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Abstract: To accelerate data acquisition speed in magnetic resonance imaging (MRI), multiple
slices are simultaneously acquired using multiband pulses. Simultaneous multislice (SMS) imaging
typically unfolds slice aliasing from the acquired collapsed slices. In this study, we extended the
SMS framework to accelerated MR parameter quantification such as T1 mapping. Assuming that
the slice-specific null space and signal subspace are invariant along the parameter dimension, we
formulated the SMS framework as a constrained optimization problem under a joint reconstruction
framework such that the noise and signal subspaces are used for slice separation and recovery,
respectively. The proposed method was validated on 3T MR human brain scans. We successfully
demonstrated that the proposed method outperforms competing methods in suppressing aliasing
artifacts and noise at high SMS accelerations, thus leading to accurate T1 maps.
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1. Introduction

In magnetic resonance imaging (MRI), quantitative parameter mapping, which in-
cludes voxelwise delineation of tissue-specific relaxation times, has been widely used in
characterizing inherent tissue properties and evaluating various pathological diseases,
thereby providing valuable insight into disease processes. These voxels serve as imaging
markers for clinical applications such as acute stroke, epilepsy, and multiple sclerosis [1–4].
As parameter mapping in MRI requires that several repeated measurements with varying
imaging parameters, it may result in prohibitively long imaging times, thus compromising
imaging efficiency and possibly limiting a range of clinical applications.

In accelerated MR parameter mapping, simultaneous multislice (SMS) imaging has
gained attention owing to its ability to provide the signal-to-noise ratio (SNR) benefit of vol-
umetric signal averaging by simultaneously exciting multiple imaging slices [5–7]. Parallel
imaging techniques have been used to unfold the overlapped slices by solving an inverse
problem consisting of multicoil linear system equations [8–12]. To obtain better noise
suppression and artifact mitigation over conventional data acquisition, a controlled alias-
ing (CAIPI) technique was introduced to SMS acquisition by applying phase-modulated
RF excitation to best utilize the multicoil encoding power that maximizes the sensitivity
variation between neighboring slices [12,13]. CAIPI acquisition, coupled with parallel
imaging, provides higher SNR efficiency due to the improved conditioning of the matrix
inversion. To flexibly control intra- and interslice artifacts, split slice-GRAPPA (SP-SG)
imposes a slice leakage constraint by effectively passing signals in a slice of interest while
nulling the leakage terms of the other slices [14–16]. However, as simultaneously acquired
slices are close to each other, the neighboring slices may share spatial correlation to a certain
extent, thus limiting the use of a single reconstruction kernel.

Tomography 2021, 7, 545–554. https://doi.org/10.3390/tomography7040047 https://www.mdpi.com/journal/tomography

https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://doi.org/10.3390/tomography7040047
https://doi.org/10.3390/tomography7040047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/tomography7040047
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography7040047?type=check_update&version=1


Tomography 2021, 7 546

To enable fast MR parameter mapping for a large number of slices, an extended SMS
Hankel subspace learning (HSL) framework, which is the generalization of SMS-HSL [17]
that exploits the Hankel structured matrix property in k-space, was developed in this
study. For slice unfolding, the null subspace of the acquired SMS data is combined with
the signal subspace to recover the signal within a single slice. To this end, the parameter
dimension was considered for dynamic SMS imaging by combining the Hankel matrices
from different contrast images to yield a larger but more redundant low-rank matrix model
that consists of signal and noise subspaces. In vivo experiments were performed using
SMS single-shot EPI data sets with multiple inversion recovery times for T1 mapping to
validate the capability of the extended SMS-HSL algorithm at high SMS factors.

2. Materials and Methods
2.1. Introduction to SMS-HSL

An SMS signal can be represented as a linear combination of multiple slices:

y = ∑Ns
s xs + n (1)

where y ∈ CNx×Ny×Nc is the zero-filled measured signal, y ∈ CNx×Ny×Nc is the sth slice
signal, and n ∈ CNx×Ny×Nc is the measurements noise. To make the best of redundant
information from intra- and intercorrelations in k-space, each slice signal can be rewritten
as a Hankel matrix form [18]:

H(y) = ∑Ns
s H(xs) + N (2)

where H(·) : CNx×Ny×Nc → C(Nx−r+1)(Ny−r+1)×r2Nc the Hankel operator that maps the
k-space data into a Hankel-structured matrix by vectorizing r× r rectangular k-space data
across all coils inside the window followed by stacking the vectors row-wise as the sliding
window shifts to generate different rows. In multiband excitation, the above signal can
be decomposed on the basis of a dual slice model into 1. the slice of interest and 2. its
complementary slices:

H(y) = H(xs) +H(xc
s) + N (3)

where xc
s is the complementary slice signal and is defined as the linear superposition of

all simultaneously excited slices excluding the slice of interest. The Hankel matrices in
Equation (3) are then projected onto the different subspaces spanned by the complementary
null space N c

s.
H(y)N c

s = H(xs)N c
s +H(xc

s)N c
s ≈H(xs)N c

s (4)

Accordingly, the aliasing separation in the slice direction is performed by solving the
following least squares problem:

xs = min
xs
‖(H(y)−H(xs))N c

s‖2
F (5)

Additionally, as the multicoil images become redundant by sharing identical infor-
mation across the coil dimension, the Hankel structured data matrix becomes highly
rank-deficient, thus imposing a low-rank prior under the SMS reconstruction framework.

E(xs) = min
xs

1
2
‖(H(y)−H(xs))N c

s‖2
F + λ`‖H(xs)‖∗ (6)

where ‖ · ‖∗ is the nuclear norm defined as the sum of the singular values of the matrix.

2.2. Extension to Parameter Dimension

The simplest approach to applying SMS-HSL to parameter mapping is to indepen-
dently reconstruct each parameter image. As the null space is observed to be contrast-
invariant along the parameter dimension, the null space is applied to the individual pa-
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rameter images, thus leading to signal nulling in a slice of no interest while passing a slice
of interest for all TIs (Figure 1). To make better low-rank characteristics in multicontrast
imaging, the larger Hankel matrices HP(·) : CNx×Ny×Nc×Np → C(Nx−r+1)(Ny−r+1)Np×r2Nc ,
formulated as:

HP(xs) =
[
H(xs,1); H(xs,2); · · · ; H

(
xs,Np

)]
(7)

can be constructed by concatenating the Np different contrast Hankel-structured matrices
in the parameter dimension. The Hankel-structed low- rank properties can be observed
by applying singular value decomposition (SVD) to a single slice, linearly combined
composite SMS slice, and multicontrast block matrices, respectively. Figure 2 shows the
corresponding singular value distributions. The block matrix shows that singular values
drop quite rapidly compared to different matrices. This implies that the conversion of
the individual parameter matrices into a larger multicontrast matrix increases the rank
deficiency, thus making the matrix completion concept of SMS-HSL more suitable to MR
parameter mapping in SMS imaging. This implies that the conversion of the individual
parameter matrices into a larger multiparameter matrix increases the rank deficiency,
thus making the matrix completion concept of SMS-HSL more suitable to MR parameter
mapping in SMS imaging. In addition, the larger Hankel matrices potentially have a larger
number of null space vectors as a result of the increased low rank of the Hankel structured
matrix. This suggests that the null space projection term in Equation (6) improves the
performance while unfolding the collapsed slices into individual slices by utilizing the
increased redundancy of the null space. As a result, we computed the null space vectors
using larger Hankel matrices obtained by:

(1) concatenating the individual parameter Hankel structured matrices;
(2) applying SVD to block Hankel matrix;
(3) taking the right singular vectors corresponding to the low singular values.
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Figure 1. An illustration of the use of null space for slice separation. This work hypothesizes that the
null space is invariant along the parameter dimension. The null space projection effectively filters
out a slice of no interest while passing through a slice of interest regardless of contrast changes.



Tomography 2021, 7 548

Tomography 2021, 7, FOR PEER REVIEW 4 
 

 

Figure 1. An illustration of the use of null space for slice separation. This work hypothesizes that 
the null space is invariant along the parameter dimension. The null space projection effectively fil-
ters out a slice of no interest while passing through a slice of interest regardless of contrast changes. 

 
Figure 2. Utility of low rank in Hankel structured matrix. The larger Hankel matrices, which com-
bine all parameter k-space data, are more rank-deficient than single and composite slices, which 
implies that the matrix completion scheme is more suitable to the application of MR parameter map-
ping. 

Similar to the SMS-HSL based reconstruction formula of Equation (7), the proposed re-
construction problem can be formulated as: 

(ୱܠ)ܧ = min࢞ೞ  12ே
ୀଵ ቛቀऒ൫࢟൯ − ऒ൫࢞௦,൯ቁ घ܋ܛቛிଶ + λℓ‖ऒ۾(࢞௦)‖∗ (8)

The first term measures how well the collapsed slices are separated into individual 
slices, and the second regularization term provides a powerful signal recovery constraint 
for each slice by converting the slice separation problem into a single slice signal recovery 
problem. For the sake of brevity, Equation (8) is represented by concatenating the Hankel 
structured matrix for each contrast: ܧ(ܠୱ) = min࢞ೞ ฮ൫ऒ(࢟)۾ − ऒ۾(࢞௦)൯घ܋ܛฮிଶ + λℓ‖ऒ۾(࢞௦)‖∗ (9)

where ऒ۾൫࢟൯ and ऒ۾(࢞௦) are defined as: ऒ(ܡ)۾ = ൣऒ(ܡ);  ऒ(ܡ); ⋯ ;  ऒ൫۾ۼܡ൯൧, ऒ۾(࢞௦) = ቂऒ൫ܛܠ,൯;  ऒ൫ܛܠ,൯; ⋯ ;  ऒ ቀܘۼ,ܛܠ ቁቃ (10)

As the proposed reconstruction framework of Equation (8) is highly similar to the 
SMS-HSL cost function, the same optimization algorithm can be used to minimize both 
terms. In this study, the low-rank matrix fitting approach (LMaFit) was used under the 
framework of an alternating direction method (ADM) [9] to solve the aforementioned for-
mulation. 

2.3. Optimization Algorithm 

Figure 2. Utility of low rank in Hankel structured matrix. The larger Hankel matrices, which combine
all parameter k-space data, are more rank-deficient than single and composite slices, which implies
that the matrix completion scheme is more suitable to the application of MR parameter mapping.

Similar to the SMS-HSL based reconstruction formula of Equation (7), the proposed
reconstruction problem can be formulated as:

E(xs) = min
xs

Np

∑
p=1

1
2
‖
(
H
(

yp

)
−H

(
xs,p
))

N c
s‖2

F + λ`‖HP(xs)‖∗ (8)

The first term measures how well the collapsed slices are separated into individual
slices, and the second regularization term provides a powerful signal recovery constraint
for each slice by converting the slice separation problem into a single slice signal recovery
problem. For the sake of brevity, Equation (8) is represented by concatenating the Hankel
structured matrix for each contrast:

E(xs) = min
xs
‖
(
HP(y)−HP(xs)

)
N c

s‖2
F + λ`‖HP(xs)‖∗ (9)

where HP
(

yp

)
and HP(xs) are defined as:

HP(y) =
[
H(y1); H(y2); · · · ; H

(
yNP

)]
, HP(xs) =

[
H(xs,1); H(xs,2); · · · ; H

(
xs,Np

)]
(10)

As the proposed reconstruction framework of Equation (8) is highly similar to the
SMS-HSL cost function, the same optimization algorithm can be used to minimize both
terms. In this study, the low-rank matrix fitting approach (LMaFit) was used under the
framework of an alternating direction method (ADM) [9] to solve the aforementioned
formulation.

2.3. Optimization Algorithm

Increasing the number of parameter dimensions makes Equation (8) computation-
ally intractable. Instead, we employ the LMaFit approach, which does not use SVD, to
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substantially mitigate the computational complexity. The algorithm factorizes the larger
Hankel-structured matrices into spatial coefficients and coil basis functions.

‖HP(xs)‖∗ = min
US , VS

1
2

(
‖US‖2

F + ‖VS‖2
F

)
(11)

Hence, using the nuclear norm minimization under the matrix factorization constraint,
Equation (9) can be rewritten as:

E(xs, US, VS) = min
xs , US,VS

‖
(
HP(y)−HP(xs)

)
N c

s‖2
F +

λ`
2

(
‖US‖2

F + ‖VS‖2
F

)
(12)

subject to HP(xs) = USVS.
In Equation (11), the object function is nonconvex in terms of the unknowns xs, US,

and VS, and thus the global optimal solution is not guaranteed. However, the object
function is convex with respect to one variable when the other variables are held constant.
To achieve nonconvex optimization, we employ an ADM algorithm to update xs, US, and
VS in an alternating fashion, to iteratively find suboptimal solutions, until the cost function
stops decreasing [19–21].

Minimization with respect to xs: The cost function in Equation (12) is reduced to:

E(xs) = min
xs
‖
(
HP(y)−HP(xs)

)
N c

s‖2
F +

α

2
‖USVS −HP(xs)‖2

F (13)

where α is a penalty parameter that balances slice separation and signal recovery.
Minimization with respect to US: The cost function in Equation (12) is reduced to:

E(US) = min
US

λ`
2
‖US‖2

F +
α

2
‖USVS −HP(xs)‖2

F (14)

Minimization with respect to VS: The cost function in Equation (11) is reduced to:

E(VS) = min
VS

λ`
2
‖VS‖2

F +
α

2
‖USVS −HP(xs)‖2

F (15)

Each subproblem in Equations (13)–(15) is convex, and a global optimal solution
can thus be found for each subproblem. The quadratic subproblems are all solved in an
alternating fashion using the nonlinear conjugate gradient (CG) algorithm.

2.4. Experimental Setup

Experimental studies were performed on a 3T PRISMA scanner (Siemens Healthineers,
Erlangen, Germany) equipped with a 20-channel head coil using an inversion recovery
(IR) gradient echo (GE) EPI sequence. All experimental procedures were performed under
the approval of the Institutional Review Board at the Sungkyunkwan University (Suwon,
Korea). An informed written consent was obtained from each volunteer prior to imag-
ing. Fully sampled brain data were acquired with the following imaging parameters:
TR/TE = 3 s/23 ms, FOV = 240 × 240, matrix size = 120 × 120, slice thickness = 2 mm,
number of slices = 25, and 15 IR scans (inversion times TI = 50, 250, 450, 650, 850, 1050, 1250,
1450, 1650, 1850, 2050, 2250, 2450, 2650, and 2850 ms). All SMS image reconstructions were
performed offline on a personal computer with 2.3 GHz CPU and 32 GB RAM using MAT-
LAB (Mathworks Inc., Natick, MA, USA). For faster reconstruction, the acquired data sets
were reduced to 12 channels using standard SVD coil compression techniques [22,23]. Prior
to data acquisition, a FOV-matched low resolution 2D GRE image was also acquired with
32 fully sampled phase encoding lines at the center of k-space for calibration. To retrospec-
tively emulate SMS data acquisition, slice-specific CAIPI-induced phase was added to each
slice in k-space, before combining the slices into an overlapped slice. For reconstruction, a
kernel size of 5× 5 (phase encoding × readout) was used in the Hankel-structured matrix,
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and the low-rank property was imposed on the Hankel block matrix with a total number
of 120 spatial coefficients and coil basis, respectively. The cut-off singular value was set toe
0.05 max for the null space selection. The performance of the proposed method depends
on the choice of the regularization parameters λ` and α. Here, we manually set (λ`, α)
to small values (1.0e− 7, 2.0e− 6) to minimize slice leakage artifacts without perturbing
measured SMS data. For visual evaluations of image quality, error maps were produced
by calculating the difference between the reference and estimated images. Quantitative
comparison was also provided in terms of the normalized root mean square error (nRMSE):

1
max(Is)

√
∑N

s=1
1
N
(

Is − Îs
)2, where Is and Îs are reference and estimated images, respectively.

N is the total number of pixels. To demonstrate the benefits of imposing multiparametric
null space and low rank, we also performed kernel-based and null space-based SMS re-
constructions (i.e., SP-SG and SMS-HSL). The null space rank order of SMS-HSL was the
same as that of the proposed method. For SP-SG, kernel estimation was regularized with
Tikhonov penalty, and kernel sizes and regularization parameter were selected by visual
inspection.

SI = SI0

[
1− 2e

(
TI
T1

)
+ e
(
−TR

T1

)]
(16)

The term including TR could be negligible (TR > 5 × T1). However, it needs a long
scan time because the T1 values at 3T are around 1000–2000 ms. Thus, in this work, we
employed the above signal model including TR as a fitting model to estimate the exact
T1 values of brain tissues. After reconstruction, T1 map were estimated using pixelwise
nonlinear least square fitting.

3. Results

Figure 3 shows reconstructed images, error maps, and nRMSEs for SP-SG, SMS-HSL,
and the proposed method at an SMS factor of 5 for two of the TIs (50 and 1250 ms) out of a
total of 15 IR scans. The SP-SG reconstructed images exhibit significant noise amplification
in the third image and some structured aliasing artifacts in the fourth image with TI = 50 ms
and similarly with TI = 1250 ms (red arrows), in the middle of the FOV. The visual quality
of the SP-SG breaks down at longer TIs due to the low SNR in signal nulling. The SMS-HSL
case does not display strong artifacts, although close inspection does reveal that some
noise is still present. This is to be expected due to the improved conditioning of the
matrix inversion through generalized null space kernels, which are all independent of
each other. Notably, our proposed method consistently reconstructs high-quality images
that are devoid of visible artifacts for two of the TIs, attributed to the increased low rank
of the Hankel-structured matrices of multi-TI data. Consistent with the results shown
in the reconstructed images, the corresponding error maps tend to exaggerate contrast
contamination with noises particularly in SP-SG while yielding the lowest nRMSEs in the
proposed method compared to SP-SG and SMS-HSL.

Figure 4 compares the corresponding T1 maps (Figure S2) with enlarged figure in the
white dotted boxes, calculated from the reconstructed images of multi-TI data sets at an
SMS factor of 5. In line with the reconstruction results, the T1 values that are estimated
from SP-SG deviate from the correct values, even for the same tissue, due to the severely
amplified noise. In contrast, SMS-HSL provides dramatic improvement over SP-SG despite
the presence of some noise. Finally, with the proposed method, the T1 maps have better
SNR and the T1 values have higher precision than those of SP-SG and SMS-HSL, consistent
with the reconstruction results.
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presence of severe noise while SMS-HSL results display improved conditioning with generalized
null space kernels although some noise is still visible. The proposed method provides the best T1
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For quantitative evaluation, T1 relaxation curves are shown in Figure 5. The values
within manually chosen 3 × 3 pixel white and gray matter regions of interest (ROI) were
averaged. The T1 values for white and gray matter follow the pattern of the aforementioned
results. The proposed method follows the true signal intensity curve much more accurately
than the other methods, which display some signal bias due to signal nulling during
inversion recovery. The disparity between the proposed method and the other methods is
more pronounced for white matter.
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4. Discussion

In this work, we extend SMS-HSL to the context of dynamic MR imaging. This is
achieved by concatenating the SMS-HSL matrices of different contrasts to yield a larger,
more redundant low-rank dynamic imaging data matrix. This new reconstruction model
utilizes the null-space-based slice unfolding followed by enforcing the low-rankness of the
block Hankel matrix independently for each slice. The improved low rank is proof of the
existence of null space filters in the k-space domain whereby k-space data are represented
in a lower dimensional signal subspace, enabling the unfolding of each slice. Following
up on our previous work on SMS reconstruction [17], we developed a new algorithm to
incorporate the null and signal subspaces into a single optimization problem under a joint
framework. We demonstrate the superior performance of the proposed algorithm in the
accelerated recovery of SMS MR parameter data, using in vivo MR brain scans.

T1 mapping commonly relies on the inversion recovery sequence where EPI acquisi-
tions are continuously applied during signal recovery followed by a computation of the
T1 values during postprocessing. Multishot EPI acquisitions potentially yield motion mis-
matches and shot-to-shot phase variations between scans. These issues could be addressed
by adopting SMS acceleration, which brings down the time to enable a single-shot SMS ac-
quisition. The advanced technique presented in this work provides a drastic improvement
in image quality at high SMS accelerations, as observed in Figure 3, while helping mitigate
some of the involuntary motion and phase variation issues.

In terms of computation, the SVD-free reconstruction algorithm (LMaFit), which is
based on matrix factorization, was employed. The proposed algorithm is still compu-
tationally demanding due to the existence of a parameter dimension. To mitigate this
computational issue, the matrix inversion of the proposed method in Equation (7) can be
precomputed. In addition, the proposed algorithm can be efficiently parallelized using
a combination of multicore CPUs with GPUs, such that the null space estimation, which
requires high computational cost, is performed on multicore CPUs for each slice while
the matrix multiplication for data synthesis is implemented on GPUs with a large number
of cores.
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Our proposed method is not restricted to T1 quantification. It can be easily applied to
the mapping of different MR parameters such as T2, T2 *, and diffusion with acquisitions
based not only on single-shot EPI sequences but also on fast spin echo (FSE) or gradient
echo (GRE) sequences.

5. Conclusions

In conclusion, we developed and evaluated a dynamic version of SMS-HSL in the re-
construction of SMS imaging data by simultaneously imposing noise and signal subspaces
to the calculation of T1 maps. The proposed SMS-HSL method was demonstrated to have
substantial advantages over competing methods in providing high quality reconstructions
and high precision T1 maps with up to fivefold SMS acceleration.

Supplementary Materials: The proposed method was additionally evaluated on human brain from
different data set of the healthy subject available online at https://www.mdpi.com/article/10.339
0/tomography7040047/s1, Figure S1: reconstructed images using SP-SG, SMS-HSL and proposed
method, Figure S2: the corresponding T1 maps.
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