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Abstract: Most cardiac studies focus on evaluating left ventricular (LV) systolic function. However,
the assessment of diastolic cardiac function is becoming more appreciated, especially with the
increasing prevalence of pathologies associated with diastolic dysfunction like heart failure with
preserved ejection fraction (HFpEF). Diastolic dysfunction is an indication of abnormal mechanical
properties of the myocardium, characterized by slow or delayed myocardial relaxation, abnormal LV
distensibility, and/or impaired LV filling. Diastolic dysfunction has been shown to be associated with
age and other cardiovascular risk factors such as hypertension and diabetes mellitus. In this context,
cardiac magnetic resonance imaging (MRI) has the capability for differentiating between normal
and abnormal myocardial relaxation patterns, and therefore offers the prospect of early detection of
diastolic dysfunction. Although diastolic cardiac function can be assessed from the ratio between
early and atrial filling peaks (E/A ratio), measuring different parameters of heart contractility during
diastole allows for evaluating spatial and temporal patterns of cardiac function with the potential
for illustrating subtle changes related to age, gender, or other differences among different patient
populations. In this article, we review different MRI techniques for evaluating diastolic function
along with clinical applications and findings in different heart diseases.
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1. Introduction

The left ventricle (LV) of the heart fills via two separate mechanisms. In early-diastole,
the LV fills passively through active relaxation. In late-diastole, the remaining blood
contributing to the total end-diastolic volume enters the ventricle via active contraction
of the left atrium (LA). During isovolumetric relaxation, LV volume increases due to
alterations in principal strains and untwisting of the ventricles [1]. Complete appreciation
of impaired diastolic function as it relates to cardiovascular disease requires detailed
analysis of myocardial tissue deformation during diastole, e.g., using magnetic resonance
imaging (MRI) strain imaging. While diastolic shear strain rates are coupled to the prior
systolic shear strain constituents, torsional recoil is independent of end-systolic factors [2].

Diastolic dysfunction is an indication of abnormal mechanical properties of the my-
ocardium, characterized by slow or delayed myocardial relaxation, abnormal LV distensi-
bility, and/or impaired LV filling [3]. Diastolic dysfunction has been shown to be associated
with age and other cardiovascular risk factors such as hypertension and diabetes melli-
tus [4]. In addition, several cardiovascular diseases cause adverse LV remodeling, which
leads to diastolic dysfunction. Especially, heart failure with preserved ejection fraction (HF-
pEF) is a clinical syndrome where patients have normal LV systolic function, and evidence
of diastolic dysfunction [5]. HFpEF has distinct causes and differential pathophysiology
from those with systolic heart failure and nearly 50% of patients presenting with symptoms
of heart failure (HF) have diastolic dysfunction. HFpEF is more prevalent than heart failure
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with reduced ejection fraction (HFrEF) among women and in those with elevated systemic
blood pressure [6]. Additionally, patients presenting with HFpEF suffer from vascular
changes and ventricular remodeling that could affect the physiological relationships be-
tween afterload and diastole and cause ischemia induced by supply-demand imbalance [7].
Furthermore, HFpEF is correlated to substantial morbidity and mortality. Unfortunately,
accurate non-invasive diagnosis of LV diastolic dysfunction remains difficult, leading to
challenges in the diagnosis and treatment of HFpEF [8].

Heart catheterization is the current gold standard for demonstrating the characteristics
of diastolic heart failure, but due to the risks and costs involved with invasive hemody-
namic evaluation, it is not practical for the diagnosis of diastolic dysfunction. Echocar-
diography, with significantly less risk compared to heart catheterization, is currently the
method of choice for diagnosing diastolic dysfunction. Nevertheless, echocardiography
has limitations related to poor acoustic windows, geometric assumptions, suboptimal
spatial resolution, and high dependency on the operator’s skills. Some of these limitations
restrict the technique’s ability to accurately measure annular velocities and assess diastolic
function if regional dysfunction is present [9]. Cardiac MRI measurements, however, are
superior to echocardiography in accuracy for the evaluation of diastolic function. This
makes cardiac MRI a valuable imaging modality for the analysis of diastolic function in
patients with cardiovascular diseases such as hypertrophic cardiomyopathy, hypertension,
aortic valve stenosis, coronary artery disease, and congestive heart failure [10]. Regarding
this review, the authors conducted an advanced search of the PubMed database using the
following keywords: cardiac/heart, MRI/magnetic resonance, diastole/diastolic, which
resulted in >40 papers that are covered in this comprehensive review, where different
studies are grouped based on cardiovascular diseases and implemented techniques. Table 1
summarizes key studies in which MRI was used for evaluating diastolic heart function [10].

Table 1. MRI and diastolic function: applications in cardiac disease.

Type of Disease MRI Technique n Principal Findings

HCM [11] GRE 31 Impairment of regional relaxation
HCM [12] Spectroscopy 8 Decreased PCr/ATP in symptomatic patients
HCM [13] Spectroscopy 8 Decreased PCr/ATP in asymptomatic patients
HCM [14] Tagging 17 Smaller circumferential curvatures in hypertrophy

AS [15] Tagging 12 Prolonged and delayed untwisting
AS [16] Phase contrast 9 Volumetric mitral flow correlates with Doppler

LVH [17] GRE 9 Early detection of filling abnormalities
AS [18] Tagging 13 Prolonged and delayed untwisting

Hypertensive HD [19] Spectroscopy 11 Decreased PCr/ATP correlates with impaired relaxation
Previous MI [20] Phase contrast 11 Early diastolic filling velocities correlate with Doppler
Previous MI [21] Tagging 16 Reduction of systolic strains in infarcted and remote area
Previous MI [22] Tagging 18 Nonuniform, delayed, and prolonged untwisting

CAD/previous MI [20] GRE 10/15 Reduced early diastolic long-axis velocity
Previous MI [23] Tagging 9 Reduced systolic strains in asynergic segments

Fallot [24] Phase contrast 19 Restrictive flow is associated with decreased exercise
Mustard/Senning [25] Phase contrast 12 Restrictive tricuspid flow

Fallot [26] GRE 10 Impaired ventricular filling correlates with exercise
RVPO [14] Tagging 9 Heterogeneity in strain

Single ventricle [27] Tagging 10 Regional decrease in systolic strains

AS, Aortic stenosis; ATP, adenosine triphosphate; CAD, coronary artery disease; GRE, gradient echo; HCM,
hypertrophic cardiomyopathy; HD, heart disease; LVH, left ventricular hypertrophy; MI, myocardial infarction;
PCr, phosphocreatine; RVPO, right ventricular pressure overload; Spectroscopy, 31P-MR spectroscopy. Table
reproduced with permission from [10]. Copyright 2002 Elsevier.

2. Cardiac MRI Techniques

Different MRI techniques are currently available for evaluation of diastolic cardiac
function, such as cine imaging for global function analysis, phase contrast (PC) imaging for
flow analysis, and myocardial tagging for regional function analysis. Simple measurements,
such as longitudinal fractional shortening, can be measured quickly and easily by MRI,
which has reliably identified echocardiography-evidenced diastolic dysfunction in patients
with preserved LV EF [5]. Assessment of myocardial contractility pattern using other
MRI methods, such as strain-encoded (SENC), displacement encoding with stimulated
echoes (DENSE), and MRI feature-tracking (MRI-FT), contribute to further evaluation of
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regional diastolic function. Moreover, recent advances in MRI techniques have enabled
non-invasive assessment of vascular compliance and elastic properties of the vessel wall
using pulse wave velocity (PWV) measurements, PC MRI, and MRI tagging. 31P magnetic
resonance spectroscopy (MRS) is another technique for non-invasively quantifying the
energy required for active relaxation of the myocardial tissue through calculating the ratio
of myocardial phosphocreatine to adenosine triphosphate (PCr/ATP).

Global diastolic function is assessed using time-volume curves generated by tracing
the epicardial and endocardial borders of the myocardium in cine MRI images throughout
the cardiac cycle or from 4D flow images across atrioventricular valves (Figure 1). Studies
are undergoing to create methods that would allow for efficient assessment of the diastolic
cardiac function. For example, Young et al. [28] developed a three-dimensional (3D) model
of cardiac function based on standard cine MRI images and showed that the developed
model is equally capable of identifying diastolic dysfunction as echocardiography. The
authors showed that the most useful MRI parameters for assessing LV diastolic function
are E/E’ (the ratio of early-peak filling rate to early-longitudinal relaxation rate), NE
(normalized early-peak filling rate, defined by early-peak filling rate divided by end-
diastolic volume), and E/A (the ratio of early-peak filling rate to atrial-peak filling rate).
The categorization of diastolic dysfunction was accomplished using septal and lateral
measurements obtained to evaluate longitudinal shortening [29].
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Figure 1. Mitral flow analysis in (a) normal case and (b) diastolic dysfunction, showing early (E) 

and atrial (A) filling peaks. E/A ratio shows normal (>1) and abnormal (<1) diastolic function in 

normal and pathological cases, respectively. Four-dimensional (4D) flow images are shown at three 

timepoints in the cardiac cycle (early systole, early diastole, and late diastole), confirming the 

Figure 1. Mitral flow analysis in (a) normal case and (b) diastolic dysfunction, showing early (E)
and atrial (A) filling peaks. E/A ratio shows normal (>1) and abnormal (<1) diastolic function in
normal and pathological cases, respectively. Four-dimensional (4D) flow images are shown at three
timepoints in the cardiac cycle (early systole, early diastole, and late diastole), confirming the analysis
findings (E & A filling peaks). White dotted line shows mitral valve plane and red arrow shows flow
direction. LV, left ventricle; MV, mitral valve.

2.1. MRI Tagging

The heart function can also be studied using MRI tagging [30]. MRI tagging has
advantages for evaluating diastolic heart function through excellent soft-tissue contrast
and the ability to directly measure myocardial relaxation (Figure 2), in contrast to Doppler
echocardiography which is load dependent and limited to indirect measures of LV func-
tion [31]. Ambale-Venkatesh et al. [32] used MRI tagging to quantify end-diastolic strain
rate and strain relaxation index to predict the development of HF in patients with no prior
history of cardiovascular disease. The authors used a novel index of diastolic function, the
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strain relaxation index, which factors in both the interval between the occurrence of peak
systolic strain and post-systolic peak as well as the early-diastolic strain rate.
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Figure 2. Reduced left ventricle myocardial contractility in a rat model of lung cancer radiation
therapy (experimental). Segmental circumferential strain curves in six segments (color code shown
on top left) in a mid-ventricular short-axis slice in a normal rat (a) and an experimental rat (b) that
received localized heart irradiation of 24 Gy. Note reduced peak systolic strain (solid arrows) and
diastolic strain rate (dotted arrows) post radiation.

2.2. Complementary Spatial Modulation of Magnetization

The introduction of complementary spatial modulation of magnetization (CSPAMM)
by Fischer et al. [33] helped resolve the issue of tagline fading later in the cardiac cycle
in conventional tagging, and therefore allowed for analysis of heart contractility during
late-diastole. CSPAMM tagging has been shown to be a reliable method for the analysis
of cardiac wall motion, strain, and twist [34]. Many studies have been developed around
CSPAMM to measure different parameters of global and regional ventricular function
and contractility and to study the effects of aging, ischemic and structural heart diseases,
and cardiomyopathies on regional cardiac function [35]. CSPAMM tagging has been used
for the evaluation of hypertrophic cardiomyopathy, where it showed alterations of total
systolic shortening and diastolic strain rates as well as the overlap of apical untwisting with
LV filling [36,37]. Other studies used CSPAMM to evaluate the effects of aortic stenosis (AS)
on ventricular function [15,18] and recovery of cardiac function following transcatheter
aortic repair [38].

2.3. MRI Feature-Tracking

MRI feature-tracking (MRI-FT) is yet another technique for evaluating regional cardiac
function directly from the cine images [30]. Ng et al. [39] analyzed MRI-FT-based strain
parameters for their ability to identify diastolic dysfunction and assess their correlation
with echocardiography indices. The results showed that LV circumferential diastolic
strain rate is able to detect diastolic dysfunction with results similar to those obtained
by echocardiography.

2.4. Phase-Contrast MRI

Phase-contrast (PC) MRI offers an alternative method to echocardiography for as-
sessing vascular blood flow and myocardial tissue velocity. PC MRI has the potential to
measure hemodynamic parameters that are important for assessing diastolic function in
clinical routine [40] (Figure 3), with investigational studies showing promise for measuring
pressure gradients. PC MRI velocity indices of diastolic function have been shown to
correlate with corresponding measurements obtained by Doppler echocardiography [41].
Ashrafpoor et al. [42] demonstrated the capability of PC MRI for independently charac-
terizing subclinical age-related variations in diastolic function among healthy volunteers.
The results showed that LV remodeling index and global myocardial wall thickness have a
strong correlation with diastolic parameters related to LV and myocardial relaxation, such
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as myocardial longitudinal peak velocity, deceleration time, and isovolumetric relaxation
time [42].
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Figure 3. Grades of diastolic dysfunction (I–IV) based on trans-mitral flow pattern. E, early-diastolic
flow; A, atrial/late-diastolic flow; DT, deceleration time.

2.5. Four-Dimensional Flow Cardiac MRI (4D-Flow)

Four-dimensional flow (4D-Flow) MRI is superior to Doppler echocardiography for
evaluating intracardiac velocity as it is not limited by flow direction or inconsistency in
transducer alignment. Previous studies using 4D-Flow MRI demonstrated significant flow
reduction and end-diastolic volume and kinetic energy increase in patients with moderate-
to-severe dilated cardiomyopathy [43]. The residual volume at end-diastole can be divided
into four functional flow components: direct flow (blood that enters and exits the LV within
the same cycle), retained inflow (blood that enters the LV but does not exit during the same
cycle), delayed ejection flow (blood that had remained in the LV from the cycle before and is
ejected during the current cycle), and residual volume (blood that is stagnant in the LV, not
entering nor exiting during the cycle). The division of LV end-diastolic volume in this way
showed that direct flow diminishes as LV volume increases and that non-ejecting volume
contributing to LV end-diastolic volume (EDV) increases in patients with normal-to-mild
LV remodeling and normal-to-mildly depressed LV systolic function [44].

3. Cardiovascular Measures
3.1. Temporal Resolution

While a low temporal resolution does not seem to affect accuracy in the calculation of
LV systolic function, it does affect rate-based indices of LV diastolic function, resulting in
underestimation of the absolute volume change of respective indices [45]. Several attempts
have been made to improve MRI methods for measuring blood or tissue velocities in LV
diastolic analysis, although there are some trade-offs in terms of limited quality, poor
temporal resolution, long acquisition times, or sophisticated post-processing methods. By
using a respiratory-triggered free-breathing cine sequence, Zhang et al. [45] achieved high
temporal resolution that has the potential for evaluation of both LV systolic and diastolic
functions from a single stack of cine MRI data.

3.2. Late Diastole

Understanding normal variants and pathological differences in diastolic function
could be achieved through detailed study embodying the relationship between early- and
late-diastolic measurements [46]. While the majority of LV filling occurs at early-diastole
in normal physiological conditions, in the presence of diastolic dysfunction, impaired
LV relaxation causes a shift of LV filling into late-diastole, associated with LA systolic
function. MRI offers promise for early detection of diastolic dysfunction through its
ability to distinguish normal from abnormal diastolic patterns. While it has been used to
demonstrate characteristics of early-diastole [47], little work has been carried out to study
the cardiac function in late-diastole. For example, tag lines fading toward the end of the
cardiac cycle limits the usefulness of conventional MRI tagging for studying late-diastolic
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cardiac function [46]. However, the recent development of MRI-FT techniques offers an
alternative option to study myocardial contractility during the late-diastolic phase.

3.3. Untwisting Motion

The processes of myocardial contraction and relaxation during the cardiac cycle are
complex, yet organized sequences of events, which under normal function create conditions
for maximal cardiac output. During systole the apex and base twist in opposite directions.
At the same time, both ventricles contract to pull the atrioventricular plane toward the apex.
Diastole is initiated by an instantaneous untwisting of the apex where a change in chamber
volume and shape is negligible, followed by relaxation and untwisting of the remaining
myocardium resulting in passive filling of the ventricle [35]. There are three components of
myocardial relaxation that occur before the aortic valve closes, which produce an abrupt
decline in LV pressure that initiates early filling of the LV: (1) release of torsion; (2) shear
strain; and (3) radial thinning. Following aortic valve closure, and before the opening of
the mitral valve, there is zero change in actual LV volume despite the seemingly increase in
ventricular size observed due to distension of the LV myocardium.

Analysis of systolic and diastolic function has been conducted by quantification of
torsion and recoil rate, respectively [48]. Kowallick et al. [49] demonstrated that increases in
subendocardial torsion and global recoil rate coincide with increasing doses of dobutamine.
The authors used MRI-FT indices, which showed to be accurate and reproducible means of
quantifying myocardial torsion and recoil rates both at rest and stress. In another study,
Dorfman et al. [50] demonstrated impaired diastolic untwisting in a cohort of adults after
a period of post-exercise rest. Using MRI tagging to study the effect of inactive lifestyle
on myocardial untwisting rate, they demonstrated a notable decline in untwisting rate in
the mid-wall, slightly less significant reduction in the endocardium, and no alteration in
the epicardium. The authors also showed that a lack of cardiovascular exercise leads to
reduced LV mass and end-diastolic volume.

Distinct perturbations of diastolic untwisting, as demonstrated by MRI tagging, helped
differentiate physiologic from pathologic hypertrophy [18]. The characteristics of ventricu-
lar rotation with clear distinction of early apical untwisting from the onset of ventricular
filling showed to be the same in normal healthy hearts and hearts of endurance athletes
with physiologic hypertrophy [15]. Contrarily, in patients who develop hypertrophy due to
pathologic conditions such as overload or aortic stenosis, the velocity of apical rotation at
end-systole is increased and the time to maximum velocity of apical untwisting is delayed,
resulting in concurrent relaxation of the apex and filling of the ventricle [15]. Interruption
of the normal occurrence of apical untwisting is also seen in patients with myocardial
infarction (MI) [51]. However, in this case, there is no separation of apical untwisting from
LV filling, and the peak velocity of apical rotation is remarkably reduced.

3.4. Vorticity

The presence of diastolic vortices within the LV contributes to the transfer of fluid ki-
netic energy between cardiac chambers, which indicates the presence of healthy ventricular
function [52]. Decreased LV vortex formation has been demonstrated in patients with both
dilated and hypertrophic cardiomyopathies [53] and in HF [54].

3.5. Left Atrium

Left atrial (LA) remodeling can occur in the setting of HF; however, little is known
about the pathophysiology behind this phenomenon. Seemann et al. [55] evaluated mul-
tiple parameters of cardiac diastolic function using cine and PC MRI and demonstrated
a correlation between atrial fibrosis and diastolic dysfunction. In another study, Aquaro
et al. [56] showed that alteration of LA contractility parameters was present before that
in the LV in diastolic dysfunction. The authors were able to create a diagnostic algorithm
for diastolic dysfunction, which includes multiple calculations using measurements of
LA and LV volumes, including atrial emptying fraction, isovolumetric pulmonary vein
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transit volume, and isovolumetric pulmonary vein transit ratio. The results confirmed
that LA plays a significant role in the evolution of diastolic dysfunction and that reliable
grading of diastolic dysfunction can be achieved by cardiac MRI analysis of both left-sided
chambers of the heart. More recently, Kermer et al. [8] used MRI to assess cardiac structure
and function in order to detect diastolic dysfunction by assessing the LV and LA functions
through using tissue tracking, tagging, tissue phase mapping, and PC sequences and
comparing the results to published gold standards including invasive measurements. The
results showed that the MRI techniques used to calculate enlarged LA dimensions have
high diagnostic accuracy and are predictive for identifying diastolic dysfunction. The
results also showed that the impaired contractility pattern of the basal lateral wall is a
direct sign of diastolic dysfunction.

3.6. Mitral Annulus

Not much data exists on mitral annular motion as it relates to diastolic function [40].
In one study, Wu et al. [9] used long-axis cine MRI images for mitral annular analysis
using 3D mitral annular sweep volumes to determine parameters capable of detecting
diastolic dysfunction. Three-dimensional (3D) volume tracking of the mitral annulus
showed superiority over other methods such as MRI tagging that cannot evaluate atrial
systole with the same reliability [9]. The reversal of the ratio of peak sweep rate in early-
diastole to peak sweep rate in atrial systole could possibly be explained by LA dilation
and subsequent enhancement of atrial contraction in concordance with the Frank–Starling
law [9,57].

4. Heart Failure with Preserved Ejection Fraction

Though factors affecting HFpEF are not well understood, Edvardsen et al. [31] reported
that HFpEF may begin as a regional process in the same way as HFrEF. The capability of
MRI for generating multiple parameters about global and regional cardiac functions and
myocardial tissue characterization makes it a valuable tool for evaluating HFpEF in clinical
trials. For example, as part of the Multi-Ethnic Study of Atherosclerosis (MESA) clinical
trial, Edvardsen et al. [31] used MRI to study regional LV diastolic function in asymptomatic
HFpEF patients and found a reduction of regional diastolic function by approximately 30%
in the patients regardless of age or sex. In another study on 1582 subjects from the MESA
trial, Ladeiras-Lopes et al. [58] used cardiac MRI to evaluate the association of metabolic
syndrome with diastolic function and myocardial extracellular matrix. The results showed
that adults without diabetes with metabolic syndrome, as well as patients with diabetes,
have impaired diastolic function irrespective of the myocardial interstitium. In a third
study on a smaller cohort of the MESA trial, Nacif et al. [29] used MRI to develop and
validate a three-dimensional model-based volumetric assessment of diastolic function
and compared the results to those obtained with echocardiography, where the authors
showed that the developed model is able to identify study subjects with reduced diastolic
function and showed good reproducibility. Recently, Mordi et al. [59] studied a cohort
of 112 subjects and showed that cardiac MRI can differentiate among HFpEF patients,
hypertensive patients, and healthy control subjects.

MRI tagging enables longitudinal monitoring of myocardial relaxation and diastolic
function in various clinical conditions. For example, MRI tagging can classify those at
risk of developing HFpEF [30]. One study showed that circumferential strain is a strong
predictor of HF in a cohort of subjects without clinical evidence of cardiovascular diseases,
irrespective of age, diabetes, hypertension, MI, and LV EF [60]. MRI-FT has been used
to investigate the prevalence and characteristics of global longitudinal strain impairment
in a cohort with HFpEF and the results were compared to those obtained by LV cardiac
catheterization in the same patients [61]. Ito et al. [61] established that global longitudinal
strain obtained using MRI-FT has an independent association with LV diastolic time
constant, Tau. In consideration of other reports that showed LV stiffness and delayed
relaxation as the major causes for diastolic dysfunction [62], it is intuitive to say that
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these findings support the affiliation of systolic longitudinal dysfunction and diastolic
dysfunction in HFpEF [61]. The coupling of LV contraction and relaxation has been
previously illustrated [63]. That is, a reduction in LV contractility correlates to a reduction
in the rate of LV relaxation in patients with HFpEF. It has been shown that a decrease in
endocardial function leads to decreased global longitudinal strain, which is compensated
for by global circumferential strain and LV twisting in patients with HFpEF [64].

MRI-generated measurements of diastolic cardiac function have been compared to
those from echocardiography and tissue Doppler imaging (TDI) in a number of studies.
For example, in a study by Buss et al. [40], the authors showed that measurements from
phase-contrast MRI correlated with TDI regarding the relation of mitral E and A velocities
(R = 0.83, p < 0.001). In the same year, Wu et al. [9] showed that MRI-derived diastolic
parameters were effective in identifying patients with diastolic dysfunction when correlated
with TDI-based variables. This was confirmed in a more recent study by Nacif et al. [29]
who demonstrated that the E/A ratios from TDI were positively associated with E/A ratios
from MRI (R = 0.71, p < 0.0001) with a small bias (0.081%) toward a higher E/A ratio by
MRI. In a similar study conducted in the same year, Seemann et al. [55] showed that the
ratios E/A and E/e’ by MRI and TDI have a strong agreement (R = 0.80, p = 0.0006 for E/A
and R = 0.85, p = 0.0004 for E/e’).

van Heerebeek et al. [65] proposed that it is not fibrosis, but myocyte stiffness, that is
indicated as the primary contributor to diastolic dysfunction in diabetic patients suffering
from HFpEF. However, it has been demonstrated that postcontrast T1 time can indepen-
dently predict myocardial stiffness as a consequence of an increase in extracellular matrix,
which allowed for establishing a link between fibrosis and myocardial stiffness [61,62,66].
The finding that myocardial fibrosis, as assessed by T1-mapping-based extracellular volume
(ECV), correlates with myocardial stiffness could be useful for identifying the mechanism
of diastolic dysfunction in patients with HFpEF [62]. In this regard, further research is
needed to establish the role of T1 and ECV mappings in clinical management of patients
with diastolic dysfunction as in HFpEF. In their study of eight patients with HFpEF and
eight controls using MRI tagging, Ibrahim et al. [67] found that, compared to controls,
patients with HFpEF had decreased LV filling rate, peak strain, and early-diastolic strain
rate, and reversal of early-to-atrial (E/A) filling ratio (Figure 4). The authors analyzed the
relationship between several parameters of LV function and the ability of the aorta to buffer
changes in systemic blood pressure in patients with heart HFpEF. The authors showed the
presence of an inverse relationship between a reduced E/A ratio and myocardial strain
rate, and implicated aortic atherosclerosis as a major contributor to HFpEF. Table 2 shows
differences in ventricular parameters in different groups of diastolic dysfunction [56].

Table 2. Ventricular parameters of diastolic function.

Class of Diastolic
Dysfunction HC I II III p

n 25 18 12 10
LV filling volume (mL) 69 ± 16 66 ± 17 61 ± 23 69 ± 17 0.72

PFR-E (mL/s) 375 ± 63 I,II 247 ± 47 H,II,III 325 ± 47 H,I 353 ± 92 I 0.001
PFR-E/LV filling volume (s) 5.4 ± 1.3 I 4 ± 0.8 H,III 4.7 ± 2 5.4 ± 1.3 0.02

PFR-A (mL/s) 177 ± 56 I,III 238 ± 59 H,III 209 ± 83 III 136 ± 37 H,I,II 0.02
PFR-A/LV filling volume (s) 2.3 ± 1.1 I,II 3.9 ± 1.2 H,II,III 1.5 ± 0.8 H,I,III 2.6 ± 1.6 H,I,II 0.001

PFR-E/PFR-A 2.3 ± 1 I 1.1 ± 0.4 H,II,III 2.1 ± 1 I 2.8 ± 1.3 I 0.001

p values were derived by ANOVA testing with Bonferroni correction for multiple comparisons. The ANOVA
test was also used for single comparison between groups: H significant difference vs. healthy controls (p < 0.05);
I significant difference vs. grade I diastolic dysfunction (p < 0.05); II significant difference vs. grade II (p < 0.05);
III significant difference vs. grade III (p < 0.05). LV left ventricular, PFR-A atrial peak filling rate, PFR-E early peak
filling rate. Table reproduced with permission from [56]. Copyright 2018 Springer Nature.
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Figure 4. Myocardial strain in heart failure with normal ejection fraction (HFNEF) and normals. (A) 

Representative color-coded myocardial strain maps at end-systole from a volunteer (up) and 
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Figure 4. Myocardial strain in heart failure with normal ejection fraction (HFNEF) and normals.
(A) Representative color-coded myocardial strain maps at end-systole from a volunteer (up) and
HFNEF patient (down). Left, middle, and right panels show circumferential, longitudinal, and radial
strains, respectively. Representative circumferential (B), longitudinal (C) and radial (D) strain curves
are shown from normal (dashed line) and HFNEF (solid line) cases during the cardiac cycle. The
results show higher dynamic strain range (difference between end-systolic and end-diastolic strains)
in normal compared to HFNEF, which explains the less relaxation experienced in HFNEF during
diastole. Figure reproduced with permission from [67]. Copyright 2011 Elsevier.

5. Effectors of Diastolic Function
5.1. Aging

Age is one of the different factors that can affect diastolic function. It has been indicated
that 30–50% of elderly subjects with heart failure have an apparently preserved systolic
function as assessed by EF. The risk of a compromised cardiac reserve is indicated by the
association between cardiac remodeling and diastolic function in the elderly. Recently,
Lin et al. [68] used heart deformation analysis indices derived from cine MRI to distinguish
age-related changes in LV wall motion during early and late diastole. The results showed
that, in comparison to younger subjects, the effects of aging caused lower displacement,
velocity, and strain rates in early diastole, but higher peak circumferential strain rates
in late diastole. The authors, therefore, suggested that reduced LV compliance with a
possible compensatory increase in active relaxation is associated with aging. Multiple other
effects of aging on diastolic function have been reported in a limited number of studies,
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such as reduction and prolongation of diastolic longitudinal and radial velocities [69],
reduced and prolonged longitudinal and radial velocities during diastole [70], reduction
of peak rates of circumferential and longitudinal relaxations and torsion reversal, and
increase of regional asynchrony in time-to-peak rates of circumferential and longitudinal
relaxations [71]. Moreover, age was demonstrated to have a strong independent association
with peak myocardial velocity and flow-rate parameters [42]. Likewise, and in line with
the reduction in diastolic function due to aging, Ambale-Venkatesh et al. [32] showed
a temporal decrease in early diastolic strain rate with a concurrent increase in strain
relaxation index, which predicted heart failure and atrial fibrillation independent of other
cardiovascular disease confounders.

Other notable age-related differences in ventricular function were reported by Foll et al. [70],
who used tissue phase mapping to show faster diastolic radial velocities than systolic radial
velocities in young subjects and higher longitudinal velocities in younger women [70].
Conversely, older women were found to have a regional reduction in longitudinal velocities
as well as prolonged time-to-peak apical longitudinal velocities throughout the cardiac
cycle compared to older men [70]. In another study, Ashrafpoor et al. [42] showed that
a precise longitudinal assessment of LV diastolic function could be useful for predicting
the onset of HF and distinguishing pathological diastolic dysfunction from age-related
effects. Furthermore, the authors reported a comprehensive evaluation of age-related
variation in diastolic function parameters with corresponding reference ranges, where this
data were able to characterize subclinical age-related variations in LV diastolic function in
healthy individuals.

In a cardiac MRI study of right ventricular (RV) function [72], a notable reduction
in the absolute and normalized early peak filling rates and elevation of the absolute and
normalized active peak filling rates were found in adult males as compared to adult females.
Another important difference for the evaluation of RV structure and function was found
between men and women in a study of RV volume in which men were found to have much
higher RV volume than women [73].

5.2. Diabetes

Diabetes is another common condition that affects the heart. Associated cardiovas-
cular complications such as coronary artery disease and LV dysfunction are prevalent
among patients with diabetes mellitus type 2, and therefore, diabetic patients succumb
to cardiovascular disease more than the general population [74]. Furthermore, signs of
diastolic impairment can occur before symptoms of LV dysfunction occur in patients with
type 2 diabetes [75]. Here, the underlying pathophysiology leading to diastolic dysfunction
in diabetic patients could be closely related to abnormal myocardial perfusion [76] and/or
macrovascular coronary artery disease leading to distal embolization and microinfarc-
tions [77]. Graca et al. [74] investigated the possible influence of coronary artery disease on
LV diastolic function by obtaining coronary artery calcification scores by CT, and compar-
ing cardiac MRI-derived parameters between patients with uncomplicated type 2 diabetes
mellitus and control subjects. The results showed that patients with diabetes mellitus
type 2 and coronary artery disease have more LV diastolic impairment than those without
coronary artery disease. Thus, this data supports the hypothesis that in the presence of
coronary artery disease, diastolic function is compromised in diabetic patients free of LV
dysfunction symptoms.

Vascular complications due to type 1 diabetes mellitus have been shown to lead to
structural changes and subsequent stiffening of the aortic wall [78]. Furthermore, the
association of hypertension and advanced diabetic heart disease with diastolic dysfunction
can be largely attributed to myocardial fibrosis causing cardiac remodeling [79]. In their
study of patients with type 1 diabetes mellitus, van Shinkel et al. [80] used aortic PWV
and speckle tracking strain analysis to assess the involvement of aortic stiffness with sub-
clinical LV diastolic dysfunction and LA compliance, respectively. They found that as
aortic stiffness increases, LV diastolic function and LA compliance decrease in patients
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with diabetes mellitus type 1 [80]. Specifically, the data showed that aortic pulse wave
velocity correlations with LV diastolic function and LA strain measurements were not
age dependent in type 1 diabetes mellitus. LA strain has previously been understood to
be dependent on LV systolic function; however, subjects in this study had preserved LV
systolic function, making it the first study to demonstrate a strong association between
aortic stiffness and LA strain [80]. High end-diastolic pressure and increased afterload is
one possible mechanism responsible for the correlation between aortic stiffness and LV
diastolic dysfunction [81]. Furthermore, cross-linked collagen molecules, due to advanced
glycation products formed in the presence of diabetes mellitus, cause changes in both
myocardium and vessel walls [82].

5.3. Metabolic Syndrome

Ladieras-Lopes et al. [58] evaluated the association of metabolic syndrome with di-
astolic function and myocardial extracellular matrix using cardiac MRI in order to better
understand the effects of metabolic syndrome and insulin resistance on diastolic dysfunc-
tion and myocardial fibrosis. Resulting data showed that metabolic syndrome is associated
with impaired diastole even in the absence of type 2 diabetes due to intrinsic cardiomyocyte
alterations unrelated to interstitial disease [58] supporting the idea of ’insulin-resistant’
cardiomyopathy and associated pathophysiologic changes including myocardial metabolic
deregulation, oxidative stress, and inflammation [83]. Insulin resistance also leads to
cellular injury and changes in contractile proteins, calcium load, and the sympathetic
nervous system, possibly contributing to myocardial stiffness without an increase in the
extracellular matrix as extracellular volume quantification using cardiac MRI did not show
an association with increased extracellular matrix in metabolic syndrome or type 2 dia-
betes [58]. In addition, the pathophysiologic changes in metabolic syndrome cause an
increased risk of cardiovascular disease which can then lead to remodeling and dysfunction
and ultimately ‘insulin-resistant’ cardiomyopathy [83].

6. Coronary Artery Disease

LV diastolic dysfunction can be precipitated by the same aggravating factors that play
a role in the development of atherosclerosis, either primarily (due to hypertension or age-
related reduction in vascular compliance) or secondarily (due to ischemia-related changes
in the myocardium) [77]. Despite these known relations, data published on the relationship
between coronary artery disease and LV diastolic function using cardiac MRI methods
are limited and controversial [31,84,85]. Nevertheless, the question that remains to be
answered is which insult promotes the development of HFpEF: atherosclerosis, myocardial
fibrosis, or a combination of the two [67].

6.1. Acute Coronary Syndrome

Acute coronary syndrome causes rapid onset of LV diastolic dysfunction, where early
detection of impaired function is useful for appropriate care management [86]. Unfortu-
nately under current guidelines, 75% or more of patients who present with chest pain are
not accurately diagnosed with acute coronary syndrome [87] with nearly 10% of those re-
sulting in eventual myocardial infarction [88]. Additionally, post-acute coronary syndrome
has been related to poorer prognosis and higher risk of mortality [89].

In less than a minute after coronary artery occlusion, dysfunction of myocardial
relaxation, wall motion abnormalities, and a decline in LV EF can occur before changes in
cardiac conduction or angina are detected. Furthermore, acute coronary syndrome diastolic
dysfunction predicts an increased potential for progression to myocardial infarction in the
absence of ECG changes or cardiac enzyme elevation [90]. With this in mind, recent trends
in research have shifted from traditional methods of acute coronary syndrome diagnosis to
investigations using CT and MRI. For instance, Azarisman et al. [86] showed that acute
coronary syndrome can be accurately and reliably diagnosed using different cardiac MRI
sequences such as cine imaging, T2-weighted imaging, trans-mitral flow velocity imaging,
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first-pass myocardial perfusion (Figure 5), and delayed gadolinium enhancement, in the
same amount of time it takes to obtain cardiac enzyme laboratory results. Thus, cardiac
MRI has the potential to provide an accurate diagnosis of acute coronary syndrome while
simultaneously risk-stratifying patients.
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Figure 5. Myocardial perfusion imaging. Short-axis (top) and long-axis (bottom) series of T1-
weighted saturation-recovery perfusion images acquired before contrast injection (pre), and at
times of bolus arrival in the right-ventricular (RV) blood pool, left-ventricular (LV) blood pool,
and myocardium, as denoted by the red asterisks. The images show normal perfusion without
any defects.

6.2. Myocardial Infarction

The assessment of global LV systolic function after acute myocardial infarction (AMI)
has traditionally held important clinical and prognostic significance. For instance, previous
studies using echocardiography have shown that patients with global diastolic dysfunction
post-AMI have a worse prognosis than those without diastolic impairment [89]. It has also
been demonstrated that distinctive valuable diagnostic and prognostic information relating
to ischemic injury after AMI can be provided by regional functional evaluation [91]. The
regional heterogeneity of diastolic dysfunction caused by the non-uniformity of ischemic
events is best analyzed by cardiac MRI tagging. Correspondingly, results reported by
Azevedo et al. [91] demonstrated significant impairment of systolic and diastolic regional
function in both transmural and subendocardial regions using tagged MRI. Conversely, re-
versibly injured regions can demonstrate persistent diastolic dysfunction despite complete
systolic functional recovery after re-perfused AMI. Additionally, the presence of microvas-
cular obstruction was shown to play a role in regional diastolic impairment quantified
using strain rate analysis of tagged MRI images [91]. The non-uniformity, delay, and pro-
longation of myocardial untwisting during the relaxation phase allowed for detecting prior
anterolateral infarction [18], before reversal of ischemia (where possible) in hibernating
myocardium [92], and ST-elevated myocardial infarction [93]. Furthermore, cardiac MRI
velocity encoding allowed for detecting substantial impairment of regional, early diastolic,
long-axis myocardial velocities, and LV filling in patients who suffer from angina and prior
MI [20].

7. The Right Ventricle
7.1. Pulmonary Hypertension

RV diastolic function has also been evaluated using MRI. Tello et al. [94] were the first
to delineate the pathology associated with RV strain in pulmonary hypertension (Figure 6)
through comparison of MRI parameters with pressure-volume/Swan-Ganz catherization.
Their results provided strong evidence supporting MRI RV strain as an indicator for RV-
arterial uncoupling and diastolic stiffness, which gave insight into the relationship between
RV contractility and afterload, changes in RV relaxation, and ventricular remodeling.
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Figure 6. Left-ward septal wall bowing in pulmonary hypertension. Tagged images acquired in a
normal case (top) and in pulmonary hypertension (bottom) during diastole (left) and systole (right).
Note abnormal left-ward septal wall bowing (white arrows), especially during systole, in pulmonary
hypertension due to increased pressure in the right ventricle. Displacement vectors calculated from
the tagged images are represented by red arrows, which show reduced myocardial contractility in
pulmonary hypertension.

7.2. Chronic Obstructive Pulmonary Disease

RV dysfunction can be linked to LV dysfunction. LV hypertrophy and stiffness are
common consequences of chronic obstructive pulmonary disease (COPD), which often has
a negative impact on survival. Air trapping, pulmonary hypertension, and the resultant
increase in RV volume overload are thought to be the cause of LV diastolic dysfunction in
patients with COPD [95]. This ventricular interdependency is known to result from COPD
and many cardiovascular diseases. Schafer et al. [52] recently reported correlations between
RV diastolic and systolic functions with LV vorticity, suggesting early development of
ventricular interdependency in COPD. Using 4D-Flow cardiac MRI, they identified changes
in vortex formation and reduced vorticity in mild-to-moderate COPD, which possibly
identify early changes in LV architecture due to lung over-inflation and the resultant
physiologic changes in the intrathoracic cavity [52].

7.3. Tetralogy of Fallot

MRI has also demonstrated utility in congenital heart disease, e.g., in the tetralogy
of Fallot (TOF) (Figure 7). Together, velocity mapping and tomographic MRI provide a
clinically practical way to quantify RV diastolic function and size and pulmonary regur-
gitation; thus allowing for adequate monitoring and longitudinal care of patients with
surgical repair of TOF, something which cannot be done using Doppler echocardiography.
In their study, Helbing et al. [24] found pulmonary regurgitation and RV diastolic dysfunc-
tion consistent with impaired relaxation in a cohort of young TOF patients, which could
be responsible for their impaired exercise performance. However, Gatzoulis et al. [96]
suggest the possibility that the myocardial restrictive process could be a limiting factor
of pulmonary regurgitation in TOF, as the degree of pulmonary regurgitation did not
increase relative to the degree of RV restriction as found by Helbing et al. [24]. In other
congenital heart diseases, such as tricuspid atresia, 3D cardiac MRI tagging showed to be
useful in the evaluation of ventricular diastolic dysfunction after the Fontan procedure by
demonstrating anomalies of regional strain and reduced twist angle during systole [27].
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Figure 7. Tissue-tracking strain analysis in the right ventricle (RV) in tetralogy of Fallot (ToF).
(a) RV circumferential strain map showing reduced strain at the RV insertion points. (b) Global
circumferential strain curve in the RV.

8. Other Related Heart Diseases
8.1. Aortic Stenosis

Stuber et al. [15] showed a decrease in apex untwisting angle during the onset of
diastole in patients with aortic stenosis (AS) when compared to normal controls or athletes
with comparable amounts of physiologic hypertrophy. Another study demonstrated
decreased basal rotation and ventricular twisting rate and increased apical rotation and
ventricular torsion in patients with severe AS [18]. In their study, Uddin et al. [38] used
CSPAMM to investigate changes as a result of AS repair by transcatheter aortic valve
implantation (TAVI). They concluded that AS repair by TAVI led to improved mid-LV
circumferential strain and reduced torsion, but failed to demonstrate changes in diastolic
strain rate.

8.2. Hypertrophy

Pathophysiological changes such as sarcomere proliferation and myocardial wall
stiffening as a result of pressure overload may explain the differences in rotation angle
and ventricular filling pattern that is seen in pressure overload hypertrophy (Figure 8) [97].
Chacko et al. [98] showed that the time to early-peak filling rate was significantly pro-
longed in hypertrophic cardiomyopathy and hypertensive heart disease when compared
to controls. They also showed that maximum LV wall thickness and time-to-early-peak
filling rate correlated positively in those same groups, most notably in hypertensive heart
disease, although maximum LV wall thickness was significantly higher in hypertrophic car-
diomyopathy.

Li et al. [99] showed that LV outflow tract obstruction may result in increased LV
wall stress, myocyte death, and fibrosis. As a result of their investigations, they showed
that global peak diastolic strain rates were reduced in all planes in patients who had
LV outflow tract obstruction as a result of hypertrophic cardiomyopathy. Additionally,
patients who suffered major adverse cardiovascular events (MACE) were found to have
a lower LV global peak diastolic strain rate. Cine MRI allowed for detecting changes
correlating to hypertrophy, including impaired relaxation, as measured by prolongation of
the time-to-peak rapid filling rate and the time-to-peak wall thinning rate, before mitral flow
changes could be seen by Doppler imaging [17]. 31P-MRS predicted hypertrophic changes
before they happen, possibly due to the lower myocardial phosphocreatine levels leading
to calcium overload and impairment of cardiac cells [19]; furthermore, the decreased
phosphocreatine to adenosine triphosphate (PCr/ATP) ratio correlated with the level of
hypertrophy. MRI strain imaging offered the ability to differentiate the various types of
the disease [13]. Russel et al. [100] showed that patients who were mutant carriers of
familial hypertrophic cardiomyopathy had normal wall thickness but increased LV torsion
in comparison to normal controls, which indicated that early intervention could protect
against later cardiac dysfunction. The results from Svalgring et al. [44] demonstrated that
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4D-Flow MRI is useful for the detection of abnormal flow patterns correlating with mild
LV hypertrophy in patients with minimal or subclinical LV dysfunction.
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8.3. Thalassemia

The risk for diastolic dysfunction is known to increase with age, obesity, and hyperten-
sion in the general population [33], but the determinants of increased risk for LV diastolic
dysfunction among those with thalassemia major are not outlined well. It is known that
homozygous beta-thalassemia leads to secondary hemochromatosis and iron overload
cardiomyopathy, which is the leading cause of death in this population. In this respect,
cardiac MRI T2* imaging is the current method of diagnosis for iron overload cardiomy-
opathy. In their study, Chinprateep et al. [101] determined that LV diastolic dysfunction
can be detected by PC-MRI before systolic dysfunction occurs or signs of iron overload
can be identified by T2* MRI. LV diastolic dysfunction could be explained by changes
such as smooth muscle proliferation and vasoconstriction related to splenectomy, which is
performed more frequently in beta-thalassemia major [101].

8.4. Pericarditis

Constrictive pericarditis is another cause of diastolic dysfunction and is reflected by the
abrupt displacement of the interventricular septum in the LV during diastole. Alternatively,
aberrant septal systolic motion into the RV is a common finding following cardiac surgery
in constrictive pericarditis [102]. In their work, Spottiswoode et al. [103] showed that
DENSE MRI is superior to cine imaging for determining the dominant postoperative
systolic septal wall motion abnormality in pericarditis. Although in the case of tuberculous
pericarditis treated with pericardiectomy, cine MRI conducted post-operation showed
diastolic septal bounce of constriction in a mid-ventricular short-axis view, the images did
not clearly demonstrate the septal bulging into the RV cavity during systole.

8.5. Cardiotoxicity

Cancer treatment is known to have adverse cardiac effects on both systolic and diastolic
functions and tissue composition (Figures 9 and 10). Deleterious effects can vary from a mild
decline in LV EF to severe HF, are not dose related, typically subclinical, and thought to be
reversible [104]. Song et al. [105] reported data on subclinical diastolic LV dysfunction in
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relationship to LV systolic function as well as changes in volume during and after treatment of
breast cancer with trastuzumab. Their study concluded that while deficiencies in LV systolic
function were reversible, diastolic deficiencies, specifically the ratio of peak filling rate to
LV EDV, persisted 18 months post treatment. Furthermore, unlike in other conditions such
as anthracycline-induced cardiotoxicity and aging in which the development of diastolic
dysfunction may occur before or in parallel with systolic dysfunction [106], the changes in
LV systolic and diastolic function and volumes occur simultaneously during trastuzumab
treatment [105]. Recently, Gong et al. [107] studied a cohort of breast cancer patients treated
with trastuzumab over four years in order to investigate early-diastolic strain rate parameters
measured by MRI-FT and their relation to subclinical trastuzumab induced cardiotoxicity. The
results did not show a consistent correlation between early-diastolic strain rates and systolic
strain rates or even consistent longitudinal variations of early-diastolic strain rates. The results
also did not demonstrate a strong association of diastolic strain measurements with LV EF.
Nevertheless, these findings are contradictory with previous results [108] as to whether a
reduction in LV EDV is to blame for reduced systolic strain, or whether diastolic longitudinal
strain rate was predictive of deteriorating LV function, which may actually be explained by
differences in cohort demographics or analytical methods between the two studies.
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8.6. Cardiac Allograft

The precise mechanism leading to the development of cardiac allograft vasculopathy
is still unclear. Some suggestions include stiffness of the transplanted heart due to hyper-
trophy of cardiac myocytes and endocardial fibrosis, immunologic mechanisms combined
with other risk factors for vascular injury, and the combination of systemic hypertension
and microvascular stenosis [109]. Given that LV diastolic dysfunction is more sensitive
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to subendocardial ischemia than systolic dysfunction [110], it makes sense that peak flow
rate measurement by MRI could be an adequate method for the early detection of cardiac
allograft vasculopathy. Machida et al. [109] employed MRI measurement of peak flow
rate to detect diastolic dysfunction, and thus, allow for early detection of cardiac allograft
vasculopathy in heart transplant recipients.

9. Summary

MRI is gaining ground as a routine clinical tool for the evaluation of diastolic HF.
Multiple cardiac MRI techniques have demonstrated superiority over methods that are
currently considered the gold standard or are most commonly used. Furthermore, new
methods for applying these techniques are being developed to eliminate time-consuming
post processing and burdensome image acquisition. Armed with these advances, MRI is be-
coming a feasible and convenient tool for the accurate prediction, diagnosis, and long-term
monitoring of diastolic dysfunction. It should be noted that although cardiac MRI provides
several parameters that allow for evaluating heart morphology and function, myocardial
contractility and tissue characterization, and hemodynamic parameters, its clinical utility
could be affected by its relatively high cost, long scan time, and the need for experienced
operators. Nevertheless, recent advances in MRI hardware, pulse sequences, and artificial
intelligence (AI) capabilities allow for mitigating these limitations. For example, phased-
array coils allow for parallel imaging capabilities that reduce scan time [111]. Furthermore,
recently introduced commercial pulse sequences allow for single-heartbeat and real-time
cardiac imaging with the capability of completing a comprehensive cardiac MRI exam
in a short time, which results in reducing scan cost and making cardiac MRI available to
more patients [112]. Similarly, 3D imaging sequences allow for reduced scan time and
simplified scanner operation, where the operator needs only to place a box around the heart
without the need for a cardiac trained operator or a physician to attend the scan [112,113].
Finally, recently introduced AI-supported MRI techniques allow for automatic parame-
ter settings based on patient-specific conditions (e.g., heart rate, respiratory pattern, and
breath-holding capability) as well as AI-supported image reconstruction which reduces
acquisition time and improves image quality [114]. In summary, recent advancements in
MRI technology are expected to result in wider clinical adoption of cardiac MRI in clinical
practice and more availability in community hospitals and for larger patient populations.
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