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Medical imaging is critical for assessing the response of patients to new cancer therapies. Quantitative le-
sion assessment on images is time-consuming, and adopting new promising quantitative imaging biomarkers
of response in clinical trials is challenging. The electronic Physician Annotation Device (ePAD) is a freely
available web-based zero-footprint software application for viewing, annotation, and quantitative analysis of
radiology images designed to meet the challenges of quantitative evaluation of cancer lesions. For imaging
researchers, ePAD calculates a variety of quantitative imaging biomarkers that they can analyze and com-
pare in ePAD to identify potential candidates as surrogate endpoints in clinical trials. For clinicians, ePAD
provides clinical decision support tools for evaluating cancer response through reports summarizing changes
in tumor burden based on different imaging biomarkers. As a workflow management and study oversight
tool, ePAD lets clinical trial project administrators create worklists for users and oversee the progress of anno-
tations created by research groups. To support interoperability of image annotations, ePAD writes all image
annotations and results of quantitative imaging analyses in standardized file formats, and it supports migra-
tion of annotations from various propriety formats. ePAD also provides a plugin architecture supporting
MATLAB server-side modules in addition to client-side plugins, permitting the community to extend the ePAD
platform in various ways for new cancer use cases. We present an overview of ePAD as a platform for medi-
cal image annotation and quantitative analysis. We also discuss use cases and collaborations with different
groups in the Quantitative Imaging Network and future directions.

INTRODUCTION
Advances in molecular medicine are providing many new treat-
ments that promise to be safer and more effective than tradi-
tional cytotoxic treatments by targeting the molecular charac-
teristics of each patient’s tumor (1-3). As these new targeted
treatments enter clinical trials, there is a growing need to derive
quantitative characteristics from images of cancer lesions
(“quantitative imaging biomarkers”) that accurately assess the
clinical benefit of these treatments (surrogate endpoints in clin-
ical trials). Tumor shrinkage is the hallmark of response to
traditional cytotoxic cancer therapies (4), and thus linear mea-
surement of target lesions is the imaging biomarker used in most
clinical trials using criteria such as Response Evaluation Criteria
in Solid Tumors (RECIST) (5-7), Response Assessment in Neuro-
Oncology (RANO) (8, 9), and International Harmonization Cri-
teria (10). However, targeted, noncytotoxic therapies may arrest
cancer growth and improve progression-free survival without
necessarily shrinking tumors (11-14). Simple linear measure-
ment may underestimate treatment response (15-18), in addition

to having other limitations (7, 19). Alternative imaging bio-
markers may be more promising than linear measurement for
assessing response, especially with targeted therapeutic agents,
as they can capture specific imaging features related to biolog-
ical alterations in tumors during treatment (eg, heterogeneity,
hypoxia, or changes in tumor microenvironment) (20-24), un-
like tumor shrinkage (15, 25-27). Indeed, quantitative imaging
biomarkers that reliably detect the results of anticancer agents
(as opposed to detecting only change in tumor size) are desirable
for all classes of therapeutic agents (28). Such new imaging
biomarkers could become surrogate endpoints in clinical trials,
as regulatory approval can be based on surrogate endpoints that
document clinical benefit (29).

Development of imaging biomarkers follows a life cycle,
starting with discovery and validation (“emerging biomarkers”),
then translation and incorporation into clinical trials, and even-
tually to qualification for clinical use as surrogate endpoints for
evaluating treatments (“qualified biomarkers”) (30). A number
of research groups are working on the discovery/validation of
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the spectrum and developing new quantitative imaging bio-
markers, including the Quantitative Imaging Network (QIN) (31)
and the broader community (32-39). On the translation end of
the spectrum, many of the new imaging biomarkers are ready to
be translated for use in clinical trials, such as tumor volume (40),
changes in contrast enhancement on computed tomography
(41), radiotracer uptake on positron emission tomography (PET)
(32, 42-46), kinetic parameters in dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) (47-49), and spatial
maps of such parameters (50, 51); however, very few of these
new imaging biomarkers have yet to be incorporated into clin-
ical trials for assessing treatment response.

Current image viewing and annotation tools are limited in
their ability to support incorporating new imaging biomarkers
into clinical trials in 4 major ways. First, although there are
several commercial and open-source tools available to assess
cancer lesions (52-55), they generally support very few mea-
sures of cancer lesions, such as linear dimension of target le-
sions, and they cannot be readily extended to deploy novel
imaging biomarkers. Newer algorithms for computing imaging
biomarkers are generally written in a variety of languages such
as Java, Python, and C/C��, or exist within single toolkits [eg,
MATLAB and 3D Slicer (56, 57)], which may not be compatible
with current image assessment tools. Second, current lesion
assessment tools are designed for only tracking cancer lesions in
clinical practice, and they generally do not provide workflow
management and study oversight features needed for assessing
new image biomarkers in clinical trials. Third, there are no
decision tools that use new imaging biomarkers for assessing
treatment response in patients and overall drug effectiveness in
clinical trial cohorts. Such decision-making requires calculating
a variety of response measures in patients and across cohorts—
tasks generally done by hand, making it difficult to compare
multiple alternative imaging biomarkers. Fourth, it is costly and
difficult to accrue aggregate data needed to qualify new imaging
biomarkers as surrogate endpoints for clinical trials (58). Qual-
ification of new imaging biomarkers requires collecting con-
text-specific assessments of the performance of the biomarker
relative to clinical outcomes (59). It is challenging to acquire
sufficient data that link imaging biomarker data with clinical
outcomes, such as survival (60). Efforts such as the Quantitative
Imaging Biomarker Alliance (QIBA) are creating consensus on
processes to qualify new imaging biomarkers (61), but their
ultimate success depends on expanding public data sets (62) and
leveraging many studies from individual laboratories and coop-
erative groups, which currently cannot be repurposed for this
task because image annotations (or biomarker values extracted
from them) are not recorded in standardized formats.

We developed ePAD—one of the research projects of the
QIN—to address all of these challenges by developing a modular
software platform integrating image viewing with computation
of emerging and validated quantitative imaging biomarkers,
facilitating translation of novel biomarkers into clinical trials as
surrogate endpoints. In this paper, we will present ePAD’s core
architecture and describe the ways in which it meets the fore-
going challenges. We also describe active research projects that
are leveraging ePAD.

THE ePAD PLATFORM
We describe the design of ePAD and its core architecture, pre-
senting this information from 4 different perspectives that ad-
dress 4 major challenges mentioned above: (1) as a platform
enabling the computing of novel imaging biomarkers of cancer
treatment response, (2) as a workflow management and study
oversight tool enabling the oversight for assessing new image
biomarkers in clinical trials, (3) as a clinical decision support
tool for the treatment response assessment using current and
new imaging biomarkers, and (4) as infrastructure to permit
researchers to aggregate evidence needed to show that new
imaging biomarkers predict survival, which can be useful in
qualifying them as surrogate endpoints in clinical trials.

Image Annotations in ePAD
A key distinguishing feature of ePAD is its support for standard-
ized formats for image annotations, specifically Annotation and
Image Markup (AIM) (63) and DICOM segmentation objects (64).
AIM is an information model developed by the National Cancer
Imaging Program of NCI for storing and sharing image metadata
(65-67), such as lesion identification, location, size measure-
ments, regions of interest (ROIs), radiologist observations, ana-
tomic locations of abnormalities, calculations, inferences, and
other qualitative and quantitative image features. The image
metadata also include information about the image, such as the
name of imaging procedure and how or when the image was
acquired. AIM supports controlled terminologies, enabling se-
mantic interoperability. In the use case of lesion annotation in
cancer, the value of AIM is recording lesion identifiers (enabling
unambiguous tracking of lesions across longitudinal images),
anatomic locations of lesions, lesion types (target, nontarget,
new lesion, or resolved lesion), and study types (baseline or
follow up). This semantic information is critical for automating
the generation of tabular summaries of lesions, and it also
enables automating comparing the response assessment in pa-
tients according to different imaging biomarkers (see Section
“Clinical Decision Support Tool for Treatment Response Assess-
ment”). AIM has recently been incorporated into DICOM Struc-
tured Report (DICOM SR) (68), with specifications for saving
AIM in DICOM-SR (69).

Architecture of ePAD
ePAD Components. ePAD (70-72) is a freely available quan-

titative imaging informatics platform (http://epad.stanford.edu)
distributed as a virtual machine or as Docker containers. Users
can download virtual machine or Docker version of ePAD and
host it in their own environment. This enables them to restrict
the access to their private networks, typically to the hospital
network. These machines generally do not have access to the
internet. The core architecture of ePAD is shown in Figure 1. The
ePAD platform comprises the following 5 main components: (1)
the ePAD viewer, a zero-footprint web image viewer and image
annotator, (2) ePAD web services, providing a programming
interface to ePAD services, (3) an image database, (4) an image
annotation database, and (5) plugin modules (server-side and
client-side for extending the ePAD platform). The image data-
base, image annotation database, and ePAD web services com-
prise the “back end” of ePAD. The ePAD plugin modules extend
the functionality of ePAD, and while most of the plugins de-
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scribed below were developed by us, we also describe several
developed by the community, and such community engagement
will enable ePAD to foster an ecosystem enabling continued
evolution of the platform to meet the needs of researchers
broadly.

1. ePAD Viewer. The ePAD viewer is a web application pro-
viding the look and feel of a Picture Archiving and Communi-
cation System (PACS) to the user, who can browse patient
studies and open them to view images. To display images, the
ePAD viewer queries an embedded PACS database [dcm4chee
(73)] and stores image annotations in ePAD’s annotation data-
base. The ePAD viewer was written using HTML5 (74), Java,
JavaScript, and the Google Web Toolkit (http://www.gwtprojec-
t.org), which supports image rendering with controls for image
display (eg, zooming, panning, and window/level) within the
Web browser. Drawing and editing image annotations are ac-
complished with HTML5 Scalable Vector Graphics (SVG).

An important component of the ePAD viewer is its image
annotation window (Figure 2). The ePAD viewer ensures the
minimum information necessary to create a meaningful image
annotation is collected from the user: the lesion name, the lesion
type (target, nontarget, new lesion, or resolved lesion) and the
anatomic location of the lesion, and the study time point (base-
line or follow-up). The ePAD viewer automatically labels each
lesion with a name (eg, “Lesion1”) to enable unambiguous de-
termination of the same lesion on serial imaging studies (75). To
specify the content of annotations, ePAD uses AIM templates
(76) that are created by a separate freely available application.
AIM templates specify the data elements to be provided by the
user when making image annotations. All answer choices in
ePAD templates are controlled terminology lists such as RadLex
(77). The ePAD viewer prompts the user if certain values in the
templates are inconsistent or incomplete (66). The ePAD viewer
permits creating 2 types of ROI, coordinate based and pixel map
based. The former is saved as coordinates in the AIM file (63),
and the latter is saved as a DICOM segmentation object (64).

2. ePAD Web Services. The ePAD viewer uses a set of RESTful
Web services (78) to communicate with the back end of ePAD to
retrieve images and save image annotations, as well as authen-
ticating user credentials and invoking image calculation meth-

ods that need to be executed on the server. The ePAD Web
Services provides programmatic access to the image database
and the annotation database that are components of the ePAD
back end (Figure 1). The ePAD Web Services is typically hosted
on a server that resides within an institution’s firewall so that all
traffic between the ePAD viewer and the ePAD Web Services
resides within the institution’s Intranet. Thus, users can use
ePAD to evaluate image data containing protected health infor-
mation, provided the network on which ePAD is hosted is secure.
Another model for hosting ePAD is a centralized, hosted version,
which could provide publicly available images (which should be
deidentified for public dissemination). The ePAD Web Services
are used by plugin developers to extend ePAD’s functionality,
either as client-side or as server-side plugins (Figure 1). Plugin
developers can use the ePAD Web services to access annotations
and images in their own applications or to provide extensions to
the ePAD platform.

3. Image Database. Medical images in DICOM format are
managed by an open-source PACS called dcm4chee (73). This
PACS contains a DICOM image receiver and a programming
interface that permits the ePAD Web Services to manage imag-
ing studies within ePAD. The DICOM image database provides a
temporary storage depot for images for image display and an-
notation in ePAD. The AIM annotations and DICOM segmenta-
tion objects in ePAD are saved indefinitely, however, as these
annotations comprise the user-generated data in ePAD. Because
DICOM images are large, the ePAD back end converts them into
a lossless compressed PNG image object (“packed PNG”) that
takes each 16-bit pixel in a DICOM image and packs it into a
PNG color channel before returning it to the ePAD viewer, where
it is unpacked. This approach significantly reduces the volume
of data provided by the server and speeds performance of the
ePAD viewer. To further speed image display performance,
ePAD supports the Web-Accessible DICOM Objects [WADO (79)]
protocol to retrieve lossy JPG images, while the lossless packed
PNGs are initially loading.

4. Annotation Database. As the user makes annotations on
images in ePAD viewer, it creates AIM files. All AIM annotations
are stored in an XML database [eXist (80)]. The AIM annotation
database is accessible via functions in the ePAD Web Services,

Figure 1. Architecture of the
ePAD platform, which comprises
an image database (dcm4chee
PACS as a cache for images), a
database of image annotations
(AIM XML database), the ePAD
Viewer (a web application), ePAD
Web Services that communicate
data between the image and an-
notation databases and the ePAD
Viewer, and back-end (server-
side) and front-end (client-side)
plugins enabling the community to
extend the ePAD platform.
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and it is the key resource that ePAD queries for lesion tracking
and summarizing longitudinal changes in cancer treatment re-
sponse, as described in Section “Clinical Decision Support Tool
for Treatment Response Assessment.”

5. Plugin Modules. Developers can create server-side and
client-side plugins to access the data collected by ePAD to
provide a new functionality. The server-side code can be written
in a variety of languages, such as MATLAB, python, C/C��, or
Java. We and other groups have created plugins to build a
variety of features to address the challenges of (1) computing
novel imaging biomarkers of cancer treatment response, (2)
providing workflow management and study oversight features
for assessing new image biomarkers, (3) creating clinical deci-
sion support tools for treatment response assessment using cur-
rent and new imaging biomarkers, and (4) permitting research-
ers to aggregate evidence needed to show that new imaging
biomarkers predict survival, which can be useful in qualifying
them as surrogate endpoints in clinical trials.

Plugins currently available in ePAD are listed in the following
sections.

JJVector Feature Extraction Plugin. JJVector is a 2D feature
extraction plugin we developed that analyses closed-shape an-
notations and extracts 2D radiomics features based on the in-
tensity values from the ROI and the surrounding tissue of its
associated organ (81). The plugin saves the calculated feature
values in an AIM file that can be downloaded in different
formats from ePAD, such as an excel summary sheet to be used
in other applications such as training machine learning models.

ADLA Biomarker Plugin. The Attenuation Distribution across
the Long Axis (ADLA) plugin implements the ADLA semiquan-

titative imaging biomarker for assessing treatment response in
solid malignancies and a measure of intralesional heterogeneity.
We built this plugin in collaboration with prior works that
created it (82, 83). ePAD calculates the standard deviation
along the long axis to compute ADLA and saves it in the AIM
file to be used for analyses such as response assessment as an
alternative imaging biomarker. ePAD also generates an ADLA
histogram of pixel values within the ROI when the long axis
is selected (Figure 3).

Perfusion Analysis Plugin. A contributor developed an ePAD
plugin deploying an algorithm for computing T1 perfusion maps
on dynamic contrast-enhanced studies based on his prior work
(84). The plugin analyses the multiframe MRI images having
different phases of dynamic contrast enhancement and calcu-
lates a T1 map for the imaged volume. The plugin scales the T1
map to 8 bits to save as a standard DICOM object (a probability
DICOM Segmentation object) and paints the mask on the image
using a color lookup table (Figure 4).

Riesz Texture Feature Plugin. A contributor developed an
ePAD plugin that computes image texture features based on
Riesz wavelets (85). The latter are a subtype of convolutional
approaches that can quantify image derivatives of any order and
at multiple scales. The image derivatives are aligned along
dominant local orientations, allowing characterization of the
local organization of the image direction, with invariance to the
local orientation of anatomical structures. These image deriva-
tives have an intuitive interpretation, and the Riesz features
have shown to provide valuable imaging measurements in var-
ious medical applications.

Figure 2. ePAD viewer and annotation window. Images are displayed in the ePAD web viewer, and the user records
image annotations in using drawing tools (eg, to create an ROI, shown on the left) and an annotation window (to re-
cord qualitative image features, shown on right).
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Quantitative Image Feature Engine (QIFE). QIFE is an open-
source feature-extraction framework we created that computes
3D radiomics features for ROIs that are created as DICOM seg-
mentation objects (86). ePAD stores these image features in an
AIM file for further analysis in radiomics studies or as alterna-
tive imaging biomarkers of response.

Quantitative Feature Explore (QFExplore) Plugin Suite. The
Quantitative Feature Explore (QFExplore) is a suite of plugins we

developed for the ePAD platform, enabling the exploration and
validation of imaging biomarkers in a clinical environment (85).
Imaging features that can be extracted using QFExplore include
histogram bins of Pixel Intensity Distributions (PID), statistical
moments of PIDs (ie, mean, standard deviation, skewness, kur-
tosis), gray-level co-occurrence matrices (GLCMs), and Riesz
wavelets (87). Figure 5 illustrates QFExplore plugin suite’s fea-
ture comparison functions in action. The ROIs are visualized on

Figure 3. ADLA histogram on a
line annotation on a cancer lesion
created and visualized in ePAD.

Figure 4. T1 perfusion map gen-
erated by ePAD plugin derived
from the algorithm in Jarrett et
al.’s study (112), with the map
overlaid on magnetic resonance
(MR) image using a color lookup
table.
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the left, while color-coded gray-level co-occurrence matrices
values are displayed in a chart on the right.

Quantitative Feature Pipeline (QIFP). We created the QIFP, a
cloud-based platform for building processing pipelines of image
analysis algorithms (88). It provides a Docker library of image
analysis algorithms for preprocessing, segmentation, and fea-
ture extraction that can be assembled into pipelines. The QIFP is
integrated with ePAD so that any processing pipeline for gen-
erating quantitative imaging biomarkers can be executed in
ePAD (or ePAD annotations can be consumed and used in QIFP
processing pipelines).

ePAD APPLICATIONS
ePAD includes several applications that are part of the platform
and accessible via menu tabs in the ePAD viewer.

Computing and Comparing Imaging Biomarkers
A need that is critical for research is its ability to compute a
variety of alternative imaging biomarkers besides linear dimen-
sion (used in RECIST and similar criteria). In a given clinical
trial, patient response to treatment can be computed using a
variety of imaging biomarkers, and a sizeable collection of data
can be amassed if this is done across clinical trials that could
ultimately be useful in comparing and evaluating alternative
imaging biomarkers as secondary endpoints of response. Differ-
ent imaging biomarker algorithms are written in different lan-
guages, and ePAD enables incorporating them into its image
analysis workflow through its plugin mechanism described
above. These plugins can execute source code modules written
in MATLAB, Java, C/C��, or other languages, letting bio-

marker algorithm developers add their existing code to ePAD
easily.

When users make annotations on images, ePAD automati-
cally analyzes each annotation to generate the image biomark-
ers that the user chooses, and it saves them in AIM format. It also
computes the minimum, maximum, standard deviation and
mean for all the pixels that are inside the ROI. If the ROI is a line,
ePAD calculates the length. If the ROI comprises 2 perpendicular
lines, ePAD will calculate the length of the long axis and short
axis. Additional features and biomarker candidates can be cal-
culated by various plugins.

Workflow Management and Study Oversight
The ePAD viewer includes an application that provides a sum-
mary panel of annotations designed to streamline the task of
summarizing for the radiologist all prior measurements and
images in prior studies of each patient to convey the list of
lesions previously measured, and which need to be measured on
the current study. To populate this summary display, the ePAD
viewer queries ePAD’s annotation database to find all the lesions
from the prior exams and list them for the user. This provides the
user with a worklist of lesion measurements that need to be
made for each imaging study. It also links each measurement to
the image from which it was obtained. When the user clicks on
a measurement, the corresponding image is retrieved and the
measurement is displayed.

ePAD also facilitates oversight and managing image read-
ings for clinical trial researchers and study administrators via
user roles, worklists, and study progress monitoring. Project
owners and administrators can create users and assign them

Figure 5. QF Explore Plugin Suite: gray-level co-occurrence matrix feature extraction and comparison chart. The user
can compare the feature values for various regions of interest (ROIs). GLCM contrast and correlation is higher for vascu-
lar ROIs (85).
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specific roles to control their access to imaging data and anno-
tations created by other users. Users or study supervisors can
create worklists for people and assign to a reader. Using
worklists allows the supervisors to divide the readings to mul-
tiple readers. A study progress monitoring application module in
ePAD monitors the status of image annotations made in clinical
trials and summarizes them in a table in the ePAD viewer. Study
administrators can follow the image annotations made in mul-
tiple studies by group of users assigned to a particular study. The
application can also track the progress of the annotation process
by identifying which subjects/studies are fully annotated by all
the annotators, which annotators have completed the annota-

tion process for each subject and which subjects/studies have
not yet been annotated yet (Figure 6). This functionality has
been helpful the MGH/HST Martinos Center for Biomedical
Imaging used this for MEDICI project (89), which used ePAD.

Clinical Decision Support Tool for Treatment Response
Assessment
ePAD has applications to assist decision-making based on image
biomarker assessments in the following 2 major cancer research
tasks: determine treatment response in patients (ePAD longitu-
dinal annotation report) and evaluate treatment effectiveness by
determining the cohort-based treatment response (ePAD water-
fall plot). We built these applications using ePAD Web services
to retrieve AIM annotations and their associated images to track
target lesions and compute cancer treatment response according
to selected imaging biomarkers.

Longitudinal Annotation Reporting. ePAD supports longitu-
dinal annotation tracking, which provides a summary of quan-
titative image features across time. This is the basis for RECIST
and other reports of response assessment. However, ePAD can
generate such reports bases on any quantitative imaging bio-
marker it can collect from image annotations. It analyzes all the
annotations of a subject and populates 3 dropdown menus to
facilitate selecting them by shape, template, and measurement
type (Figure 7). Users can select the basis for the longitudinal
annotation report based on the selected measurement types. If a
measurement is not present for a particular time point of a
lesion, the table display it as a missing value. The summary
section of the report will be filled automatically for the mea-
surement type.

ePAD can generate a RECIST report by querying the annota-
tions that are of linear type (Figure 7) and calculating sum of
lesion dimensions on the images of each time point. RECIST
report generation supports line and perpendicular lines annota-
tions, as well as an image-based response rate (the percentage
change in the sum of lesion dimensions compared with base-
line). ePAD applies the RECIST rules to classify the response rate
to determine the response category (ie, stable disease, partial
response, complete response, and progressive disease). This in-
formation is displayed with the lesion measurements in the
ePAD viewer (Figure 7). ePAD also checks the consistency of the
annotations to determine if the anatomic location of the lesion

Figure 6. Progress view of ePAD visualizing a
particular project (“Liver”) that contains 5 patients.
The status column shows the overall status for that
series/study or patient, and the user statuses col-
umn shows the status of annotations that have
been created by each ePAD user associated with
that project.

Figure 7. A tumor burden report (using linear measurement as the imaging biomarker and RECIST response criteria)
and a longitudinal annotation report of a patient having 4 time points and 3 lesions. This report is automatically gener-
ated from ePAD’s image annotations and enables clinicians to determine image-based treatment response in the patient.
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is specified consistently on different time points of the patient;
otherwise, the measurement will be marked as error to notify the
user. The report also marks missing annotations for a lesion as
error. The user can open the annotation in the ePAD viewer by
clicking on the annotation measurement on a specific time
point. The user can also open all annotations of the lesions on all
time points by clicking the lesion name.

Besides using longitudinal measurement of lesions, ePAD can
generate reports of lesion response based on other imaging
biomarkers, such as the ADLA biomarker (82). The report eval-
uates the progress of the disease using the sum of ADLA scores
for each timeline, similar to RECIST.

Waterfall Plots. Waterfall plots are bar graphs showing the
response of a cohort of patients to the same cancer treatment.
The height of the bars represents the best overall response the
patient had during the course of treatment, and each bar (pa-
tient) is ordered from best to worst response, which resembles a
waterfall. These plots are highly useful for seeing how well a
patient cohort responded to treatment, with the percentage of
patients with positive response indicating effective treatment.
ePAD generates waterfall plots of user-specified patient cohorts
by computing the longitudinal annotation-based response in
each patient in the cohort and ordering the response from best to
worst response (Figure 8). The plot can be based on longitudinal
measurement of lesions as the basis of evaluating response (ie,
RECIST), but importantly, it can also be based on using newer
imaging biomarkers of response such as ADLA or other imaging
biomarkers that have been recently introduced by researchers. If
the user selects to use RECIST, the waterfall plot module ana-
lyzes every subject in the cohort, generates the RECIST tables,
gets the best response for each subject, and plots it in a decreas-
ing order forming a waterfall plot. If the user selects to use
ADLA, a waterfall plot is generated based on an ADLA table that
ePAD computes for each subject, using the standard deviation of
the line annotations on lesions as the measurement type (82).
Then, the best response from the ADLA table for each patient is

used to create the waterfall plot. Users can drill down to more
granular data within the waterfall plot; the user can access the
table that is used to make the best response rate computation by
clicking the specific bar in the waterfall plot.

Application for Aggregating Evidence for Evaluating
New Imaging Biomarkers
As noted earlier, ePAD has plugins to compute a variety of
image biomarkers. Some of these plugins assume that cancer
lesions are circumscribed, and if the images input into these
biomarker plugins were annotated using only line annotations
(eg, as part of RECIST measurements), ePAD can generate ROIs
that circumscribe lesions automatically by executing image seg-
mentation plugins that use the line or point annotations as
seeds. In addition to segmentation, there are quantitative image
analysis plugins that may operate on the entire image, and ePAD
supports those as well. Current automated segmentation plugins
and other analysis plugins available in ePAD are listed in the
following sections.

Automated Segmentation in PET Images. The plugin invokes
automated segmentation of cancer lesions seen on PET images
(90). It is triggered with a seed point ROI within the lesion. It
analyzes the image volume to create a 3D ROI enclosing the
lesion and creates a DICOM segmentation object marking the
volume of the lesion. The DICOM segmentation object is added
to ePAD with its associated AIM annotation file and displayed
on the image series as a mask.

Automated 2D Lesion Segmentation. ePAD has a 2D lesion
segmentation plugin, LesionSeg. The plugin is triggered with
drawing a polygon or a long axis line within a lesion. It analyzes
the image and creates a polygon ROI stored as an AIM file
containing the contours of the lesion (91).

Automated Image Segmentation of QF Explore Plugin Suite.
The QFExplore plugin suite has a plugin for automatically seg-
menting lungs in a DICOM image volume (85). The plugin

Figure 8. Waterfall report plot based on linear measurement as the imaging biomarker of response and RECIST as the
response criteria, showing the best response score for each patient in the study cohort. This plot enables researchers to
assess the effectiveness of cancer treatment in the cohort, and a variety of these plots can be generated using different
imaging biomarkers of response (upper left corner).
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analyses the volume, segments the lung volume, and creates a
DICOM segmentation object.

ePAD USAGE
To track usage statistics, ePAD collects anonymous data from all
ePAD machines that are connected to internet (if the statistics
are not disabled by the user). The statistics consist the number
of users, projects, patients, studies, series, AIM annotations,
DICOM segmentation objects, plugins, and templates that exist
on the ePAD instances. Figure 9 shows the ePAD usage statistics
collected from 2015 to 2018. For plugins and templates, the
maximum number of entities is reported, as many are the same
versions of the plugins and templates across ePAD instances. For
all the other entities, the values reported by each ePAD instance
are computed by getting the latest reported values for each year
and summing them to obtain the total number. For example, in
2018, over 19,000 imaging studies were hosted in various ePAD
instances worldwide, and over 55,000 annotations were created
in ePAD on those imaging studies. As ePAD collects only the
number of entities for privacy purposes, the numbers are cumu-
lative; that is, this does not mean 55,000 annotations were
created during 2018, but it means that at the end of 2018, 55,000
annotations existed on ePAD instances. In addition, currently
there are a maximum of 11 plugins and 35 templates that are
being used across all ePAD instances.

INTEROPERABILITY
One of the key aims of ePAD is to facilitate collaborations
among research sites and repurposing of their existing data,

which we achieve by supporting standards and interoperability
for images and annotations.

ePAD saves all image annotations that it collects using
existing standards, in particular AIM (63) and DICOM segmen-
tation objects (64), for volumetric ROIs. ePAD also supports the
DICOM-SR standard via the dcmqi library (92) for volumetric
ROI annotations. Recently AIM was harmonized with the DICOM
standard, which provided DICOM-SR support of AIM annotation
types under Supplement 200 with specifications for saving AIM
in DICOM-SR (68, 69). ePAD also supports DICOM radiation
therapy (DICOM-RTs) and tiff image files. ePAD analyses the
DICOM-RT objects and extracts its ROI contours using the
DICOM file interface library developed by MAASTRO (93). It then
creates a DICOM segmentation object for each contour and saves it
and an AIM file. ePAD also supports uploading tiff files and creates
a DICOM image series from them using the patient identification
number, patient name, study description, and series description
supplied by the user. The file list is analyzed, and a DICOM file is
created for each tiff file. The instance numbers of the DICOM files
are ordered in the alphabetical order of tiff filenames.

ePAD also has migration tools that were developed in col-
laboration with various laboratories that enable ePAD to lever-
age the existing annotations created by other software tools,
including ROIs exported from Osirix (94) and Mint Lesion (53).
Specifically, ePAD analyzes the exported proprietary file from
Osirix via ExportROIs plugin and creates an AIM file for each
ROI in the file. ePAD also creates AIM files from JavaScript
Object Notation (JSON) objects that are created from the Mint
Lesion commercial system.

Figure 9. Cumulative ePAD statistics collected from ePAD instances between 2015 and 2018.
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USE CASES FOR ePAD IN QIN AND OTHER
RESEARCH
Many research studies in that require viewing and annotating
radiology images for making measurements of lesions or extracting
radiomics features from them could benefit from using ePAD.
Clinical trials of cancer treatments can be particularly helped given
ePAD’s workflow support and multireader support features, its
support of interoperability standards, as well as its ability to
compute many imaging biomarkers seamlessly within routine
image annotation workflow. ePAD has been used by many
researchers worldwide to support clinical research and clini-
cal trials, and it has supported many published studies (75,
81, 85, 95-110), and it has been shown to improve the
workflow of measuring target lesions (111). We briefly high-
light support it has provided several projects in NCI’s QIN.

Vanderbilt QIN. In collaboration with Vanderbilt QIN, “Quanti-
tative MRI for Predicting Response of Breast Cancer to Neoadjuvant
Therapy” in which this group developed algorithms for computing
quantitative perfusion maps of MRI images to deduce biomarkers
of treatment response (112), we deployed their biomarker algo-
rithms as a plugin to ePAD. As these researchers incorporate these
perfusion analyses into clinical trials, ePAD will be able to deploy
them as part of the image interpretation workflow.

Dana Farber Cancer Institute QIN. The QIN project at Dana
Farber, “Genotype and Imaging Phenotype Biomarkers in Lung
Cancer (113),” developed pyRadiomics, a flexible platform that
extracts a large panel of predefined features from medical im-
ages and is useful in characterizing cancer lesions. We incorpo-
rated pyRadiomics into ePAD as a Docker module that runs on
the QIFP platform (88) (see above) so that users can invoke
generation of these image features as part of image analysis
workflows in clinical trials.

ECOG-ACRIN QIN. The QIN project within the ECOG-ACRIN
cooperative group, “ECOG-ACRIN-Based QIN Resource for Ad-
vancing Quantitative Cancer Imaging in Clinical Trials,” is le-
veraging ePAD as a testbed for evaluating the deployment of
imaging biomarkers into clinical trials. Currently this project is
comparing ability of ePAD to evaluate a variety of quantitative
imaging biomarkers as part of the routine workflow of image
viewing and annotation in clinical trials.

American College of Radiology (ACR) Core Laboratory. The
ACR has a data archive and research toolkit called DART Portal
(114) that operates as a gateway to browse and query data for
research, quality improvement, and clinical study operational
purposes. They are adding ePAD as an interface to DART to
enable collecting image annotations as part of clinical trials in
AIM format and storing that in DART.

DISCUSSION
Response assessment in patients with cancer in clinical trials is
based on analysis of CT and magnetic resonance images (115).
Objective criteria, such as RECIST, are critical to evaluation of
response assessment in clinical trials, but lesion measurements
vary with user experience, and they are often inconsistent or
incomplete (105). There is a pressing need to recognize signals in
radiology images that optimally assess and predict response to
treatment. Tumor shrinkage is the hallmark of response to cy-
totoxic cancer therapies (4), and thus, linear measurement of
target cancer lesions is the imaging biomarker used in current
response criteria such as RECIST and International Harmoniza-
tion Criteria (10). However, new targeted, noncytotoxic thera-

pies arrest cancer growth and improve progression-free survival
without necessarily shrinking tumors (11-14); thus, simple
linear measurement may underestimate treatment response
(15-18), and may not be the best proxy for tumor activity. To
address these limitations, researchers are developing quantita-
tive imaging biomarkers that may better assess the benefit of
new treatments, but they have been challenging to introduce
into clinical trial workflows.

In the paper, we have presented ePAD from 4 different viewpoints
to highlight how it addresses key challenges for incorporating quan-
titative imaging biomarkers into clinical trials. First, it provides a
platform for computing a variety of imaging biomarkers. Second, it
provides a workflow management and study oversight tool enabling
oversight for assessingnew imagebiomarkers in clinical trials. Third, it
provides clinical decision support tools to help clinical researchers
assess treatment response using current and new imaging biomarkers.
Fourth, ePAD provides infrastructure to permit researchers to aggre-
gate evidence about how well imaging biomarkers predict response,
which may help in qualifying them as surrogate endpoints in clinical
trials.

There are many existing commercial and freely available tools
available for medical image viewing and annotation, and although
ePAD provides similar capability in terms of image viewing and
drawing shapes on images, it provides many unique features that
address many unmet needs in evaluating images clinical research.
Osirix (94) and ClearCanvas (55) are 2 medical image annotation
applications that provide similar image viewing capabilities, al-
though they depend on a thick client, limiting collaboration as they
are platform-dependent, while ePAD is a web-based viewer and
requires no installation for users other than hosting a single in-
stance of the ePAD machine for all users. In addition, Osirix saves
its annotations in propriety format and supports exporting ROIs
using ExportROIs plugin. On the other hand, ePAD and ClearCan-
vas supports AIM format. ePAD also supports the new DICOM-SR
AIM object. Beyond the open-source tools, we recognize that sev-
eral commercial tools are available for image viewing and analysis
to enable response assessment. These tools were developed to en-
able evaluating established criteria such as RECIST in clinical trials;
however, such tools are not optimal for research studies that wish to
include novel imaging biomarkers of treatment response (eg, those
being developed by NCI’s QIN). This gap was a primary motivator
for developing the ePAD system.

3D Slicer (56, 116), ImageJ (117), and MIPAV (118) are
additional freely available desktop applications. 3D Slicer is a
cross-platform open-source software for visualization and im-
age computing. It has a plugin architecture to enable researchers
to develop their algorithms via C�� plugins and Python
scripted modules. It supports DICOM standard for the volumetric
annotations and DICOM Structured Report (DICOM-SR) for the
measurements collected from the ROIs. ImageJ and MIPAV are
both Java applications that can run on any Java-enabled oper-
ating system, and researchers can develop their own plugins
using Java language. Imagej2, an extended version of ImageJ,
supports writing plugin scripts in various programming lan-
guages. ImageJ saves the labels and annotations as modified
versions of the images or propriety ROI file formats, and MIPAV
uses an Extensible Markup Language (XML) format they intro-
duced in an effort to make their format readable by researchers.
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Although all 3 applications are cross-platform, they are desktop
applications for a single user, which makes multiuser collabo-
ration more difficult.

The Open Health Imaging Foundation (OHIF; http://
ohif.org/) is a full-stack Javascript platform, which enables
creating a zero-footprint web page and various applications
using it. The OHIF Viewer provides web-based image viewing
similar to ePAD. The OHIF LesionTracker enables users to anno-
tate and track long-axis and short-axis lesions for oncology
workflow; however, it does not save the image annotations in a
standard format like AIM.

ePADwasdeveloped to facilitate collectingannotations andmea-
surements on target lesions in compliancewith standards in the cancer
imaging community. ePAD makes sharing code, data and annotations
easy being a web application and saving the collected annotation data
in well-documented and standardized formats [DICOM segmentation
objects (64) and AIM (63) in particular].

In addition to providing standards-based storage of annota-
tions, ePAD enables user-defined templates for flexible capture of
information in the form of data collection templates as part of the
annotations. The ePAD platform is also extensible via plugins that
lets researchers implement analysis codes as server-side modules in
MATLAB or other languages. Many plugins for segmentation and
quantitative image biomarker computation are included with
ePAD, and users can add additional biomarker modules.

Other functionalities of ePAD that differentiates it from
similar existing image viewing applications is that ePAD
supports important features unique to image analysis in clin-
ical trial workflow. Specifically, ePAD provides tools en-
abling oversight of annotations as part of clinical trials, and
it lets the users create a collaborative environment by creat-
ing projects and assigning users appropriate rights to limit
their access facilitating large studies with multiple annota-
tors. ePAD also provides decision support tools—longitudinal
annotation summary and waterfall plots—that help research-
ers evaluate individual patient and cohort population treat-
ment response, respectively. Finally, by computing a variety
of image biomarkers on cohorts of patients, ePAD can accu-
mulate a substantial amount of data that can permit studies
comparing effectiveness of different imaging biomarkers as
indicators of treatment response.

An ultimate metric of the success of ePAD will be in-
creased use of the newer imaging biomarkers in clinical trials.
This will require clinical trial groups to include computation
of the biomarkers into their study protocols. As the commu-
nity becomes aware of the potential of these methods and of
the facility of tools such as ePAD to include them in clinical
trials, we expect these methods will be more commonly used.
Certainly, the amount of research studies undertaken to date
using ePAD suggests promising future directions.
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