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Abstract: Purpose: To develop and integrate interactive features with automatic methods for accurate
liver cyst segmentation in patients with autosomal dominant polycystic kidney and liver disease
(ADPKD). Methods: SmartClick and antiSmartClick were developed using iterative region growth
guided by spatial and intensity connections and were integrated with automated level set (LS)
segmentation and graphical user interface, forming an intelligent rapid interactive segmentation
(IRIS) tool. IRIS and LS segmentations of liver cysts on T2 weighted images of patients with ADPKD
(n = 17) were compared with manual segmentation as ground truth (GT). Results: Compared to
manual GT, IRIS reduced the segmentation time by more than 10-fold. Compared to automated LS,
IRIS reduced the mean liver cyst volume error from 42.22% to 13.44% (p < 0.001). IRIS segmentation
agreed well with manual GT (79% dice score and 99% intraclass correlation coefficient). Conclusion:
IRIS is feasible for fast, accurate liver cyst segmentation in patients with ADPKD.
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1. Introduction

Most patients with autosomal dominant polycystic kidney disease (ADPKD) develop
polycystic liver disease in their later life [1]. Liver cyst volume in ADPKD is associated
with decrement in quality of life and morbidity and is an important biomarker for clinical
decision-making, including cyst fenestration, partial liver resection, and liver transplanta-
tion [1–3]. Liver cysts in ADPKD are hyperintense on T2 weighted MRI and can be readily
measured with standard tools available on picture archival computer systems (PACS) when
there are only a few cysts. However, many ADPKD patients, and especially females, have
hundreds of cysts which are challenging to measure manually. Since manual lesion seg-
mentations are very tedious and time-consuming, cyst volume is often approximated by
radiologists’ impression without segmentation which has interobserver variability and lim-
ited accuracy. Manual segmentation can be improved with various interactive segmentation
methods that use various user inputs, such as partial segmentation, as initialization to an
automated output; however, these techniques are all restrictive and tedious [4]. Automated
volume measurement of numerous and heterogeneous cysts is needed for ADPKD patients;
however, it is difficult to achieve [5,6].

The purpose of this study is to develop a rapid semiautomated lesion segmentation
tool combining rapid interactive edits with automated segmentation based on computer
vision techniques: intelligent rapid interactive segmentation (IRIS). The liver cyst labeling
process is intelligently automated while allowing for user interaction to rapidly improve
the automated segmentation. We evaluated the speed and accuracy of IRIS for fast liver
cyst segmentation in 17 patients with ADPKD.
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2. Methods and Materials
2.1. Intelligent Rapid Interactive Segmentation (IRIS) Method and Implementation

Image data were preprocessed for the liver region of interest (ROI) segmentation
preprocessing using a convolutional neural network with residual layers [7], and image
intensity was scaled to [0, 1] using a min–max normalization. First, automatic level set (LS)
cyst segmentation is performed in the liver ROI using the Chan–Vese level set algorithm [8].
The locations of liver cysts on each axial slice within the liver ROI were determined using a
small region of the lowest voxel intensity (typically the right anterior corner) as an initial
level set function.

IRIS provided a graphic user interface for editing the automated LS segmentation
with smart features, SmartClick and antiSmartClick, in addition to a simple paintbrush.
Similar to the recursive region growing guided by intensity similarity for segmenting
the left ventricle in cardiac MRI [9,10], SmartClick determined a targeted new voxel in
a liver cyst for growth (g) at a given iteration by thresholding over an affinity sensitiv-
ity relative to its neighboring seed voxel (s) according to their intensity (I) difference,
ρ(g, s) = (1− |I(g)− I(s)|a), where a = adjustable sensitivity [4]. This recursive region
growth started with a click-defined seed point, and the growth stopped when the affinity
sensitivity was under the set threshold (p < 0.5). On the other hand, the antiSmartClick
employed the same feature as SmartClick but recursively removed voxels for erasing erro-
neously included voxels in segmentation such as T2 bright vessels or bile ducts. To allow
addressing voxel intensity heterogeneity within a liver cyst, SmartClick included a closing
operation of dilation and erosion to fill holes within a lesion.

2.2. Patient Population

MRI data were obtained from patients enrolled in the Polycystic Kidney Disease Repos-
itory (NCT00792155, https://clinicaltrials.gov/ct2/show/NCT00792155, accessed on
31 January 2022), an ongoing longitudinal investigation of ADPKD conducted at our med-
ical center [11]. The scans sampled in this study were collected on 1.5 T (n = 5) and 3 T
(n = 12) MRI systems (General Electric, Milwaukee, WI, USA; Siemens, Erlagen, Germany)
between 1 January 2017 and 31 July 2021. Cases were selected randomly from ADPKD-
positive subjects, and selection was based on the presence of T2 hyperintense liver cysts
throughout the liver region of interest (ROI) on T2 weighted (T2w) MR images. Typically,
72 (ranging from 32 to 100) axial T2w images were acquired using a single-shot fast spin
echo sequence with breath-holding to cover the whole liver. This retrospective analysis
of existing patient images was approved by the local institutional review board, and all
images were deidentified prior to liver cyst segmentation.

2.3. Data Analysis

The performance of IRIS for liver cyst segmentation in ADPKD was evaluated by
comparing with manual reference ground truth (GT), as well as the automated level
set (LS). Segmentation times were recorded for all methods. The similarity between the
segmented cyst spatial distributions by the two methods was evaluated using the dice
score to assess geometric match and intraclass correlation coefficient (ICC) to assess volume
agreement. The liver cyst signal-to-noise ratio (SNR) was measured as the cyst signal
intensity ROI mean over standard deviation; the liver cyst–liver contrast-to-noise ratio
(CNR) was measured as the cyst to adjacent liver signal difference over the cyst signal
ROI standard deviation; and the cyst SNR and CNR measurements were performed over
three representative cysts per patient. The 1.5 T cases were compared with 3 T cases
with matching cyst patterns. The liver cyst volumes measured on all segmentations were
compared using linear regression and the Bland–Altman plot. The statistical significance
between LS and IRIS was assessed using Student’s t-test.

https://clinicaltrials.gov/ct2/show/NCT00792155
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3. Results

For 3 T vs 1.5 T matched comparison, the cyst SNR was 42.45 ± 25.20 vs. 19.74 ± 14.40
(p = 0.05), the cyst CNR was 3.26± 0.95 vs. 2.64± 0.81 (p = 0.25), the manual processing time
was 2072 ± 1383 vs. 2369 ± 925 (p = 0.64), and the IRIS processing time was 179 ± 72 vs.
236 m ± 82 (p = 0.26). There was no significant difference in processing time between 1.5 T
and 3 T; for further analysis, all cases were aggregated together and the cyst SNR/CNR on
average over all cases was 35.77/3.08.

Figure 1 illustrates an example of manual liver cyst segmentation by manual GT
(Figure 1a), automated LS segmentation (Figure 1b), and IRIS (Figure 1c). The substantial
LS error of including vasculature and bile ducts was rapidly removed using antiSmartClick
(Figure 1b vs. Figure 1c). There were small cysts missed in manual GT but captured on IRIS
(arrows in Figure 1c).

Figure 1. Liver cyst segmentation by (a) manual as ground truth (GT), (b) automated level set (LS),
and (c) IRIS. LS included substantial vasculature (b), which was cleaned up rapidly using anti-
SmartClick (c). Small cysts missed on manual GT were captured on IRIS (arrows in (c)).

Speed metrics comparing GT, LS, and IRIS are shown in Table 1. On average, the IRIS
method took 202 s, which was 10.7 times faster than manual GT of 2159 s (p = 8.92 × 10−6).
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Table 1. Compared segmentation times among manual segmentation ground truth segmentation (GT),
automatic level set segmentation (LS), and intelligent rapid interactive segmentation (IRIS).
STD = standard deviation.

Time (s) GT LS IRIS

Mean 2159 6 202

Median 2145 5 187

[Min, Max] [293, 5427] [2, 28] [75, 338]

STD 1312 6 84

Accuracy metrics comparing GT, LS, and IRIS are shown in Tables 2–4 and Figures 2 and 3.
According to Tables 2–4, for comparing to LS, IRIS increased the mean± standard deviation
(STD) dice score from 63.1 ± 18.0% to 79 ± 9.2% (Table 2, p = 5.53× 10−4), decreased the
mean ± STD liver cyst volume (error normalized by GT volume) from 42.22 ± 44.49% to
13.44 ± 9.70% (Table 3, p = 0.0097), increased ICC from 98.91% to 99.54%, and decreased
the liver cyst volume root mean squared error (RMSE) from 66.4 mL to 35.9 mL (Table 4).

Table 2. Compared dice scores of LS and IRIS against GT. GT = ground truth segmentation,
LS = automatic level set segmentation, IRIS = intelligent rapid interactive segmentation, and
STD = standard deviation.

Dice Score GT—LS GT—IRIS

Mean 63.1% 79.0%

Median 63.8% 81.0%

[Min, Max] [29.7%, 90.5%] [58.2%, 93.5%]

STD 18.0% 9.2%

Table 3. Compared automatic LS segmented cyst volume (VLS) and IRIS segmented cyst vol-
ume (VIRIS) against manual GT segmented cyst volume (VGT). GT = ground truth segmentation,
LS = automatic level set segmentation, and IRIS = intelligent rapid interactive segmentation.

Metric |VGT−VLS|/VGT |VGT−VIRIS|/VGT

Mean 42.22% 13.44%

Median 26.84% 13.87%

[Min, Max] [3.34%, 161.58%] [1.74%, 35.90%]

STD 44.49% 9.70%

Table 4. ICC and RMSE of LS and IRIS segmentation against GT for cyst volume measurement.
GT = ground truth segmentation, LS = automatic level set segmentation, IRIS = intelligent rapid in-
teractive segmentation, ICC = intraclass correlation coefficient, and RMSE = root mean squared error.

Metric LS IRIS

ICC 98.91% 99.54%

RMSE 66.4 mL 35.9 mL

According to Figures 2 and 4 for comparing to LS, IRIS increased linear regression
slope/coefficient (R2) from 0.922/0.976 (Figure 2) to 0.929/0.996 (Figure 3), and reduced
bias/[lower, upper] limit of agreement from 8.53%/[−112, 129]% to −5.49%/[−37, 26]%
(Figure 3).
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Figure 2. Scatter plots of liver cyst volume measurements by (a) LS and (b) IRIS against GT. IRIS im-
proved regression slope and regression coefficient. GT = ground truth segmentation, LS = automatic
level set segmentation, and IRIS = intelligent rapid interactive segmentation.



Tomography 2022, 8 452

Figure 3. Bland–Altman plots for (a) LS and (b) IRIS for cyst volume measurements. LS had a bias
of 8.53%, STD of 61.61%, lower limit of agreement (LLA) of −112%, and upper limit of agreement
(ULA) of 129%. (a). IRIS had a bias of −5.49%, STD of 15.94%, LLA of −37%, and ULA of 26%. GT =
ground truth segmentation, LS = automatic level set segmentation, IRIS = intelligent rapid interactive
segmentation, and STD = standard deviation.
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Figure 4. Liver cyst segmentation by manual GT (a), automated LS (b), and IRIS (c). The voxels in the
space between neighboring cysts (arrows in (c)) were easily included in the manual GT, contributing
to the observed segmentation errors. GT = ground truth segmentation, LS = automatic level set
segmentation, and IRIS = intelligent rapid interactive segmentation.

The discrepancies between manual GT, automated LS, and IRIS segmentations were
reviewed and were largely caused by voxels at cyst edges and/or in spaces between
neighboring cysts that were easily included in manual segmentation, as illustrated by
arrows in Figure 4 and also subtly noticeable on Figure 1.

4. Discussion

Our preliminary results demonstrate the feasibility of IRIS for fast and accurate seg-
mentation of liver cysts in patients with ADPKD. The SmartClick and antiSmartClick
features in IRIS allow rapid edits of automated level set (LS) segmentation, significantly
improving cyst segmentation accuracy as measured by dice score and liver cyst volume
differences. IRIS reduces the liver cyst segmentation time by more than 10-fold compared



Tomography 2022, 8 454

to manual segmentation, down to 3.4 min on average, making segmentation of numerous
cysts in ADPKD liver clinically feasible.

The large number and heterogeneity of liver cysts in ADPKD patients have made
automated segmentation of these cysts challenging [5,6]. A major cause of failure for
automated segmentation of numerous lesions in ADPKD is the signal intensity variation
across the liver volume [6]. The interactive features in IRIS address this unreliability by
clicking into a small region where intensity variation within a cyst is small and segmen-
tation can be robustly and rapidly performed using one click, as we have learned from
segmenting the bright left ventricle from the surrounding dark myocardium in cardiac
MRI [9,10]. The SmartClick and antiSmartClick in IRIS are based on iterative region growth
guided by spatial and intensity connections, which has been shown to be highly robust
in cardiac MRI [9,10]. Our data here demonstrate that SmartClick and antiSmartClick,
originally developed for left ventricle segmentation, can be effectively applied to liver cyst
segmentation. SmartClick and antiSmartClick can be incorporated into any interactive
viewing program to edit and ensure the accuracy of any automated lesion segmentation,
including those based on deep learning [12,13].

The level set method selected for automated cyst segmentation in this study is a popu-
lar approach that starts with the user’s initial segmentation and evolves into the desired
segmentation [14]. It is known that the relationship between the initial border and the
final segmentation of the level set is problematic. Consequently, the level set segmentation
threshold may cause segmentation flooding into nearby organs or background tissues with
similar voxel intensities. Here, cropping of adjacent organs and tissues by starting with an
initial liver ROI segmentation effectively resolved the issue [14]. Deep learning is another
approach for automated lesion segmentation [15,16], which is becoming increasingly more
popular [13]. For segmenting the numerous cysts in an ADPKD liver, there is no labeled
data for training a deep neural network (DNN). IRIS can be used to rapidly curate cyst
labels for training DNN and extend the deep learning used in liver ROI segmentation in
this work into liver cyst segmentation.

It should be noted that manual segmentation is not a perfect ground truth. Small cysts
can be missed on manual segmentation because it is so tedious and tiring, as exemplified in
Figure 1. The largest normalized volume error (38.7%) occurred in a case with a small liver
cyst volume (13 mL by manual segmentation and 8 mL by IRIS) and was largely caused by
discrepancies at border voxels. The large absolute volume error (35.9 mL) occurred in a case
with a large liver cyst volume (1538 mL by manual and 1411 mL by IRIS) and was largely
caused by voxels in spaces between neighboring cysts (Figure 4). We feel that IRIS can
provide a more consistent border definition for cysts and, therefore, a better ground truth.

This encouraging preliminary study has identified several limitations for future im-
provements. (1) Both manual and level set segmentation have difficulties in segmenting
small cysts due to poor conspicuities, which remains a challenge for IRIS. Though the
current clinical management is based on total liver cyst volume, small cyst identification
may allow the study of their progression. A cause of poor conspicuity is motion artifacts,
which should be minimized as required so in clinical practice. Another case of poor con-
spicuity is noise, which should be further investigated. (2) Vascular structures also appear
hyperintense on T2 weighted images and are commonly included in the level set, which is
the major requirement of IRIS editing. Future automated segmentation development, such
as using deep learning or constraining labels into circular or spherical geometries, may
reduce vasculature/biliary editing and further speed up IRIS. Current data acquisition of
thick slices through the liver volume makes it difficult to differentiate vascular structures
that are connected and extended in space from cysts that are approximately spherical.
Higher-resolution volumetric imaging with respiratory motion compensation [17–24] may
help with accurate liver cyst volume measurement and to overcome the potential slice
misregistration from multiple breath-holds that affect cyst volume measurements. (3) The
partial volume effect in voxels of mixed cyst and normal liver tissue may need to be ac-
counted for, particularly in images with large voxels or thick slices, by geometric and
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biophysical modeling [10,25]. (4) It is desired to minimize human interaction in segmen-
tation, as human interaction can introduce error and operator variability. Deep learning
discussed above may be integrated with IRIS for continuous training and improvement to
minimize human interaction in future accurate liver cyst segmentations.

5. Conclusions

In summary, intelligent rapid interactive segmentation (IRIS) is feasible for fast
and accurate liver cyst segmentation in autosomal dominant polycystic kidney disease
(ADPKD), using SmartClick and antiSmartClick to rapidly refine automated level set seg-
mentation. The accuracy performance of IRIS segmentation closely matches that of the
manual segmentation.

Author Contributions: Conceptualization, M.R.P. and Y.W.; Methodology, C.L., H.Z. and Y.W.;
Software, C.L. and H.Z.; Formal analysis, C.L., D.R., S.J.W., M.R.P. and Y.W.; Investigation, C.L.,
D.R., S.J.W., M.R.P. and Y.W.; Resources, M.R.P. and Y.W.; Data curation, D.R. and M.R.P.; Writing—
original draft preparation, C.L. and Y.W.; Writing—review and editing, D.R., M.R.P. and Y.W.;
Visualization, C.L., D.R. and S.J.W.; Supervision, M.R.P. and Y.W.; Project administration, M.R.P. and
Y.W.; Funding acquisition, M.R.P. and Y.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by National Institutes of Health (NIH) grant number
R01DK116126.

Institutional Review Board Statement: This study used deidentified image data, which was made
available through IRB #0909010639, approval date 11/3/21, Weill Cornell Medicine IRB board.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
to the corresponding author. The data are not publicly available due to the sensitive nature of medical
image data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cnossen, W.R.; Drenth, J.P.H. Polycystic liver disease: An overview of pathogenesis, clinical manifestations and management.

Orphanet J. Rare Dis. 2014, 9, 69. [CrossRef] [PubMed]
2. Van Keimpema, L.; De Koning, D.B.; Van Hoek, B.; Van Den Berg, A.P.; Van Oijen, M.G.; De Man, R.A.; Nevens, F.; Drenth, J.P.

Patients with isolated polycystic liver disease referred to liver centres: Clinical characterization of 137 cases. Liver Int. 2011, 31,
92–98. [CrossRef] [PubMed]

3. Muto, S.; Ando, M.; Nishio, S.; Hanaoka, K.; Ubara, Y.; Narita, I.; Kamura, K.; Mochizuki, T.; Tsuchiya, K.; Tsuruya, K.; et al. The
relationship between liver cyst volume and QOL in Japanese ADPKD patients. Clin. Exp. Nephrol. 2020, 24, 314–322. [CrossRef]

4. Malmberg, F.; Nordenskjold, R.; Strand, R.; Kullberg, J. SmartPaint: A tool for interactive segmentation of medical volume images.
Comput. Methods Biomech. Biomed. Eng.-Imaging Vis. 2017, 5, 36–44. [CrossRef]

5. Kim, Y.; Bae, S.K.; Cheng, T.; Tao, C.; Ge, Y.; Chapman, A.B.; Torres, V.E.; Yu, A.S.L.; Mrug, M.; Bennett, W.M.; et al. Automated
segmentation of liver and liver cysts from bounded abdominal MR images in patients with autosomal dominant polycystic
kidney disease. Phys. Med. Biol. 2016, 61, 7864–7880. [CrossRef]

6. Farooq, Z.; Behzadi, A.H.; Blumenfeld, J.D.; Zhao, Y.; Prince, M.R. Comparison of MRI segmentation techniques for measuring
liver cyst volumes in autosomal dominant polycystic kidney disease. Clin. Imaging 2018, 47, 41–46. [CrossRef] [PubMed]

7. Mutasa, S.; Varada, S.; Goel, A.; Wong, T.T.; Rasiej, M.J. Advanced Deep Learning Techniques Applied to Automated Femoral
Neck Fracture Detection and Classification. J. Digit. Imaging 2020, 33, 1209–1217. [CrossRef] [PubMed]

8. Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Processing 2001, 10, 266–277. [CrossRef]
9. Codella, N.C.F.; Weinsaft, J.W.; Cham, M.D.; Janik, M.; Prince, M.R.; Wang, Y. Left Ventricle: Automated Segmentation by Using

Myocardial Effusion Threshold Reduction and Intravoxel Computation at MR Imaging. Radiology 2008, 248, 1004–1012. [CrossRef]
10. Codella, N.C.; Lee, H.Y.; Fieno, D.S.; Chen, D.W.; Hurtado-Rua, S.; Kochar, M.; Finn, J.P.; Judd, R.; Goyal, P.; Schenendorf, J.; et al.

Improved left ventricular mass quantification with partial voxel interpolation: In vivo and necropsy validation of a novel cardiac
MRI segmentation algorithm. Circ. Cardiovasc. Imaging 2012, 5, 137–146. [CrossRef]

11. Kim, J.A.; Blumenfeld, J.D.; Chhabra, S.; Dutruel, S.P.; Thimmappa, N.D.; Bobb, W.O.; Donahue, S.; Rennert, H.E.; Tan, A.Y.;
Giambrone, A.E.; et al. Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease: Prevalence and Association with
PKD2 Gene Mutations. Radiology 2016, 280, 762–770. [CrossRef] [PubMed]

http://doi.org/10.1186/1750-1172-9-69
http://www.ncbi.nlm.nih.gov/pubmed/24886261
http://doi.org/10.1111/j.1478-3231.2010.02247.x
http://www.ncbi.nlm.nih.gov/pubmed/20408955
http://doi.org/10.1007/s10157-019-01830-6
http://doi.org/10.1080/21681163.2014.960535
http://doi.org/10.1088/0031-9155/61/22/7864
http://doi.org/10.1016/j.clinimag.2017.07.004
http://www.ncbi.nlm.nih.gov/pubmed/28846875
http://doi.org/10.1007/s10278-020-00364-8
http://www.ncbi.nlm.nih.gov/pubmed/32583277
http://doi.org/10.1109/83.902291
http://doi.org/10.1148/radiol.2482072016
http://doi.org/10.1161/CIRCIMAGING.111.966754
http://doi.org/10.1148/radiol.2016151650
http://www.ncbi.nlm.nih.gov/pubmed/27046073


Tomography 2022, 8 456

12. Montagnon, E.; Cerny, M.; Cadrin-Chênevert, A.; Hamilton, V.; Derennes, T.; Ilinca, A.; Vandenbroucke-Menu, F.; Turcotte, S.;
Kadoury, S.; Tang, A. Deep learning workflow in radiology: A primer. Insights Imaging 2020, 11, 1–15. [CrossRef]

13. Xiang, K.; Jiang, B.; Shang, D. The overview of the deep learning integrated into the medical imaging of liver: A review. Hepatol.
Int. 2021, 15, 868–880. [CrossRef] [PubMed]

14. Wang, C.; Frimmel, H.; Smedby, Ö. Fast level-set based image segmentation using coherent propagation. Med. Phys. 2014,
41, 073501. [CrossRef] [PubMed]

15. Hoogi, A.; Subramaniam, A.; Veerapaneni, R.; Rubin, D.L. Adaptive Estimation of Active Contour Parameters Using Convolu-
tional Neural Networks and Texture Analysis. IEEE Trans. Med. Imaging 2017, 36, 781–791. [CrossRef]

16. Gatos, I.; Tsantis, S.; Karamesini, M.; Spiliopoulos, S.; Karnabatidis, D.; Hazle, J.D.; Kagadis, G.C. Focal liver lesions segmentation
and classification in nonenhanced T2-weighted MRI. Med. Phys. 2017, 44, 3695–3705. [CrossRef]

17. Wang, Y.; Grist, T.M.; Korosec, F.R.; Christy, P.S.; Alley, M.T.; Polzin, J.A.; Mistretta, C.A. Respiratory Blur in 3D Coronary MR
Imaging. Magn. Reson. Med. 1995, 33, 541–548. [CrossRef]

18. Wang, Y.; Ehman, R.L. Retrospective adaptive motion correction for navigator-gated 3D coronary MR angiography. J. Magn.
Reson. Imaging 2000, 11, 208–214. [CrossRef]

19. Spincemaille, P.; Nguyen, T.D.; Prince, M.R.; Wang, Y. Kalman filtering for real-time navigator processing. Magn. Reson. Med.
2008, 60, 158–168. [CrossRef]

20. Wang, Y.; Rossman, P.J.; Grimm, R.C.; Wilman, A.H.; Riederer, S.J.; Ehman, R.L. 3D MR angiography of pulmonary arteries using
realtime navigator gating and magnetization preparation. Magn. Reson. Med. 1996, 36, 579–587. [CrossRef]

21. Saake, M.; Seuß, H.; Riexinger, A.; Bickelhaupt, S.; Hammon, M.; Uder, M.; Laun, F.B. Image Quality and Detection of Small Focal
Liver Lesions in Diffusion-Weighted Imaging Comparison of Navigator Tracking and Free-Breathing Acquisition. Investig. Radiol.
2021, 56, 579–590. [CrossRef] [PubMed]

22. Gilligan, L.A.; Dillman, J.R.; Tkach, J.A.; Trout, A.T. Comparison of navigator-gated and breath-held image acquisition techniques
for multi-echo quantitative dixon imaging of the liver in children and young adults. Abdom. Radiol. 2019, 44, 2172–2181. [CrossRef]

23. Motosugi, U.; Hernando, D.; Bannas, P.; Holmes, J.H.; Wang, K.; Shimakawa, A.; Iwadate, Y.; Taviani, V.; Rehm, J.L.; Reeder, S.B.
Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI. J. Magn. Reson. Imaging 2015, 42,
1241–1248. [CrossRef] [PubMed]

24. Tokuda, J.; Morikawa, S.; Dohi, T.; Hata, N. Motion tracking in MR-guided liver therapy by using navigator echoes and projection
profile matching. Acad. Radiol. 2004, 11, 111–120. [CrossRef]

25. Al-Senan, R.; Newhouse, J. CT Volumetry of Convoluted Objects—A Simple Method Using Volume Averaging. Tomography 2021,
7, 11. [CrossRef] [PubMed]

http://doi.org/10.1186/s13244-019-0832-5
http://doi.org/10.1007/s12072-021-10229-z
http://www.ncbi.nlm.nih.gov/pubmed/34264509
http://doi.org/10.1118/1.4881315
http://www.ncbi.nlm.nih.gov/pubmed/24989415
http://doi.org/10.1109/TMI.2016.2628084
http://doi.org/10.1002/mp.12291
http://doi.org/10.1002/mrm.1910330413
http://doi.org/10.1002/(SICI)1522-2586(200002)11:2&lt;208::AID-JMRI20&gt;3.0.CO;2-9
http://doi.org/10.1002/mrm.21649
http://doi.org/10.1002/mrm.1910360413
http://doi.org/10.1097/RLI.0000000000000776
http://www.ncbi.nlm.nih.gov/pubmed/33813572
http://doi.org/10.1007/s00261-019-01960-1
http://doi.org/10.1002/jmri.24896
http://www.ncbi.nlm.nih.gov/pubmed/25828696
http://doi.org/10.1016/S1076-6332(03)00599-3
http://doi.org/10.3390/tomography7020011
http://www.ncbi.nlm.nih.gov/pubmed/33924342

	Introduction 
	Methods and Materials 
	Intelligent Rapid Interactive Segmentation (IRIS) Method and Implementation 
	Patient Population 
	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

