measured using a digital multimeter model Keithley 2100 6 1/2. The electrical 

resistivity was calculated using Equation (1) 

ρ = R ×  
� × t

�
 (1)

where R is the average resistance, which was measured 5 times along the length of the 

conductive carbon composite film. Twenty samples were tested to obtain an average re-

sult. 

2.7. Wash Testing 

The washing of the conductive textiles was undertaken in a washing machine (WME 

7247 Model from Beko.plc) using a standard everyday wash setting (39 min, 1400 rpm, 30 

°C) with an everyday washing liquid (brand name: FAIRY non-bio). Ten samples were 

washed simultaneously. These samples were then dried in a fan oven at room temperature 

for 1 h under air ventilation before the resistance measurement. Ten samples were tested 

to obtain an average result.  
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2.8. Bend Testing 

As shown in Figure 2, the mechanical durability of the carbon composite conductive 

films on the textile was investigated under bending. The textile samples, which were ten-

sioned with a weight of 100 g, were repetitively bent around a 3-mm-diameter mandrel. 

The samples were bent 2000 times with a rotational motor speed of 60 rpm. Twenty sam-

ples were tested to obtain an average result. 

 

Figure 2. Bending test setup. 

3. Results and Discussion 

3.1. SEM Analysis 

Figure 3a shows an SEM image of the textile before screen printing; the cotton and 

polyester fibers, when woven together, formed a textile with a rough and uneven surface. 

Figure 3b is an SEM image of the textile with one printed carbon black conductive layer. 

The printed material formed a continuous layer on the polyester–cotton textile, creating a 

smoother and flatter conductive surface. Figure 3c and d show the cross-sectional SEM 

images of the textile and the textile with one conductive coated layer, indicating that the 

carbon black film had a maximum thickness of ~50 μm. The carbon black/EVA composite 

adhered to the textile, but did not penetrate deeply into the textile. The printed textile 

surface was therefore conductive, but the opposite side of the textile was insulating. Fur-

ther layers could be printed on top of the initial carbon black film to increase its conduc-

tivity. 
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Figure 3. SEM images of the textile. (a) Plan view of textile before screen printing, (b) plan view of the conductive textile, 

(c) cross-sectional view of the textile before screen printing, and (d) cross-sectional view of the conductive textile. 

3.2. Electrical Conductivity and Mechanical Properties of the Conductive Textile 

The relationship of the resistivity of carbon black/EVA composite that was printed 

directly on the polyester–cotton textile with the percentage weight of carbon black pow-

der loading is shown in Figure 4. The resistivity of the conductor decreased with an in-

creasing percentage of carbon black in the printed composite; at 60 wt%, the carbon black 

composite printed on the textile demonstrated the lowest resistivity of 0.04 Ω·m. As the 

percentage was further increased to 70 and 80 wt%, the resistivity increased slightly, since 

there was less binder holding the carbon particles together. Further, with less binder and 

more carbon, achieving a uniform mixing of the paste became challenging. In addition, 

the carbon black/EVA composite became less flexible. 

 

Figure 4. Resistivity as a function of carbon black wt% in the printed conductive textile. 
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According to Table 1, the conductive textile samples cured in the fan and vacuum 

ovens and without the IPA rinse demonstrated higher resistance than the samples cured 

at room temperature with the same carbon wt%. This is because EVA is a thermoplastic 

material, so it will liquefy, melt, or soften at temperatures >80 °C; thus, part of the film 

will melt into the textile and the conductive track will spread. The part of the film that 

melts into the textile reduces the thickness of the pure carbon film left on the textile surface 

and provides a lower conductivity, since it is now mixed with the textile substrate, which 

is not conductive. The spreading of the conductive carbon black composite on the textile 

also reduced the film thickness of the pure carbon/EVA layer. Therefore, the fan and vac-

uum oven curing methods without an IPA rinse resulted in significantly increased re-

sistance compared with the room-temperature curing. 

 

Table 1. Conductive textile (50 mm × 40 mm × 0.05 mm � × � × t) resistance variation (Ω) for different curing methods 

and carbon black weight %. 

Curing Method 
wt% of Carbon Black in Conductive Layer in Textile 

40% 50% 60% 70% 

Room temperature (23 °C) for 6 h 2550 1100 1100 1150 

Fan oven at 130 °C for 15 min 12,000 10,000 7000 7500 

Vacuum oven at 100 °C for 2 h 4000 2000 1600 1800 

Rinse with IPA followed by fan oven at 130 

°C for 5 min 
2500 1200 1000 1050 

As shown in Figure 5a, there was no noticeable spreading in the sample that was 

sprayed with IPA and cured in the fan oven for a shorter time (5 min compared with 15 

min). Without the IPA rinse, the sample was not cured after 5 min at 130 °C; visual and 

touch examination indicated that the carbon layer on top of the textile was still sticky. The 

purpose of the IPA rinse was to reduce the curing time so that the sample was fully cured 

before the EVA melted and spread. Figure 5b shows the sample cured in the fan oven at 

130 °C for 15 min, illustrating the spreading of the conductor that occurred without the IPA 

rinse. Figure 5a, when compared with Figure 5b, 5c, and 5d, shows that the IPA spray 

reduced the spreading of the conductor as a result of the phase inversion of the paste, 

causing the carbon black/EVA to demix from the solvent, therefore reducing the mobility; 

it also reduced the curing time. The material formulation and process therefore allowed 

the fabrication of narrow and long conductive tracks on the textile, as shown at the bottom 

right in Figure 5a, with a width of 4 mm and a length of 40 mm, as well as a resistivity of 

0.04 Ω·m. 
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(a) (b) 

 

(c) (d) 

Figure 5. (a) Screen-printed carbon conductive film patterns without any spreading. The carbon conductive film spreading pat-

terns achieved (b) with the fan oven at 130 °C for 15 min, (c) at room temperature for 6 h, and (d) with the vacuum oven 

at 100 °C for 2 h. 

The electrical resistivity of the printed composite conductive films is shown in Table 2. 

These were printed using the 60 wt% carbon black paste on the polyurethane-film-coated 

textile. After four depositions, the initial layer thickness of the carbon black/EVA compo-

site was ~44 μm. The resistivity was reduced as the number of layers increased, as each 

new layer compressed the previous layers and filled in any gaps or voids in the previously 

deposited and cured layers.  

Table 2. Resistivity variation of the printed conductive layers on the polyurethane film. 

Number of Layers 1 2 3 4 

Film thickness (μm) 44 85 121 161 

Resistance (Ω) 975 450 265 183 

Resistivity (Ω·m) 3.43 × 10−2 3.06 × 10−2 2.66 × 10−2 2.42 × 10−2 
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3.3. Bending and Washing Results 

The resistivity variation over 2000 bending cycles for the optimally coated sample is 

shown in Figure 6 (60% carbon black printed directly on the textile, IPA rinsed, and cured 

at 130 °C for 5 min). The carbon composite conductive films on the textiles exhibited less 

than ±10% resistivity variation, demonstrating the flexibility and durability of the carbon films 

on the textiles. 

 

Figure 6. Resistivity variation of the carbon black layer on the polyester–cotton textile during the 

bending test. 

Figure 7 shows the resistivity variation over 20 washes. The carbon composite con-

ductive films on the textiles (60% carbon black printed directly on the textile, IPA rinsed, 

and cured at 130 °C for 5 min) showed no visual damage, indicating that the majority of 

the carbon composite remained on the textile. After 20 washes, the composite film re-

mained conductive, and the overall resistivity of the carbon composite conductive films 

increased by 140%. EVA is a hydrophobic and chemically stable material, so its dimen-

sions and adhesion with the textile were not strongly affected by the water, washing, or 

washing liquid. 

 

Figure 7. Resistivity variation of the carbon black layer on the polyester–cotton textile after 20 

washes. 
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Figure 8 shows the flexible conductive textile after screen printing, followed by an 

IPA rinse and curing in a fan oven at 130 °C for 5 min; the conductive patterns show sharp 

edges, indicating that the conductive carbon black/EVA composite did not spread during 

curing. LEDs were attached between the conductive tracks by using adhesive tape. The 

LED display on the textile, which is shown in Figure 9a, was encapsulated with a 100-μm-

thick layer of EVA, which reduced the contact resistance between the LEDs and the con-

ductive tracks. All of the LEDs operated at a voltage of ~2 V (±0.3 V). 

 

Figure 8. Screen-printed conductive textile pattern. 

 

(a) 

(1cm) 
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(b) 

Figure 9. (a) LED display made by the conductive textile pattern; (b) bent LED display after washing the textile. 

The LED display on the textile was washed three times in the washing machine with 

the same standard washing liquid, and it remained functional, as shown in Figure 9b. 

Although a resistance change of 140% after 20 washes would result in the LEDs becoming 

proportionally less bright with each wash, they still functioned. However, some LEDs 

turned off after four washes. This was because the LED textile did not just rely on the 

conductive tracks to operate. It also required a reliable connection between the LEDs and 

the conductive tracks. This was achieved by using an encapsulation layer. Unfortunately, 

the encapsulation layer degraded, leading to the failure of the connection, so some LEDs 

did not turn on after four washes. Future work will develop a reliable encapsulation in 

order to improve the durability of LED textiles. 

4. Conclusions 

Electrically conductive textiles were achieved based on an inexpensive new formula-

tion of a carbon black/EVA composite. This solution-processed composite was screen 

printed on a polyester–cotton substrate. The carbon black particles were linked by EVA 

polymer and formed a conductive network that was absorbed into the pores of the textile. 

This resulted in a strong bond between the carbon black/EVA composite film and the tex-

tile, thus creating a washable and bendable conductive textile. 

The influence of the carbon percentage and curing regime on the resistivity was also 

evaluated. When the conductive composite was rinsed in IPA, then cured in a high-tem-

perature oven, and the percentage of carbon black paste was 60 wt%, the lowest resistivity 

of 0.04 Ω·m was achieved. 

The conductive composite layer on the textile achieved less than ±10% resistance var-

iation after bending for 2000 cycles and remained conductive after 20 standard washes, 

after which the conductor’s resistance increased by 140%. The application was demon-

strated in an LED display textile in which the printed conductive tracks were used as in-

terconnections. 
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