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Abstract: Coronary optical coherence tomography (OCT) is an intravascular, near-infrared light-
based imaging modality capable of reaching axial resolutions of 10–20 µm. This resolution allows
for accurate determination of high-risk plaque features, such as thin cap fibroatheroma; however,
visualization of morphological features alone still provides unreliable positive predictive capability for
plaque progression or future major adverse cardiovascular events (MACE). Biomechanical simulation
could assist in this prediction, but this requires extracting morphological features from intravascular
imaging to construct accurate three-dimensional (3D) simulations of patients’ arteries. Extracting
these features is a laborious process, often carried out manually by trained experts. To address this
challenge, numerous techniques have emerged to automate these processes while simultaneously
overcoming difficulties associated with OCT imaging, such as its limited penetration depth. This
systematic review summarizes advances in automated segmentation techniques from the past five
years (2016–2021) with a focus on their application to the 3D reconstruction of vessels and their
subsequent simulation. We discuss four categories based on the feature being processed, namely:
coronary lumen; artery layers; plaque characteristics and subtypes; and stents. Areas for future
innovation are also discussed as well as their potential for future translation.

Keywords: atherosclerosis; biomechanics; border detection; coronary artery disease; optical coherence
tomography; stents; vulnerable plaque

1. Introduction

Coronary artery disease (CAD) is a leading cause of death, morbidity, and economic
burden globally [1,2]. Although rates of myocardial infarction (MI) are decreasing through
some parts of the world, recurrent major adverse cardiovascular events (MACE) following
initial MI continue to occur at unacceptably high rates [3]. This is because of the complex patho-
genesis and widespread nature of atherosclerotic plaques, including those in non-infarct
related arteries that continue to pose a risk of plaque destabilization and atherothrombotic
events [4,5]. This is despite advances in structural, molecular, and functional imaging
technology, percutaneous coronary intervention (PCI) and pharmacotherapy. While inva-
sive coronary angiography (ICA) is still the cornerstone of CAD assessment in real-world
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practice [6], intravascular imaging modalities, such as intravascular ultrasound (IVUS)
and optical coherence tomography (OCT) can also be adjuvantly used, owing to their
ability to identify vulnerable plaque features [7] such as plaque burden [8] and thin-cap
fibroatheroma (TCFA) [9], respectively. These high-risk plaque features have been shown to
portend up to a six-fold increase in future MACE [10]. However, the ability of conventional
IVUS and OCT imaging to predict which plaques will progress to cause future thrombotic
events is still suboptimal, with positive predictive values of only 20–30% [11].

Coronary biomechanics is emerging as a potentially useful tool to improve this pre-
dictive capability [12]. Computational fluid dynamics (CFD) has predominantly been
applied to assess regions of low wall shear stress (WSS) [13–15], an established factor
that has shown associations with low-density-lipoprotein deposition [16] and subsequent
plaque progression [17,18]. Conversely, in the general population heightened structural
stress [19,20] has been associated with plaque instability and rupture [21], as well as plaque
growth over time [22], and can be modulated by the dynamics of left ventricular func-
tion [23–25]. This highlights the complex and highly nonlinear relationships within the
coronary vasculature that can influence a patient’s biomechanical stress profile. Further-
more, the challenge facing coronary biomechanics, much like imaging modalities, is that no
one parameter can provide a reliable or wholistic summation of a patient’s biomechanical
profile. To address this, comprehensive biomechanical simulations are required, demanding
high-fidelity imaging to segment important regions accurately and deliver robust, realistic,
and patient-specific stress distributions.

Among current commercially available intracoronary imaging modalities applied
in real-world clinical scenarios, OCT is uniquely placed to deliver sufficient accuracy,
given that it has axial and lateral resolutions of 5–20 µm and 10–90 µm, respectively,
depending on laser source and lens properties, approximately ten-fold higher axial and
lateral resolutions than IVUS [26,27]. OCT achieves this accuracy through light-based,
near-infrared spectrum wavelengths of 1250 to 1350 nm emitted from a single invasive
fiberoptic wire, which rotates as it is pulled backwards through the target vessel [28].
The backscattering of light measured by the time for light to travel from tissue to the
catheter lens over each revolution of the fiberoptic wire forms each cross-sectional image of
the vessel wall. The high spatial resolution of this light-based imaging modality allows for
delineation between atherosclerotic components [29,30], shown in Figure 1. This enables
identification of high-risk features, notably thin fibrous cap, macrophage infiltration, plaque
microchannels, cholesterol crystals, spotty calcification, lipid arc [31,32], and layering of
plaque [33], which have been identified as predictors of rapid plaque growth [34] and
determinants of biomechanical stress.

The primary limitation of commercially available intracoronary OCT is its penetration
depth of 0.1 to 2 mm in plaques, compared to up to 10 mm for IVUS, which prevents
visualization of the deep content of plaques, the external elastic membrane and adventitial
layer in diseased regions [28,35]. This penetration depth decreases significantly in the
presence of lipid rich plaques due to the high attenuation and low backscattering properties
of lipid. However, OCT does overcome IVUS’s limited penetration depth in calcified
lesions which ultrasound cannot penetrate. Despite this, many clinical studies have taken
OCT-centered approaches [36–39] to assess vulnerable plaque features or biomechanically
simulate arteries after three-dimensional (3D) reconstruction [40–44]. Nevertheless, an-
notation of OCT images is still predominantly a manual and tedious task, susceptible
to individual interpretation, which is a major obstacle to its use [45]. Indeed, the risk of
intra and inter-observer variability in quantitative analysis necessitates that each image is
analyzed by at least two analysts, further compounding the significant time cost.
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Figure 1. Schematic showing plaque features visible with optical coherence tomography (OCT)
imaging as well as a visualization of A-lines in the cartesian and polar coordinates. The OCT images
show a lipidic plaque (*) with fibrous cap and the delineation of the three artery wall layers is
shown inset in the polar image representation. The limited penetration depth can be seen behind
the lipidic component, with significant attenuation preventing visualization of the backside of
plaque components.

With the advent of machine learning techniques, automated medical image classifica-
tion and segmentation has gained significant attention, with deep learning based neural
networks predominantly used for medical image analysis [46]. In the simplest terms, these
models work through back-propagation to minimize a prescribed loss function (such as
cross-entropy [47], dice loss [48] or Tversky [49]) by directing a machine how to alter its
parameters. The most common method used in image analysis is a convolutional neural
network (CNN) [50]. Compared to artificial neural networks (ANNs) [51], that work by
connecting multiple inputs to individual neurons, which are then multiplied by a weight
and effectively summed to produce a single output, CNNs can reduce the number of
weights used through sharing, resulting in convolution operations, and reduced compu-
tation time. CNNs generally apply a combination of convolutional and pooling layers,
where the pooling layer down samples data allowing for an increased field of view in
subsequent layers, as described in Figure 2. However, this usually leads to a reduction
in image resolution [52], which can hamper the accurate segmentation of tissue borders,
a critical feature for biomechanical simulation. Fully convolutional networks (FCN), such
as the U-Net [53] which is named after its characteristic U-shaped structure, can assist in
meeting this challenge. These networks couple the high-resolution, low level image data
with low-resolution, higher level feature information to improve image segmentation and
classification results. Various architectures exist depending on the task to be completed
and interested readers are directed to references [54–58] for more detail.

In this systematic review, we evaluate recent methods to automatically segment and
classify pathological and non-pathological features in coronary OCT imaging. This au-
tomated segmentation is critical to rapidly and quantitatively assessing atherosclerotic
lesions in clinical scenarios. Uniquely, we focus this review on the application of automated
techniques to 3D computational reconstruction and subsequent patient-specific simulation
which requires specific characteristics to be accurately delineated, such as the outer elastic
membrane and deep plaque components. PUBMED and Web of Science databases were
searched, supplemented by Google Scholar, resulting in 161 articles which were further
screened based on title and abstract to include only full-length, original journal articles
published during the previous five years (2016–2021). Figure 3 details the consort diagram
and review categories. A total of 78 screened articles were classified based on their focus as
either the coronary lumen, artery layers, plaque characteristics and subtypes and stents. In-
cluded articles are summarized in Appendix A (Tables A1–A4), classifying the aim, dataset
size, morphological/filter operations, feature detection/classification method, presented
outcome and the point of comparison of each study. A glossary of evaluation metrics
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used to assess algorithm performance is also provided. Finally, we highlight potential
challenges and multi-disciplinary opportunities for the computer science, engineering, and
medical fields.

Figure 2. Schematic of key components and their layout for a convolutional neural network architec-
ture. The encoder component consists of convolution and activation functions to extract feature maps
before pooling (downsampling) to the subsequent layer. The decoder up-samples feature map data
before further convolutions. Skip connections allow feature map data to be passed between layers
which can assist in reducing resolution degradation between layers and is a critical feature of the
popular U-Net architecture.

Figure 3. Consort diagram showing the review layout and Appendix A tables for each section.
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2. Coronary Lumen

Segmentation of the coronary artery lumen contour is perhaps the simplest task for
automated techniques when there is no atherosclerotic disease and there has been appropri-
ate clearance of blood from the OCT images. Here, globally used binarization methods [59],
such as Otsu filtering [60–63], morphological operations, edge detection [64–66] and curve
fitting [67] were often sufficient to automatically delineate the lumen. However, these
methods are challenged when facing bifurcation regions and catheter artefacts, as well as
improper blood clearance, which are not uncommon occurrences in clinical scenarios. Us-
ing a sequential combination of processing steps, an automated lumen border detection tool
has shown good agreement with expert annotation when addressing these challenges [63].
Tissue characteristics, such as reflectivity, backscattering and absorption were used followed
by contour refinement with a weighted linear least squares local regression approach before
fitting of a second-degree polynomial to bridge catheter and bifurcation artefacts. How-
ever, these approaches can suffer in more complex lumen geometries, difficult bifurcation
contours and stented artery sections.

Addressing complex lumen geometries, Joseph et al., developed a lumen segmentation
method by enhancing lumen intensity through a transmittance-based method to iteratively
drive the detected lumen edge towards the true lumen contour [68]. By utilizing speckle
properties through a localized level-set segmentation method, this approach showed the
ability to overcome image intensity variations. This allowed segmentation of challenging
imaging datasets, including multiple lumens and subsequent automated 3D reconstruction.
Other approaches to difficult lumen geometries include random walks based on edge
weights and optical backscattering and graph-cut segmentation [69,70].

The latter, investigated by Essa et al., introduced a spatio-temporal segmentation
method applying a Kalman filter to ensure border homogeneity and smoothness across an
entire pullback [70]. This assisted in overcoming localized image-based noise and artefacts,
an important consideration in automated 3D reconstruction. A cost function based on
asymmetric local phase and first-order gaussian derivatives was introduced alongside a set
of shape constraints to train a random forest (RF) classifier [71]. RF is particularly useful when
handling noisy data and a large amount of input features as it avoids over fitting and can be
more computationally efficient than other supervised learning techniques such as support
vector machines (SVM) [72]. This approach achieved a sensitivity, specificity and Jaccard
similarity index of 95.55 ± 3.19%, 99.84 ± 0.29%, and 0.95 ± 0.03, respectively, improv-
ing upon earlier first-order gaussian derivative approaches that achieved 89.76 ± 5.99%,
99.80 ± 0.56%, and 0.89± 0.06 in the same metrics [73]. Compared to using image intensity
values alone, classification accuracy increased 6.80% in a dataset of 1846 images from
13 pullbacks (457 training, 1389 testing), whilst the mean average difference in area and the
Hausdorff distance were reduced by 55% and 70% respectively. This highlights both that
evaluation metric heterogeneity can significantly bias how improvement is measured, and
that spatio-temporal approaches that consider all images in a pullback can achieve smooth
contour segmentation in complex lumen geometries.

Although it is common to ignore bifurcation regions in 3D reconstructions, these re-
gions are important to consider when assessing hemodynamics due to their flow-disturbing
nature. However, bifurcation regions present difficulties when automatically segmenting
the lumen. Addressing this, Macedo et al., built on their earlier work to propose a distance
transform, similar to the distance regularized level set proposed in [74], to automatically
correct lumen segmentation in bifurcation regions and areas of complex plaque [62,75].
Regions of bifurcations achieved results of 1.20± 0.80 mm2 and 0.88± 0.08 for the mean av-
erage difference in area (MADA) and dice coefficient, respectively, compared to manual seg-
mentation. This was in comparison to non-bifurcation regions achieving 0.19 ± 0.13 mm2

and 0.97 ± 0.02 in the same metrics. Rather than a distance transform, Akbar et al., pro-
posed an L- and C-mode interpolation approach to bridging lumen contour gaps caused by
bifurcations [65]. Their approach, applied to 5931 images (40 patients), was then used to
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automatically reconstruct 3D lumen models for fractional flow reserve (FFR) assessment,
with good correlation between manual and automated segmentations (R = 0.98).

To automatically segment bifurcation regions, rather than simply bridging over them,
Cao et al., developed an automated branch ostium detection method [76]. By first fitting a
contour to the main lumen, a dynamic programming based distance transform, introduced
earlier and visualized in Figure 4c [74], was then used to select the main lumen and branch
centroids. Ostium points on the main lumen contour were then detected using a differential
filter and taking locations of maximum curvature. The method, shown in Figure 4, resulted
in reasonable agreement to manual segmentation, but required manual intervention to
adjust the threshold for the elliptical ratio of branches to avoid misclassification. Further
advancement of this method by using a bifurcation classifier, such as that proposed by
Miyagawa et al., could enhance segmentation results [77]. By comparing four CNNs (an
original network using stochastic gradient descent followed by three networks making
use of transfer learning from previous investigations [78]) a final area under the curve
(AUC) of 99.72 ± 0.17% was reached, outperforming other bifurcation classifiers [75,79,80].
Interestingly, no statistically significant difference was found between results using polar
and cartesian image coordinates, removing the need to pre-process images to polar form.

Figure 4. Visualization of the bifurcation identification method. (A) Original OCT image with
bifurcation present. (B) Contour detection around lumen and branch. (C) Distance transform and the
determined main vessel and side vessel centroids. (D) Final segmented image. (E) Detection of the
side branch ostium location. (F) Normal vectors to the contour surface (red) and vectors pointing to
the main vessel center (green). © [2017] IEEE. Reprinted, with permission, from [76].

To improve the ability to classify and segment the lumen in difficult regions, such as
stented arteries and bifurcations, machine learning approaches show significant potential.
Yang et al., compared the performance of six classifiers (RF, SVM, J48, Bagging, Naïve
Bayes and adaptive boosting (AdaBoost) [81–83]) in difficult or irregular regions [84].
By identifying and classifying 92 features from 54 patients and 14,207 images (1857 images
denoted as irregular) through supervised learning and a partition-membership filtering
method, the RF classifier produced the best overall accuracy compared to the other five
classifiers: RF 98.2%, SVM 98.1%, J48 97.3%, Bagging 96.6%, Naïve Bayes 88.8%, AdaBoost
88.7%. However, residual blood artefacts and clots hampered accuracy, which Yong et al.,
subsequently improved upon with a linear regression CNN trained on a 64 pullback dataset
(19,027 images) [85]. Consisting of four convolutional layers and three fully connected
layers with gradient based adaptive optimization (ADAM) [86], an overall dice and Jaccard
index of 0.99 and 0.97 were reached, respectively, with an average processing time of 40.6 ms
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per image. Here the most significant improvements in accuracy were seen after training on
25 pullbacks; however, incremental gains were seen by including additional images.

As networks deepen, detailed information can be gradually lost due to resolution
degradation, hampering classification and segmentation accuracy. Tang et al., addressed
this by proposing a novel N-Net based CNN capable of re-using the original input image in
deeper convolutions to couple the initial high resolution data with low resolution feature
information [87]. Consisting of a multi-scale U-Net architecture and cross-entropy loss
function trained on 20,000 images, results showed excellent agreement to expert annotation,
including in complex lumen shapes, such as bifurcation regions (accuracy: 0.98 ± 0.00;
specificity: 99.40 ± 0.05%; dice: 0.93 ± 0.00). The N-Net also resulted in significantly
reduced loss (0.08) compared to traditional U-Net architectures (0.11–0.15). Approaches
like this could assist in accurately and efficiently generating 3D lumen geometries for
assessment of quantitative flow reserve (QFR) or WSS in near-real time [88–90].

For clinical application, computationally efficient segmentation and simulation is
important. Using the K-means algorithm for unsupervised learning, followed by B-spline
curve fitting, Athanasiou et al., achieved significant computation speed-ups compared
to their previous methods [91,92]. A total computation time of 180 sec for lumen border
detection and 3D reconstruction was achieved using biplane angiography. This compared
to 1080 sec previously, with added robustness in cases with artefacts and noise, resulting
in excellent agreement between manual and automated WSS computations (R2 = 0.95).
Computational speed and efficiency were further improved during the development of
DeepCap, which further focused on using a small memory footprint [93]. Their approach
was based on a U-Net architecture, using upsampling, downsampling and skip connec-
tions to improve network gradient propagation [94]. Dynamic routing was then utilized
to optimize capsule weights [95,96]. Comparisons made between the UNet-ResNet18
(UNet-18), FCNResNet50 (FCN-50) and DeepLabV3-ResNet50 (DLV3-50) [97–99] showed
that the proposed DeepCap method achieved 70% faster graphics processing unit (GPU)
computation, 95% faster central processing unit (CPU) computation and a 70% reduction in
memory. This speedup resulted in segmentation of an entire 200 image pullback in 19 sec
on a CPU and just 0.8 sec on a GPU. This was achieved with comparable robustness and
accuracy (dice: 97.00 ± 5.82; Hausdorff distance: 3.30 ± 1.51; specificity: 99.54 ± 0.75%;
sensitivity: 93.27 ± 8.22%) in a 12,011 image (22 patient) dataset. Impressively, only 12%
of the total parameters of previous methods were used. The resulting 3D reconstruction
and comparison to expert annotation-based reconstructions is shown in Figure 5. This
rapid clinical application of automated lumen segmentation could produce a significant
leap in quantitative data available to clinicians, improving patient outcomes and the utility
and acceptance of intravascular imaging modalities, machine learning approaches and the
translation of 3D simulation capability, such as WSS computation.
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Figure 5. A comparison between the proposed DeepCap model and two manually annotated
reconstructions (H1 and H2). The proposed model agrees well with both manual reconstructions,
with the 3D lumen surface visualizing the radius measured from the lumen centroids and the graph
showing the cross-sectional area along the length of the vessel. The automated DeepCap segmentation
was able to process the 200-image pullback in just 0.8 s on a GPU (19 s on CPU). Reprinted from [93],
with permission from Elsevier.

3. Artery Layers

In healthy coronary sections the inner and outer elastic membranes can be visual-
ized through intensity changes and their associated gradients, as illustrated previously
in Figure 1. Using this knowledge, Zahnd et al., developed a front propagation scheme
to segment the intima-media, media-adventitia and adventitia-periadventitial tissue bor-
ders [100]. By using the image gradient properties, an AdaBoost classified machine learn-
ing approach, and feature selection based on a RF framework, segmentation errors of
29 ± 46 µm, 30 ± 50 µm and 50 ± 64 µm resulted for the intima-media, media-adventitia
and adventitia-periadventitial layers (Dice = 0.93). By further investigating the efficacy of
three emerging classifiers (CNN pre-trained on the AlexNet model, RF and SVM), Abdol-
manafi et al., found that the most robust feature extractor was the pre-trained CNN, while
the RF produces the best classification results of up to 96% for the media layer [101]. Further-
more, using the pre-trained CNN as a feature generator for both the RF and SVM classifiers
resulted in their highest accuracy (96 ± 0.06 and 0.90 ± 0.10, respectively) and most
computationally efficient approach compared to the purely CNN method (0.97 ± 0.04).

Further approaches to segment the intimal and medial layers in cardiac allograft
patients made use of the layered optimal graph-based image segmentation for multiple
objects and surfaces (LOGISMOS) framework [73,102–105]. This approach enables a fast
and quantitative assessment of changes in wall morphology that associate with cardiac
allograft vasculopathy (CAV). By using transfer learning from the ImageNet database
initialized with the Caffe framework [106], Chen et al., generated exclusion regions to
classify artery layers in 50 heart transplant patients, with average errors of 4.98 ± 31.24 µm
and 5.38 ± 28.54 µm for the intima and media respectively [102]. These errors were less
than the inter-observer variability reported of 6.76 ± 10.61 µm, although their standard
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deviations were significantly larger, possibly due to the surface smoothness constraint put
on the algorithm.

By extracting further information on vascular tissue components through polarization-
sensitive OCT (PS-OCT) [107–109], Haft-Javaherian et al., were able to detect the lumen,
intima and medial layers with impressive absolute distance errors of 2.36 ± 3.88 µm,
6.89 ± 9.99 µm and 7.53 ± 8.64 µm, respectively (Figure 6) [110]. Comparisons between
the automated approach (blue) and expert annotation (red) showed strong ability to handle
many difficult, yet common, features observed in OCT pullbacks. Carried out on a small
dataset of 984 images (from 57 patients), a multi-term, multivariate loss function was created
through combination of five common functions, namely: dice; weighted cross-entropy;
topological; boundary precision loss; and an attending physician loss function to account
for manual input. When applied through a U-Net based deep residual learning model
using a leaky rectified linear unit (ReLU) function [111], overall classification accuracy for
six components were: plaque shadow 0.82, guidewire shadow 0.97, lumen 0.99, intima
0.98, media 1.00 and outer wall 0.99. This approach could also be useful in segmenting
the outer elastic membrane in hybrid IVUS-OCT systems [112], where the multivariate
loss function could manage the added information provided by IVUS while maintaining
the high-resolution OCT image characteristics during segmentation. Although showing
impressive accuracy, the segmented outer boundaries in this approach did not always
produce smooth contours, particularly in diseased regions where signal attenuation was
high (see Figure 6A,D,F–I).

Figure 6. Results obtained from both the automatic method (blue contours) and expert annotation
(red contours) in PS-OCT images with the automatic method showing robustness in difficult cases,
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including: (A) Thick calcium (GA) and near-wall blood residue (YA); (B) Fuzzy guidewire artefacts
near the lumen boundary (GA) and side branch outside the main vessel wall (YA); (C) Changes
in bright/dark tissue patterns at the outer boundary (GA) and side branch within the artery wall;
(D) Lipidic (YA) and fibrous tissue (GA); (E) Side branch close to the outer wall (GA) and blood
contrast near the lumen (YA); (F) Discontinuous outer wall (YA) segmentation still closely resembles
expert annotation (GA); (G) Lipidic (YA) and fibrous thickening of the artery wall (GA); (H) Significant
blood artefacts from improper flushing (both arrows); (I) Side branch connecting to the wall region
(YA) and catheter touching the lumen wall (GA). Reprinted from [110], with permission, under the
Creative Commons. YA = yellow arrow; GA = green arrow.

Discontinuous contours produce challenges when applying results to 3D modelling
(in both computer-aided design (CAD) or finite element mesh (FEM) packages) and do not
represent biological tissues well. Addressing this challenge, Olender et al., developed a 3D
surface fitting technique using a mechanical, spring based approach [113]. This method
was designed to ensure smoothness of the outer wall over the entire pullback through
a force-balance/constrained nonlinear optimization method. By using edge detection
methods to segment the outer elastic membrane in healthy wall regions and fitting of
an anisotropic, linear elastic mesh to the associated A-line locations, forces proportional
to the sum of A-line pixel intensities were then added (Figure 7) [114]. The resulting
iterative force-balance optimization resulted in a mean difference in area (MADA) of
0.93 ± 0.84 mm2 compared to expert annotation in 724 images from seven patients. Further
validation against manually annotated and co-registered IVUS pullbacks resulted in a
MADA of 1.72 ± 1.43 mm2 (19.2 ± 15.0%). While surface smoothing and fitting times were
2.74 ± 0.28 ms and 40.20 ± 7.50 ms per frame, respectively, this approach would benefit
from improvements to the lumen and edge detection speeds which required a much greater
4.20 ± 1.50 s and 5.35 ± 0.85 s per frame, respectively, to make it clinically applicable. This
approach shows promise for smoothly segmenting the outer wall in OCT images while
constraining atherosclerotic tissue classification approaches.

Figure 7. Outline of the surface fitting technique using four different spring stiffnesses (blue, green,
yellow, and red) fitted either to visible sections of the outer elastic membrane or the detected lumen
contour. Nodes (black circles) were connected to adjacent nodes within the image frame as well as
both proximal and distal frames. Gray arrows represent the applied forces proportional to the sum of
A-line pixel intensities. The surface fitting and force-balance optimization was carried out across the
entire pullback (j direction) to generate a smooth and continuous outer wall over the entire artery
section. © [2019] IEEE. Reprinted, with permission, from [113].

4. Plaque Characteristics and Subtypes

Finding critical features to help accurately classify coronary plaques is an important
research focus, as computation time is heavily dependent on the number of plaque fea-
tures acquired. These morphological features, including optical characteristics, lumen
morphology, A-line peaks and texture analyses were further investigated in [115]. Here a
three-class random forest (3C-RF) classifier was compared to a similar three-class support
vector machine (3C-SVM) as well as a dual binary (DB) classifier; the difference being the
three-class classifiers simultaneously searched for fibro-calcific and fibro-lipidic A-lines,
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whereas the DB followed a sequential approach. Using both the minimal-redundancy-
maximal relevance (mRMR) [116] and binary Wilcoxon [117] methods combined with
conditional random field (CRF) [118] denoising, a total of ten feature selection and classifi-
cation schemes were tested on a dataset of 6556 images (49 pullbacks) and histologically
validated on 440 ex vivo images (10 pullbacks). It was found that lumen morphology
and 3D edge/texture features from the Leung-Malik filter bank [119] provided the largest
improvements in classification accuracy of up to 81.6% in the 3C-SVM with mRMR feature
selection. This segmentation was then translated into a 3D rendering to demonstrate an
automated, proof-of-concept segmentation tool, shown in Figure 8.

Figure 8. Visualization of the proof-of-concept automated segmentation and 3D rendering results
for calcific (A) and lipidic (D) plaques. The original images and the corresponding automated
segmentation for calcific lesion and fibrous cap over the lipid component are shown in (B,E) and
(C,F), respectively. Reprinted from [115], with permission, under the Creative Commons.

However, Zhang et al., demonstrated that a fully convolutional DenseNet based classi-
fication network with up sampling path for resolution restoration outperforms both SVM
and U-Net based CNN architectures in fibrous cap thickness quantification. A critical mea-
sure of plaque stability, respective fibrous cap thickness errors of 13.06%, 22.20% and 17.46%
were shown [120–122]. These errors are due to the high signal attenuation and diffuse
contours representative of a fibrous cap overlying a lipid pool coupled with inter-observer
variability and expert interpretation in the manually segmented ground truth. As accurate
thickness measurement is a critical parameter for quantification of plaque vulnerability
and biomechanical stress, further research to address these challenges and reduce errors
is required [123]. Techniques such as dynamic programming have also demonstrated the
capability to overcome these challenges and could be further explored [124,125]. This study
was also limited to using only 1008 images (after data augmentation) from two patients,
suggesting room for larger, more detailed studies in the future.

Further developments have also been made in automatically differentiating between a
larger number of atherosclerotic tissue types [92,126–136]. Beginning with fibrous plaques,
Wang et al., proposed a hybrid mix of a gaussian mixture model (GMM) and fourth-
order nonlinear partial differential equation (PDE) which extended an adaptive diffusivity
function to overcome the challenges that classical GMMs face in noisy images [128,137].
The method significantly outperformed five other algorithms under ongoing research:
(1) FRSCGMM—fast and robust spatially constrained Gaussian mixture model [138];
(2) AFPDEFCM—fourth-order PDE-based fuzzy c-means [139]; (3) FCM—PDE-based fuzzy
c-means [140]; (4) SMM—Student’s-t mixture model [141]; (5) standard GMM [142]; and
_6) GMM-SMSI—GMM with spatial pixel relationship extracted using a saliency map [143].
Further improvements were presented in fibrotic plaque detection by Liu et al., who demon-
strated that a CNN based on the VGG-16 network outperformed the single-shot detector
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(SSD) and you only look once (YOLO)-v3 based models, with accuracies of 94.12%, 93.75%,
and 64.89%, respectively [144–149]. However, a more significant challenge is differentiating
fibrous from other plaque classifications [45].

To assess the vulnerability of plaques, quantifying multiple plaque components and
subtypes is essential. Liu et al., developed an ensemble method to combine the outputs of
multiple networks to improve the accuracy of detecting vulnerable regions [150]. By com-
bining the Adaboost, YOLO, SSD, and Faster region-based CNN outputs, a precision and
recall of 88.84% and 95.02%, respectively, were reached, with a total detection quality of
88.46%. To further improve vulnerable plaque assessment, Gerbaud et al., introduced
an adaptive attenuation compensation algorithm to assist in visualizing the outer elas-
tic membrane in in regions of high attenuation [151]. This allowed plaque burden to be
quantitively and automatically assessed, resulting in a mean difference of 0.27 ± 3.31 mm2

for the outer elastic membrane and −0.5 ± 7.0% for plaque burden when compared to
matched IVUS frames. Such capability overcomes one of the most significant limitations
associated with OCT use and could be further used to assist quantifying the lipid core
burden index proposed in [152]. By further developing a normalized-intensity standard
deviation (NSD) measure, Rico-Jimenez et al., were also able to successfully automate the
detection of macrophage infiltration in regions of intimal thickening, fibrous plaque and
fibroatheroma, resulting in an accuracy, sensitivity and specificity of 87.45%, 85.57% and
88.03%, respectively, in a k-fold validation against manual segmentation [153]. Through
the introduction of a pyramid parsing network, with encoder consisting of a ResNet50
based CNN, Shibutani et al., were also able to detect regions of previous rupture/erosion
that have since healed [154]. The ex vivo assessment and histological comparison of 1103
segments showed excellent area under the curve of 0.86, highlighting the potential for
future automated classifiers to recognize emerging risk factors.

A key focus has been the classification of atherosclerotic tissue into fibro-calcific and fibro-
lipid components through A-line characteristics [115,155–157]. Kolluru et al., showed that
CNN classification more closely resembled expert annotations than an ANN, despite similar ac-
curacy for both fibro-calcific and fibro-lipid components [155]. With this knowledge, Lee et al.,
compared the classification accuracy of the SegNet and Deeplab v3+ CNNs [157–159]. The 91
layered SegNet network, pre-trained in the ImageNet dataset [160], outperformed the Deeplab
v3+ network for both fibro-lipidic (Dice: 0.83 ± 0.06 vs. 0.780 ± 0.077; Jaccard: 0.73 ± 0.073
vs. 0.65 ± 0.10) and fibro-calcific (Dice: 0.90 ± 0.04 vs. 0.82 ± 0.07; Jaccard: 0.83 ± 0.04
vs. 0.70 ± 0.10) A-line classifications, respectively. Investigations have also suggested that
including attenuation coefficients in A-line classification of fibro-calcific and fibro-lipid
components can further increase accuracy, including differentiation from other tissue types
(mixed, macrophages, necrotic cores) [161–163]. The network architecture totaled five
pooling/unpooling layers with 26 convolutional layers and added image padding to avoid
misclassification due to edge effects. This architecture was then applied in a hybrid learning
approach on 6556 images from 49 patients with a RF classifier [156] implemented due to the
faster computation time, needing only 25% of the training time and 33% run time of a SVM
to achieve comparable accuracy. When a CRF was applied for noise postprocessing, the
hybrid model approach outperformed a purely CNN for fibro-calcific (sensitivity: 97.20%
vs. 80.20%; specificity: 91.90% vs. 92.90%) and fibro-lipid (sensitivity: 77.30% vs. 46.80%;
specificity: 91.90% vs. 92.90%) classification, needing approximately one second per image
(the majority, 0.9 s, required for feature extraction). The key differentiator here was that the
hybrid method made use of morphological features.

To investigate the classification of fibrous tissue alongside calcification, macrophages,
neovascularization and healthy intima/media layers, Abdolmanafi et al., compared three
CNN based feature generators (AlexNet [164], VGG-19 [145] and Inception-v3 [165]) to
train a RF classifier [132]. Although features generated from pre-trained networks are useful
to reduce training/computation time, results show that accuracy, sensitivity, and specificity
suffer when supervised fine tuning is not applied. To overcome this, a weighted majority
voting approach was applied to the RF results from each set of features, leading to signifi-
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cant improvements in performance over 33 patients (Accuracy: 0.99 ± 0.01%; Sensitivity:
98.00 ± 2.00%; Specificity: 100.00 ± 0.00%). This method outperformed an FCN trained on
a larger 5040 image (45 pullback) dataset [133]. By making use of dilated convolutions for
semantic segmentation and spatial pyramid pooling modules, Abdolmanafi et al., further
developed an FCN capable of classifying and segmenting tissues into fibrous, fibro-calcific,
fibroatheroma, thrombus, and micro-vessels with accuracy of over 93% in each case [134].
They demonstrated that the ADAM optimizer and weighted cross-entropy loss function
outperformed stochastic gradient descent and the dice loss coefficient, respectively, in
the 41-pullback dataset. While ADAM in particular may outperform stochastic gradi-
ent descent, its generalization performance may suffer, hampering translation to other
datasets [166]. Interestingly, this approach also made use of the original image rather than
A-lines from the polar transform, reducing the computational cost associated with this
pre-processing step whilst maintaining accuracy.

Polar and cartesian representations of OCT images can provide varying features for
automated extraction. This was exploited by Gessert et al., with a multi-path architecture,
as shown in Figure 9 [130]. Variations in concatenation points for feature fusion, transfer
learning approaches and data augmentation resulted in an overall best performance of
91.70%, 90.90%, and 92.40% for accuracy, sensitivity, and specificity, respectively (F1 score
of 0.913) [130]. The dual path variations of ResNet-v2 [97] and DenseNet with late feature
concatenation increased accuracy by 1.4% and 1.8%, respectively, suggesting some added
benefit from combining features from cartesian and polar image forms. Interestingly,
cartesian based images saw a more significant gain in accuracy with both data augmentation
(16%) and transfer learning approaches (15%), compared to polar images. Both methods
were shown to outperform other models to classify vulnerable plaque when applied to
a deep residual, U-Net based CNN [126,135]. The traditional encoder was replaced with
the pre-trained ResNet101 for transfer learning improvements while rotational based data
augmentation increased the number of images ten-fold (to 8000). A multi-term loss function
was proposed to overcome imbalances in foreground/background pixels, which can lead
to incomplete vulnerable region detection. By combining the weighted cross-entropy
loss function, to enhance boundary pixels and improve boundary segmentation, and dice
coefficient, to increase pixel classification accuracy, an overall pixel accuracy and precision
of 93.31% and 94.33%, respectively, were reached [135], improvements of 49% and 14%,
respectively, over the initial prototype U-Net. More impressively, the mean intersection
over union and frequency weighted intersection over the union, improved measures of the
overlap in two regions, improved 103% and, 71%, respectively.

Figure 9. Layout of the dual-path ResNet model for automated extraction, making use of both the
cartesian and polar image representations. Points Cc represent varying concatenation locations which
were assessed for the two paths. © [2019] IEEE. Reprinted, with permission, from [130].

Calcified plaques generally present more favorable optical properties for segmenta-
tion [45]. Using a deep CNN, trained on the ResNet-50 network over a dataset of 4860 im-
ages (18 pullbacks), He et al., managed a precision, recall and F1 score of 0.97 ± 0.01,
0.98 ± 0.03, and 0.96 ± 0.03, respectively [167]. This result was achieved by the zero-
padding, 3D ResNet network trained in the ImageNet dataset making use of the ADAM
optimizer, which outperformed the same network setup for the 2D ResNet. Here, data
augmentation was also shown to be an important step, reducing model overfitting, and
strengthening the generalizability. In comparison, using a U-Net based architecture with
the same binary cross-entropy loss function, Avital et al., managed an impressive accuracy
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of 0.99 [168]. However, this classification and segmentation still requires translation to 3D
geometries for the purpose of application in biomechanical simulation.

Building on their previous work, Lee et al., developed a two-step process to both
segment and reconstruct 3D calcification models, as shown in Figure 10 [169]. Here a
deep learning CNN model was used for classification followed by the pre-trained SegNet
network developed in [170]. The initial classification made use of transfer learning from
the VGG-16 and VGG-19 networks with five-fold cross validation and final use of the
Tversky loss function, which provided superior performance compared to the weighted
cross-entropy and dice loss coefficients. Importantly, a fully connected CRF was applied to
denoise the output and create labels with more relevant spatial characteristics, an important
step for 3D reconstruction. This resulted in calcification detection sensitivity, specificity
and F1 score of 97.70%, 87.70%, and 0.92, respectively, from a dataset of 8231 images
(68 patients). This improved upon earlier sensitivity and dice coefficients of 85.00 ± 4.00%
and 0.76 ± 0.03 [170], respectively, from a one-step, weighted VGG-16 based CNN that
was tested on 2640 images from 34 pullbacks and trained on the CamVid dataset [171].
Furthermore, the two-step approach reduced misclassification of tissues adjacent to calcifi-
cations, resulting in more accurate calcification angle, depth and thickness measurements
and subsequently better segmentations. Of note, at least 3900 images were required for
training of the two-step method to obtain stable and reproducible results, highlighting the
need for larger, expert annotated datasets.

Figure 10. Visualization of the five major calcified lesions (yellow arrows) after 3D reconstruction
and comparison between the manually annotated ground truth (A) and the automated method (B).
Reprinted from [169], with permission, under the Creative Commons.

Dealing with limited datasets, with either scarce or weak annotations, is a significant
challenge in the medical field and an ongoing research focus [55]. Rather than addressing
the challenge of dataset size by building larger datasets, Kolluru et al., proposed to reduce
the number of images needing expert annotation [172]. By focusing on calcified lesions,
a deep feature-based clustering technique was developed to identify images needing expert
annotation from identified volumes of interest (VOI). This removed the need to manually
annotate a complete set of training labels, reducing a significant time cost. The clustering
method was compared to annotation of equally spaced images on a dataset of 3741 images
(60 VOIs from 41 pullbacks), outperforming the equally spaced annotation dataset using
just 10% of the total selected images. Further development and use of approaches such
data augmentation, transfer, and active learning, CRF post-processing and class activation
mapping to reduce the number of annotated images needed for accurate training and
classification would benefit the field.
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5. Stents

OCT can be used both immediately after stent deployment to visualize stent sizing,
apposition of struts against the intimal surface and to identify acute stent-related compli-
cations (e.g., stent-edge dissection). Furthermore, it also plays a role when assessing the
underlying nature of later stent complications, such as in-stent restenosis caused by neoin-
timal hyperplasia or neo-atherosclerosis and stent thrombosis. The automatic detection,
segmentation and quantification of stent strut mal-apposition post stent deployment could
assist in analyzing areas at increased risk of subsequent neointimal proliferation, stent
thrombosis and MACE [173]. Early classification of this apposition and neointimal coverage
was carried out using a supervised ANN on a relatively small dataset of 20 pullbacks [174].
Twenty-two A-line features in polar coordinates were extracted based on image intensity
gradients in similar fashion to early lumen-based segmentation, but with the addition of
strut shadow gradients to classify candidate regions of interest (ROI). A-line representation
(previously visualized in Figure 1) of stent struts and their shadows were suggested to
be less affected by artefacts and rotational distortion in polar coordinates, a preferable
characteristic for automated classification [175]. Based on a split of 70%, 15% and 15% split
for training, validation, and testing, respectively, results showed a strong positive predic-
tive value of 95.60% (97.40% vs. 95.10% for uncovered and covered struts, respectively).
However, these results were influenced by image quality, with covered struts in particular
suffering from a lower positive predictive value of 86.10% in suboptimal image sets.

To improve stent strut segmentation in suboptimal images, such as those with residual
blood artefacts, Cao et al., investigated an AdaBoost trained, cascade classifier [176]. With a
combination of three filters of varied angles developed through a dynamic programming
approach, true positive scores of 0.87–0.93 in image sets with significant blood artefacts
(F score 0.88–0.89) were achieved, comparable to images without artefacts (TPR 0.91–0.96;
F score 0.90–0.93). While still using a relatively small dataset of 15 pullbacks (4065 images
and 12,550 struts), the overall recall rate for covered struts was 0.98. The resulting malappo-
sition calculation matched well with manual segmentation, although with a slight increase
due to the false positive rate of 26.70% driven by images with significant blood artefacts.

Another challenge presented in stented arteries is variation in the optical character-
istics between bare metal stents (BMS) and bioresorbable vascular scaffolds (BVS). While
metallic stents present with well-defined edges and an invisible strut backside/pronounced
shadow, BVS edges are well defined around a dark core [177]. Focusing on metallic stents,
Jiang et al., compared the performance of the YOLOv3 framework and a region-based
fully-convolutional neural network (R-FCN) [178]. The YOLOv3 framework made use
of a binary-cross entropy loss function and K-means adjusted anchor box detector using
the SSD method, while the R-FCN combined log-classification and smooth regression loss
functions and a novel position-sensitive feature score map. Although obtaining similar
results, the R-FCN eventually reached the highest precision of 99.8%, although the test set
consisted of only 425 images. In contrast, Amrute et al., built on previous work to automat-
ically segment BVS using an unsupervised K-means clustering approach [179]. A positive
predictive value of 93.00% was reached through testing on 1140 images. Building on this
work, Lau et al., focused on segmenting both BMS and BVS with one architecture [180].
The MobileNetV2 [181] was first combined with the U-Net architecture to reduce computa-
tional cost and compared to the DenseNet121 encoder, with the overall best dice coefficient
of 0.86 for the segmentation of the BVS. However, misclassification of images with bright
fringes (common in BMS), dark shadowing, fractured struts, and areas of large neointimal
coverage is common in many approaches. These are still future challenges to be overcome
for automatic strut detection methods.

By building larger datasets for training and validation, Lu et al., further addressed
the challenges of stent apposition, quantitative coverage measurement and detection in
regions of strut clustering [182]. In 80 pullbacks (7125 images) with 39,000 covered and
16,500 uncovered struts, 21 features (including patch features shown in Figure 11) were
chosen through a forward feature selection technique with a bagged decision trees classifier.
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By using a SVM for classification (LIBSVM library [183]) and a graph-based mesh growing
technique to overcome challenges associated with stent struts that were clustered close
together, a sensitivity and specificity of 94.00 ± 3.00% and 90.00 ± 4.00%, respectively, were
obtained. This approach was further developed into a toolkit (OCTivat-Stent), published
in 2020, capable of reducing total segmentation time to just 30 min per pullback, from
6–12 h through manual annotation [184]. Additionally, specificity was greatly improved as
strut coverage increased beyond 40 µm, with further research needed to accurately and
consistently quantify thinner neointimal coverage.

Figure 11. Patches used to extract features for uncovered, thinly covered, and thickly covered struts.
Side patches (orange) capture continuity of the tissue, while the green, blue, red, and purple patches
highlight the front, middle, stent strut and backside pixel regions, respectively. Reprinted from [182],
with permission, under the Creative Commons.

Feature-based segmentation still encounters challenges with varying acquisition set-
tings and patients, as well as difficulty translating between stent designs without manual
intervention. With this in mind, Wu et al., developed a CNN architecture based on the
U-Net and RefineNet architectures [185] (Figure 12), to segment stent struts from pseudo-
3D image stacks in polar form [175]. The pseudo-3D form uses prior knowledge of the
implanted stent design and consecutive image slices to constrain the segmentation results,
similar to a previous approach for constraining the 3D segmented point clouds to known
strut skeletons [186]. The four-stage deep CNN architecture, consisting of start and end
modules sandwiching the encoder and decoder, made use of batch normalization and
convolution operations to mitigate gradient degradation and shortcut connections to min-
imize loss of spatial resolution, common factors impacting strut detection. With 80% of
images used for training with the ADAM optimizer and combined binary cross-entropy
and Tversky loss functions over 300 epochs, the deep CNN outperformed all feature-based
techniques as well as the same deep CNN without the pseudo-3D image input. This
highlights the importance of using consecutive image slices and prior knowledge of the
stent structure to classify and detect struts. Importantly, in a dataset of 170 pullbacks
(205,513 stent struts) containing 13 stent designs, overall results for dice coefficient, Jaccard
index and precision were 0.91 ± 0.04, 0.84 ± 0.06 and 0.94 ± 0.04, respectively, highlighting
the ability of this approach to handle difficult cases of malapposition and intimal coverage.

Application of these segmentation methods to computational simulation requires the
additional step of 3D reconstruction of both the stent structure and lumen surface. Building
from in vitro models with application of the Sobel edge detection and interpolation be-
tween detected struts [187,188], Migliori et al., used a fuzzy logic approach for classification
of a Multi-link 8 stent (Abbott Laboratories, Abbott Park, IL, USA) and subsequent 3D
reconstruction with reasonable agreement to manual approaches [189]. To improve the
stent reconstruction, Elliot et al., made use of diffeomorphic metric mapping to develop
a constrained iterative deformation process that configures an initial undeformed stent
geometry to the 3D imaged point cloud [190]. Tested on two stents (Integrity bare metal
stent and Xience Alpine drug eluting stent) in four in vitro models and compared to manual
segmentation and reconstruction, results showed good agreement, with an average distance
between the strut centroids of 97.5 ± 54.4 µm. In in vivo cases, by improving lumen seg-
mentation around struts with a novel correction step to account for blood artefacts, Bologna
et al., automatically generated a stented artery model for simulation of WSS from the OCT
based 3D point cloud and biplane angiography centerline (Figure 13) [64]. However, these
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approaches suffered in the case of struts that did not have visible, continuous, or square
outlines. Building on this with an enhanced reconstruction method using prior knowledge
of the undeformed stent geometry, O’Brien et al., automatically analyzed four swine models
using attenuation coefficients and a decision tree classifier, expanding previous studies
to obtain good agreement with manual segmentation [186,191,192]. WSS results from the
enhanced simulation showed improved resolution in the hemodynamic microenvironment
compared to the unenhanced method. Furthermore, a strong association between WSS
and strut-lumen distance was seen, highlighting the importance of accurate classification,
segmentation, and reconstruction for 3D simulation results.

Figure 12. Layout of the presented model for stent strut segmentation. (A) The pseudo-3D polar
image stack and manually annotated strut mask were taken as inputs. (B) Strut segmentation model
composed of a start module, six encode and decode modules and an end module. (C) The predicted
strut map including orientation, width, and position of struts. Reprinted from [175], with permission,
under the Creative Commons.

Figure 13. Automatically generated 3D stented artery model. (A) OCT contours (blue) and stent struts
(red) placed along the 3D centerline (black). (B) Generated 3D surface model. (C) Wall shear stress
resulting from CFD simulation. Reprinted from [64], with permission, under the Creative Commons.

6. Discussion

Methods to automate the classification and segmentation of pathological and non-
pathological formations in intravascular OCT images are emerging as clinically feasible. To
automatically segment the lumen, the deep capsules approach presented by Balaji et al.,
showed impressive accuracy, speed and efficient computational use which make it an ideal
candidate to make it to clinical use [93]. This approach built upon the useful characteristics
of the U-Net to maintain high-level feature accuracy and shows strong promise to be
expanded to plaque component analysis. However, this approach should also be expanded
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to be able to segment bifurcation regions and requires further work to better handle fringe
cases (i.e., increasing the number of cases with artefacts and difficult geometries). Address-
ing the artery layers and outer wall, the mechanical approach presented by Olender et al.,
demonstrated impressive speed when fitting and smoothing a 3D surface from all images
in a pullback [113]. This overcomes OCT’s most significant limitation, penetration depth
in deep atherosclerotic components. However, its lumen and outer elastic membrane
identification speed still lacks and could benefit from the U-Net based network proposed
by Haft-Javaherian et al. [110]. This approach could also show promise for automating the
segmentation of tissue in future hybrid imaging modalities, such as a combined IVUS-OCT
probe [193], as its multivariate loss function could manage the added information that
IVUS presents. Various techniques provided strong segmentation capability for plaque
compositions and coronary stents, with CRF de-noising and strut detection constraints
with prior knowledge of stent design more critical factors than the underlying network
to providing strong results. However, further research is required to target quantifying
fibrous cap thickness accurately in image datasets that well represent real-world scenarios,
with current studies significantly limited to small datasets (179–348 images in each study to
date [123–125]). Until studies have access to datasets that are representative of real-world
scenarios, clinical application will remain limited.

Furthermore, while these methods show strong promise, assessing their effectiveness
is not a straight-forward task, as heterogeneity in evaluation metrics can lead to an in-
complete assessment of a methodology. A wide range of evaluation metrics have been
used to assess the performance of automated techniques, with significant research applied
to developing distance, similarity and boundary overlap metrics [194,195]. Choosing the
most effective measure for the task at hand is difficult and can lead to bias in results,
particularly when dealing with class imbalance [196]. Making use of frequency weighted
evaluation metrics, such as the frequency weighted intersection over union rather than
the commonly used Jaccard similarity index could assist in dealing with this challenge.
Development of consensus documents for OCT based deep learning may also assist re-
searchers reduce other biases in their work, including data distribution, dataset leakage
and methodological bias, factors already shown to significantly skew results in cancer
diagnoses [197–200]. Improving access to large scale, longitudinal and multicenter datasets
that are representative of real-world scenarios coupled with consistent use of techniques
including cross-validation, model regularization (to prevent overfitting or underfitting) and
de-biasing through oversampling and adversarial de-biasing will help in addressing these
challenges. Competitions, such as [201], could further assist by standardizing the develop-
ment and evaluation of methods on pre-defined datasets, improving transparency, while
open-source projects, such as the medical open network for artificial intelligence (MONAI),
first publicly released in 2020, provide best practice deep learning frameworks [202].

Reviewed studies primarily used supervised learning techniques, such as neural
networks, RF and SVM, where the model has access to both the original image, as well
as manually annotated versions during training to effectively learn the correct parame-
ters [85,101,156]. This requires large, high-quality, manually annotated datasets for training
and validation to produce accurate and robust results, a significant cost. A focus on address-
ing this challenge by handling imperfect datasets with sparse or no manual annotations
is emerging [55]. State-of-the-art unsupervised learning techniques, such as generative
adversarial networks (GAN) and autoencoders, are also gaining in popularity and could
reduce this burden by learning patterns from unlabeled data or generating further image
labels to optimize segmentation [203,204]. While Abdolmanafi et al., applied a sparse au-
toencoder in their work segmenting atherosclerotic tissue types [134], recent advancements
in autoencoders applied to CT imaging are also leading to stronger feature learning and
dimensionality reductions that could translate for use in intravascular OCT [205].

With improvements in classification and segmentation capability, there is a growing
need to integrate these advances into automated 3D reconstructions in a sufficient frame-
work for biomechanical simulation. Lumen and stent-based investigations have already
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begun developing this ability for clinical application [91,93]. However, structural based
analysis still lags due to the added complications of generating smooth and sufficiently
connected regions for finite element mesh generation. To the best of our knowledge, the
only framework to integrate image classification, segmentation, 3D reconstruction and
structural simulation is that recently presented by Kadry et al. [206]. This framework,
shown in Figure 14, built on their previous works to classify pixels into six tissue compo-
nents within a constrained wall area region, making use of 3D mode filtering to improve
spatial consistency and continuity of contours [113,114,131]. This approach shows sig-
nificant potential to translate to clinical use, as it brings together the relevant processing
steps into a single framework. Future work could also be made to account for motion
artefacts within intravascular imaging, which were suggested to result in relative stenosis
length errors of up to 160% (compared to 0.6% after motion catheter trajectory and time
synchronization) [207]. While an impressive step forward, future work is still required to
integrate an imaging modality capable of generating an accurate 3D centerline to stack the
2D contours [208–211]. Of the available modalities that could be used, invasive coronary
angiography is the primary candidate due to its widespread clinical use and requirement
during intracoronary OCT procedures. However, computed tomography coronary angiog-
raphy is a rising noninvasive contender and coronary magnetic resonance imaging could
also be a useful addition to reduce patient radiation and contrast exposure, although lower
image resolution and susceptibility to motion related image degradation could impact
reconstruction accuracy in these cases [212,213].

Figure 14. Framework layout for the automated reconstruction and 3D structural simulation of an
artery. Initial OCT images were stacked to form a pseudo-3D image sequence before classification
with a CNN and generation of label maps which were subsequently smoothed into contours to
generate the digital phantom which was converted to a finite element mesh for structural simulation.
Republished with permission of The Royal Society Publishing, from [206]; permission conveyed
through Copyright Clearance Centre, Inc.

Multi-modal intravascular imaging modalities also have the capability to further
overcome challenges with automatic OCT segmentation. The integration of OCT and
IVUS, for example, could overcome the limited 0.1 to 2 mm penetration depth associated
with OCT in plaques, removing the need for complex estimation techniques to segment
the outer wall or plaque backsides and quantify plaque burden in regions of high at-
tenuation [193,214]. The complementary capabilities of these two imaging modalities
have already demonstrated their potential to increase positive predictive capability when
detecting TCFA [215]. Developments in OCT also show promise for providing useful
histopathological information, with PS-OCT [108] demonstrating incremental value in the
segmentation of artery layers and the outer wall [110]. Furthermore, molecular information
obtained from multi-modal imaging could assist in automatically segmenting emerging
vulnerable features, such as layered plaques, indicative of previously destabilized plaque
that has since healed, or collagen arrangement within the fibrous cap, which could suggest
lesion instability [216,217]. Further development of near-infrared spectroscopy/Raman,
fluorescence lifetime (FLIM) and near-infrared autofluorescence (NIRAF) modalities in
combination with OCT also shows promise to extract biochemical and molecular tissue in-
formation on elastin and macrophages whilst nuclear imaging techniques such as positron
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emission tomography (PET) could supplement this with information on local inflammatory
responses [112,218–220].

This molecular imaging capability could lead to more accurate classification and
segmentation of vulnerable plaque regions. For example, the first in-human study on
NIRAF combined with OCT showed NIRAF associated with high-risk plaque phenotypes,
complementing the structural information available through OCT [221]. Further advance-
ments could also assist in differentiating between healthy re-endothelization or fibrin
drug eluting stent coverage, improving the ability to stratify risk of late stent thrombo-
sis [222]. Combining this ability to accurately segment pathological borders and extract
molecular information, reminiscent of an advanced virtual histology IVUS/OCT [223,224],
presents opportunities to reverse engineer tissue constitutive models and adapt structural
simulations to patient-specific conditions, currently a major limitation in the field of biome-
chanics [225–234]. However, there is still a need for further evidence to determine which
multi-modal imaging technique can provide the strongest incremental benefits and risk
stratification to improve both clinical outcomes and simulation capability.

Clinician acceptance of machine learning algorithms, especially in the case of intravas-
cular OCT, is still tied to the imaging modality’s clinical utility. While OCT and IVUS
are still not a part of routine coronary angiography procedures, automated segmentation
approaches that can run in near real time in the catheterization laboratory could provide a
significant advance in making quantitative data (e.g., fibrous cap thickness measurement)
readily available to the interventional Cardiologist and assist with the interpretation of
OCT images. In turn, this could inform clinical decision making and lead to better patient
outcomes. The future potential for automated approaches to make it into clinical use also
require addressing a number of systemic challenges, including: (1) Improving access to
large scale, expertly annotated datasets to train and test techniques on data that is represen-
tative of real world scenarios; (2) Evidence that techniques are robust and reliable enough
to enable clinical use and provide sufficient incremental value to justify the associated
costs (i.e., health economic analysis); (3) Regulations surrounding the updates of medical
technology could inhibit the rapid adoption required for AI in clinical scenarios; (4) Data
ownership could impact how techniques develop, particularly if research techniques de-
velop with large scale datasets to the point of commercial potential. [235]. These are both
multi-disciplinary challenges and opportunities for the engineering, computer science and
medical research fields.

7. Conclusions

Intravascular OCT is a high resolution, near-infrared light-based imaging modality
capable of visualizing vulnerable plaque features, such as TCFA. Manual annotation of
these images is a time consuming and tedious task, limiting its clinical application and use
in 3D reconstructions for biomechanical simulation. With increases in computation power
and numerical capability, automated techniques are emerging to classify and segment
pathological and non-pathological formations, including vulnerable features. This review
summarized recent advances (2016–2021) in automated techniques, applied to coronary
OCT imaging and their subsequent application to 3D reconstruction and biomechanical
simulation. Deep learning models have demonstrated the capability to classify and segment
structural features in OCT imaging, including lipidic, calcific, and fibrous plaques, as well
as stent and lumen borders in regions with considerable imaging artefacts. This capability is
beginning to show potential for clinical use, with significant reductions in computation time
allowing near real-time classification and segmentation. However, challenges surrounding
access to large scale, expertly annotated image datasets that represent real-world scenarios
and robustness of automated techniques to clinical use still need to be addressed before
clinical acceptance. Further advances in multi-modal imaging catheters could increase the
information available to automated techniques. When coupled with patient details and
developments to streamline the process of 3D reconstruction and simulation, this capability
could one day assist in guiding patient-specific care or intervention.
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Glossary of Performance Metrics

Accuracy (ACC): Accuracy is the proportion of pixels classified correctly out of the
total number of pixels classified, defined as

ACC =
∑k

i=1 nii

∑k
i=1 ti

× 100, (1)

where k is the total number of classification categories within the dataset, ti is the number
of pixels belonging to the ith category and nii is the number of correct pixel predictions of
the ith category.

Area under the curve (AUC): Area under the curve determines an algorithm’s ability
to distinguish between two classifications, with a value closer to one indicating better per-
formance.

Average symmetric surface distance (ASSD): The average symmetric surface dis-
tance calculates the average distances, D, between point, x, on the boundary of the pre-
dicted region, ∂P, and its nearest point, y, on the boundary of the ground truth, ∂GT, and in
reverse from the ground truth to the predicted surface.

ASSD =

∑
x∈∂GT

D(x, ∂P)+ ∑
y∈∂P

D(y, ∂GT)

|∂GT|+ |∂P| , (2)

Bhattacharya distance (BHAT): The Bhattacharya distance determines the similarity
between two discrete probability density functions of image intensity values as [236]

BHAT = − ln
(

∑h
i=1

(√
P(i)Q(i)

))
, (3)

where h is the number of image intensity levels, in the case of image analysis, considered
for the probability distributions P and Q.
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Coefficient of determination (R2): The coefficient of determination defines how
changes in a dependent or predicted variable are explained by changes in a second variable,
described by

R2 =
∑
n
(yn − fn)

2

∑
n
(yn − y)2 , (4)

where there are n values of dataset y, and predicted values, f.
Cohen’s kappa coefficient (CK): Cohen’s kappa coefficient evaluates the reliability

of agreement between two results, in this case the ground truth manual annotation and
algorithm result, by taking into account chance and is evaluated as [237]

CK =
p0 − pe

1− pe
, (5)

where p0 is the observed agreement and pe is the probability of agreement by chance.
Concordance-correlation-coefficient (CCC): The Concordance-correlation-coefficient

determines the agreement between variable y and a reference ground truth x, defined
as [238]

CCC = 1−
(µy − µx)

2 + σ2
y + σ2

x − 2ρσyσx

(µy − µx)
2 + σ2

y + σ2
x

, (6)

where the µx and µy are the variable means, σx and σy are standard deviations, σx
2 and σy

2

are the variable variances and ρ is Pearson’s correlation coefficient.
Dice coefficient (DICE): The Dice coefficient determines the overlap between two

regions A and B as [239]

DICE =
2|A ∩ B|
|A|+ |B| , (7)

where A is the region determined by the algorithm and B is the manually labelled ground
truth or point of comparison, with higher values suggesting better performance.

F1 score: The F1 score compares the performance of two classifiers using their respec-
tive precision (PRE) and recall (REC) results, defined as

F1 =
2(PRE ∗ REC)

PRE + REC
. (8)

False positive rate (FPR): False positive rate is the ratio of false positives (FP) to false
positives and true negatives (TN) combined, described as

FPR =
FP

(FP + TN)
× 100. (9)

Frequency weighted intersection over union (FIoU): The frequency weighted inter-
section over the union determines the mean overlap between the algorithm calculated area
and ground truth weighted by the frequency of occurrence of each category. Defined as

FIoU =
(
∑k

i=1 ti

)−1 1
k ∑k

i=1
nii

ti − nii + ∑k
j=1 nji

, (10)

where k is the total number of classification categories within the dataset, ti is the number of
pixels belonging to the ith category, nji is the incorrect prediction of the jth category when
pixels belong to the ith category and nii is the number of correct pixel predictions of the
ith category.



Tomography 2022, 8 1329

Hausdorff distance (HD): The Hausdorff distance determines the largest of all the
distances, D, between a point, x, on the boundary of the predicted region, ∂P, and its nearest
point, y, on the boundary of the ground truth, ∂GT, defined as

HD = max
{

max
x∈∂GT

D(x, ∂P), max
y∈∂P

D(y, ∂GT)
}

. (11)

Jaccard similarity (JS): The Jaccard similarity index defines the size of the overlapping
region divided by the size of the union of the two regions A and B as [240]

JS =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| , (12)

where A is the region determined by the algorithm and B is the manually labelled ground
truth or point of comparison, with higher values suggesting better performance.

Kullback–Leibler divergence (KL): The Kullback–Leibler divergence is a statistical
distance measure evaluating the difference between two probability distributions, P and Q,
over a domain of image intensity values, h, defined as [241]

KL = ∑h
i=1 P(i) ln

(
P(i)
Q(i)

)
. (13)

Mean average difference in area (MADA): The mean average difference in area is
calculated between the ground truth (GT) and predicted (P) result for N samples as

MADA =
∑(|GT − P|)

N
. (14)

Mean intersection over union (MIoU): The mean intersection over the union calcu-
lated the mean overlap between the algorithm calculated area and ground truth

MIoU =
1
k ∑k

i=0
nii

ti − nii + ∑k
j=1 nji

, (15)

where k is the total number of classification categories within the dataset, ti is the number of
pixels belonging to the ith category, nji is the incorrect prediction of the jth category when
pixels belong to the ith category and nii is the number of correct pixel predictions of the ith
category. This is also the mean Jaccard similarity index.

Mean pixel accuracy (MPA): The mean pixel accuracy determines the proportion of
correctly classified pixels against the total number of pixels in each category, averaged
across all categories,

MPA =
1
k ∑k

i=0
nii
ti

, (16)

where k is the total number of classification categories within the dataset, ti is the number
of pixels belonging to the ith category and nii is the number of correct pixel predictions of
the ith category.

Misclassification ratio (MCR): The percentage of misclassified pixels defined as

MCR = 100−ACC = 1− ∑k
i=1 nii

∑k
i=1 ti

× 100, (17)

where ACC is the accuracy defined earlier, k is the total number of classification categories
within the dataset, ti is the number of pixels belonging to the ith category and nii is the
number of correct pixel predictions of the ith category.
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Negative predictive value (NPV): The proportion of true negatives within the total
negative algorithm predictions, defined as the ratio of true negatives (TN) to the sum of
true negatives and false negatives (FN).

NPV =
TN

(TN + FN)
× 100 (18)

.
Pearson’s correlation coefficient (R): The population-based Pearson’s correlation co-

efficient for a pair of variables X and Y described by

R =
cov(X, Y)

σXσY
, (19)

Precision (PRE)/Positive predictive value (PPV): The proportion of actual positives
within the total positive algorithm predictions, defined as the ratio of true positives (TP) to
the sum of true positives and false positives (FP).

PRE =
TP

(TP + FP)
× 100. (20)

Probabilistic rand index (PRI): The probabilistic rand index measures the number of
correct classifications made by an algorithm, using the true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) values, defined as

PRI =
TP + TN

TP + FP + FN + TN
, (21)

where cov is the covariance and σx and σy are standard deviations.
Root mean square symmetric surface distance (RMSD): The root mean square sym-

metric surface distance is defined as:

RMSD =

√
1

|∂GT|+ |∂P|

√
∑

x∈∂GT
D2(x, ∂P)+ ∑

y∈∂P
D2(y, ∂GT), (22)

and calculates the root mean value of all distances, D, between point, x, on the boundary of
the predicted region, ∂P, and its nearest point, y, on the boundary of the ground truth, ∂GT,
and in reverse from the ground truth to the predicted surface.

Sensitivity (SEN)/Recall (REC)/True positive rate (TPR): The proportion of true pos-
itive (TP) algorithm predictions out of the total actual positives predicted shown as the
sum of true positive and false negatives (FN). In binary classifications, Sensitivity, Recall
and True Positive Rate are equivalent.

SEN/REC/TPR =
TP

(TP + FN)
× 100. (23)

Specificity (SPE)/True negative rate (TNR): The proportion of true negative (TN)
algorithm predictions out of the total actual true negative predictions shown as the sum of
true negative and false positives (FP).

SPE/TNR =
TN

(TN + FP)
× 100. (24)
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Appendix A

Table A1. Classified articles investigating automated coronary lumen segmentation. 3D—Three-dimensional. ACC—Accuracy. ADAM—Gradient based adaptive
optimization. ASSD—Average symmetric surface distance. AUC—Area under the curve. BHAT—Bhattacharya distance. BR—Bifurcation region. CK—Cohen’s
kappa coefficient. CNN—Convolutional neural network. DA—Data augmentation. DICE—Dice loss coefficient. FFR—Fractional flow reserve. HD—Hausdorff
distance. IVUS—Intravascular ultrasound. JS—Jaccard similarity index. KL—Kullback–Leibler divergence. MADA—Mean average difference in area. MV—Main
vessel NB—Naïve Bayes. NBR—Non-bifurcation region. NPV—Negative predictive value. OCT—Optical coherence tomography. PPV—Positive predictive
value. R—Pearson’s correlation R2—Coefficient of determination. RF—Random Forest. RMSD—Root mean square symmetric surface distance. SEN—Sensitivity.
SPE—Specificity. SVM—Support vector machine. TNR—True negative ratio. TPR—True positive ratio. WSS—Wall shear stress. * Expert annotation implies an
experienced researcher carried out the annotation. Articles varied their use of manual segmentation and expert annotation and we match the description given in
each article.

First Author [Ref] Aim Dataset Morphological/
Filtering Operations

Feature
Detection/Classification Outcome Comparison *

Akbar et al. [65] Automated lumen extraction
and 3D FFR modelling 5931 images (40 patients)

Polar transform, Bilateral
smoothing filter, dilation,

erosion

L- & C-mode interpolation
and Sobel edge detection

R: 0.99
FFR R: 0.98

Manual segmentation and
individual L- and C-mode

interpolation

Athanasiou et al. [91]
Lumen detection through

optimized segmentation and 3D
WSS modelling

11 patients,
613 annotated images

Polar transform, Bilateral
smoothing filter B-spline curve fit, K-means

3D HD: 0.05 mm (±0.19)
R: 0.98
R2: 0.96

WSS R2: 0.95

Expert annotation and WSS
results between expert

annotated reconstruction

Balaji et al. [93]
Efficient and low memory

automated lumen segmentation
for clinical application

12,011 images (22 patients) Gaussian derivative
PyTorch based deep

capsules with ADAM
optimizer

DICE: 0.97 ± 0.06
HD: 3.30 ±1.51 µm
SEN: 93.00 ± 8.00%
SPE: 99.00 ± 1.00%

Expert annotation,
UNet-ResNet18,

FCNResNet50 and
DeepLabV3-ResNet50

Cao et al. [74] Automated lumen segmentation
in challenging geometries 880 images (five patients)

Polar transform, Narrow
image smoothing filter

(Gaussian)

Distance regularized level
set DICE: 0.98 ± 0.01 Manual segmentation

Cao et al. [76] Automatic side branch ostium
and lumen detection 4618 images (22 pullbacks)

Dynamic programming
distance transform,

differential filter

MV DICE: 0.96
BR DICE: 0.78

TPR: 0.83
TNR: 0.99

PPV: 87.00%
NPV: 98.00%

Manual segmentation

Cheimariotis et al. [63]
Automated lumen segmentation
in all image types (bifurcation,

blood artefacts)

1812 images (20 patients,
308 stented, 1504 native)

Polar transform, Median
filtering, Gaussian filtering,
opening, Otsu binarization,

low-pass filtering

Gradient window
enhancement

Stented: DICE: 0.94
R2: 0.97

Non-stented: DICE: 0.93
R: 0.99
R2: 0.92

Expert annotation (area,
perimeter, radius, diameter,

centroid)
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Table A1. Cont.

First Author [Ref] Aim Dataset Morphological/
Filtering Operations

Feature
Detection/Classification Outcome Comparison *

Essa at al. [70]
Automatic lumen detection

in OCT (and tissue
characterization in IVUS)

2303 images
(13 pullbacks:

Column-wise labelling
457, training 457,

testing 1389)

Polar transform, A-line
based dynamic

tissue classification

Kalman filter based
spatio-temporal

segmentation
method, RF

ACC: 96.27%
HD: 11.01 ± 11.93 µm

JS: 0.95 ± 0.03
SEN: 95.55 ± 3.19%
SPE: 99.84 ± 0.29%

Expert annotation

Joseph et al. [68]

Automated lumen contours
using local

transmittance-based
enhancement

8100 images
(30 pullbacks, 270

images per pullback)

Polar transform,
transmissivity-
based mapping

Region-based level set
active contour method BR DICE: 0.78 ± 0.20 Expert annotation

Macedo et al. [62]

Automated lumen
segmentation by

morphological operations in
plaque and

bifurcation regions.

1328 images (nine
pullbacks, 141 BR,

1188 NBR)

Polar transform, Bilateral
filtering, Otsu
thresholding,

Erosion/dilation

Sobel edge detection,
Distance transform

based automatic
contour correction

NBR MADA:
0.19 ± 0.13 mm2

NBR DICE: 0.97 ± 0.02
BR MADA:

0.52 ± 0.81 mm2

BR DICE: 0.91 ± 0.09

Manual segmentation

Miyagawa et al. [77]
Automated detection and

outline of
bifurcation regions

2460 images (Nine
patients, 157 BR,

1204 NBR, 1099 DA)

Global thresholding,
closing,

Hough transform

Four CNNs, three with
transfer learning from

lumen detection

ACC: 98.00 ± 1.00%
SPE: 98.00 ± 1.00%
AUC: 0.99 ± 0.00

Expert annotation

Pociask et al. [66] Automated lumen
segmentation 667 images

Polar transform,
Gaussian &

Savitzky–Golay filtering,
opening/closing

Linear interpolation
Relative difference in

lumen area: 1.12%
(1.55–0.68%)

Manual segmentation

Roy et al. [69] Random walks automatic
segmentation of the lumen

Patients: six in vivo,
15 in vitro.

150–300 frames per
patient

Polar transform,
Random walks based on

edge weights and
backscattering tracking

CK: 0.98 ± 0.01
KL: 5.17 ± 2.39

BHAT: 0.56 ± 0.28
Expert annotation

Tang et al. [87] Automated lumen extraction
using N-Net CNN

20,000 images (400 for
training from

manual annotation)

N-Net CNN with cross
entropy loss function

ACC: 98.00 ± 0.00%
DICE: 0.93 ± 0.00

JS: 0.88 ± 0.00
SPE: 99.00 ± 0.00%

Expert annotation of
400 images

Yang et al. [84]
Automated lumen extraction

in abnormal
lumen geometries

14,207 images
(54 patients)

Polar transform,
Gaussian filtering

Active contour model,
Gray-level co-occurrence
matrix, SVM, AdaBoost,

J48, RF, NB, Bagging

DICE: 0.98 ± 0.01
JS: 0.95 ± 0.02

MADA: 0.27 ± 0.19 mm2

ASSD: 0.03 ± 0.01 mm
RMSD: 0.04 ± 0.01 mm

ACC: 99.00 ± 1.00%

Expert annotation on
1541 images
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Table A1. Cont.

First Author [Ref] Aim Dataset Morphological/
Filtering Operations

Feature
Detection/Classification Outcome Comparison *

Yong et al. [85] Automated lumen extraction
using linear regression CNN

19,027 images
(64 pullbacks,
28 patients)

Polar transform, Linear regression CNN

Location accuracy:
22 µm

DICE 0.99
JS: 0.97

Expert annotation on
19 pullbacks (5685

images)

Zhao et al. [61]
Automated lumen extraction

using
morphological operations

268 images

Polar transform, Median
filtering, Otsu
binarization,

closing/opening

DICE: 0.99
JS: 0.99

ACC: 99.00%
HD: 0.01 mm

Expert annotation

Zhu et al. [59]
Automated lumen

segmentation to overcome
blood artefacts

216 images with blood
artefacts (from

1436 images, 6 patients)

Polar transform,
Gaussian filtering,

adaptive block
binarization,

erosion/area opening

Connected A-line region
filtering with bicubic

interpolation and
quadratic

regression smoothing

DICE: 0.95
JS: 0.90

ACC: 98.00%

Morphological only,
dynamic programming,
manual segmentation
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Table A2. Classified articles investigating automated artery layer segmentation. ACC—Accuracy. APe—Adventitia-peri-adventitial tissue border error. CNN—
Convolutional neural network. DICE—Dice loss coefficient. IMe—Intima-media border error. IVUS—Intravascular ultrasound. JS—Jaccard similarity index.
MADA—Mean absolute difference in area. MAe—Media-adventitia border error. OCT—Optical coherence tomography. R2—Coefficient of determination.
RF—Random Forest. SEN—Sensitivity. SPE—Specificity. SVM—Support vector machine. * Results shown for the outer wall segmentation.

First Author [Ref] Aim Dataset Morphological/
Filtering Operations

Feature
Detection/Classification Outcome Comparison *

Abdolmanafi et al. [101]
Automated intima and media

classification in
pediatric patients

4800 regions of interest
(26 patients) CNN (AlexNet), RF, SVM

CNN ACC: 97.00 ± 4.00%
RF ACC: 96.00 ± 6.00%

SVM ACC: 90.00 ± 10.00%
Manual segmentation

Chen et al. [102]
Automated wall morphology

change analyses in heart
transplant patients

43,873 images
(100 pullbacks, 50 patients)

Caffe framework,
LOGISMOS,

Sobel edge detector

R2: 0.96
Intima error:

4.98 ± 31.24 µm
Media error:

5.38 ± 28.54 µm

Expert annotation

Haft-Javaherian
et al. [110]

Automated lumen, intima and
media classification in

polarization-sensitive OCT
984 images (57 patients)

CNN based on U-Net and
deep residual learning

model, combination of five
loss functions

DICE *: 0.99
ACC *: 99.30%
SEN *: 99.50%
SPE *: 99.00%

Expert annotation and
traditional OCT.

Olender et al. [113]
Automated delineation of outer

elastic membrane using
mechanical approach

724 images (seven patients)
Contrast enhancement,
image compensation,

median filtering

Sobel-Feldman edge
detection, anisotropic linear
elastic mesh force balance

MADA: 0.93 mm2 (±0.84)
DICE: 0.91

JS: 0.84
SEN: 90.79%
SPE: 99.00%

Expert annotation and IVUS

Pazdernik et al. [103]
Automated wall morphology

change analyses in heart
transplant patients

50 patients (~25,000
co-registered images) LOGISMOS

R2: 0.99
Intima error: 0.4 ± 27.1 µm
Media error: 8.1 ± 12.2 µm

Expert annotation

Zahnd et al. [100]
Automatically segment three

layers of healthy coronary
artery wall

40 patients (400 classified
images, 140 training,

260 validation)
Erosion, dilation

AdaBoost, front
propagation scheme with
cumulative cost function,

Boruta algorithm (RF based)

DICE: 0.93
ACC: 91.00%
SEN: 92.00%
SPE: 100.00%

IMe: 29 ± 46 µm
MAe: 30 ± 50 µm
APe: 50 ± 64 µm

Expert annotation
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Table A3. Classified articles investigating automated plaque classification and segmentation. ACC—Accuracy. ADAM—Gradient based adaptive optimiza-
tion. AFPDEFCM—Fourth-order PDE-based fuzzy c-means. ANN—Artificial neural network. AP—Average precision. AUC—Area under the curve. CNN—
Convolutional neural network. CRF—Conditional random field. DA—Data augmentation. DB—Dual binary classifier. DICE—Dice loss coefficient. EEL—External
elastic lamina. F1—F1-score. FC—Fibrocalcific plaque. FCM—Partial differential equation-based fuzzy c-means. FCN—Fully convolutional network. FRSCGMM—
Fast and robust spatially constrained Gaussian mixture model. GMM—Gaussian mixture model. GMM-SMSI—GMM with spatial pixel saliency map. HEM—Heard
example mining. HER—Healed erosion/rupture. MCR—Misclassification ratio. MIoU—Mean intersection over union. FIoU—Frequency weighted intersection over
union. mRMR—Minimal-redundancy-maximal relevance. PB—Plaque burden. PIT—Pathological intimal thickening. PRE—Precision. PRI—Probabilistic Rand
Index. REC—Recall. RF—Random Forest. SEN—Sensitivity. SMM—Student’s-t mixture model. SPE—Specificity. SVM—Support vector machine. TCFA—Thin-cap
fibroatheroma. VH-IVUS—Virtual histology intravascular ultrasound. VOI—Volume of interest. * Overall classification accuracy for fibrous, lipid and background
tissue. ** Mean values for presented algorithm, see text for other comparison metrics. ˆ Results for the final contraction plus expansion CNN. ˆˆ Results for overall
pathological tissue detection.

First Author [Ref] Aim Dataset Morphological Operations Feature
Detection/Classification Outcome Comparison

Abdolmanafi et al. [132] Tissue characterization in
Kawasaki disease 8910 images (33 pullbacks) Polar transform

RF (AlexNet, VGG-19 &
Inception-V3) & majority

voting

ACC ˆˆ: 99.00 ± 1.00%
SEN: 98.00 ± 2.00%
SPE: 100.00 ± 0.00%

Expert annotation

Abdolmanafi et al. [133] Tissue characterization in
Kawasaki disease 5040 images (45 pullbacks) Polar transform FCN, RF (VGG-19)

ACC ˆˆ: 96.00 ± 4.00%
SPE: 95.00 ± 5.00%
SEN: 97.00 ± 3.00%

F1: 0.96 ± 0.04

Expert annotation

Abdolmanafi et al. [134] Automatic plaque
tissue classification

41 pullbacks (~200 images
per pullback)

FCN (ResNet),
ADAM optimizer

ACC: 93.00 ± 10.00%
SEN: 90.00 13.00%
SPE: 95.00 ± 5.00%

F1: 0.84 ± 0.18

Manual segmentation

Avital et al. [168] Deep learning-based
calcification classification

8000 images (540 frames
for training) U-Net ACC: 99.03 ± 9.00%

DICE: 0.71 ± 0.26 Manual segmentation

Cheimariotis et al. [161] Four-way plaque
type classification 183 images (33 patients)

Polar transform, Median
filtering, Gaussian filtering,
opening, Otsu binarization,

low-pass filtering
(ARC-OCT)

CNN (AlexNet), ADAM
optimizer with

attenuation coefficient

A-line transformed ACC:
83.47%
Plaque:

ACC: 74.73%
SEN: 87.78%
SPE: 61.45%

Manual segmentation

Gerbaud et al. [151] Plaque burden measurement
with enhancement algorithm

42 patients (96 pullbacks)
200 IVUS-OCT

matched images

Adaptive attenuation
compensation, frame

averaging

Mean difference.
EEL: 0.27 ± 3.31 mm2

PB: −0.5 ± 7.0%
Expert annotation and IVUS

Gessert et al. [130]
Plaque detection and

segmentation with
multi-path architecture

4000 images (49 patients) Polar & cartesian
CNN

(ResNet50-V2 &
DenseNet-121)

ACC: 91.70%
SEN: 90.90%
SPE: 92.40%

F1: 0.91

Expert annotation
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Table A3. Cont.

First Author [Ref] Aim Dataset Morphological Operations Feature
Detection/Classification Outcome Comparison

Gharaibeh et al. [170] Classification and segmentation
of lumen and calcification 2640 images (34 pullbacks)

Polar transform,
log-transform,

Gaussian filtering
CNN (SegNet) & CRF

Calcific:
DICE: 0.76 ± 0.03

SEN: 85.00 ± 4.00%
Lumen:

DICE: 0.98 ± 0.01
SEN: 99.00 ± 1.00%

Manual segmentation

He et al. [167] Automatic classification
of calcification 4860 images (18 pullbacks) Polar transform

CNN (ResNet-3D & 2D),
cross-entropy loss,
ADAM optimizer

PRE: 96.90 ± 1.30%
REC: 97.70 ± 3.40%
F1: 96.10 ± 3.40%

Manual segmentation

Huang et al. [136] Fibrous, calcific and lipidic
tissue classification 28 images (11 patients] Polar transform, Otsu

thresholding, SVM (RF feature selection)

ACC: 83.00%
Fibrous ACC: 89.00%
Lipidic ACC: 86.50%
Calcific ACC: 79.30%

Manual segmentation

Isidori et al. [152] Automated lipid core burden
index assessment

Training: 23 patients.
Testing: 40 patients, CNN SEN: 90.50%

SPE: 84.20%
Expert annotation and

NIRS-IVUS

Kolluru et al. [155]
CNN classification of plaque

types (fibro-calcific
and fibro-lipidic)

4469 images (48 pullbacks) Log transform,
Gaussian filtering CNN and ANN

ACC: 77.7% ± 4.1% for
fibro-calcific, 86.5% ± 2.3%
for fibro-lipid and 85.3% ±

2.5% for others

Expert annotation and ANN

Kolluru et al. [172]
Reduce number of training

images needed for
deep learning

3741 images (60 VOIs from
41 pullbacks)

Log transform,
Gaussian filtering

U-Net, Image subset
selection through

deep-feature clustering and
k-medoids algorithm

Clustering outperforms
equal spacing methods for

sparse annotations (F1: 0.63
vs. 0.52, AP: 66% vs. 50%)

Expert annotation

Lee et al. [156]
Hybrid learning approach to

classify fibro-lipidic and
fibro-calcific tissue

6556 images Polar transform,
Gaussian filtering

CNN (ADAM optimizer) &
RF with hybrid learning

approach, CRF &
dynamic programming

Fibro-lipidic:
SEN: 84.80 ± 8.20%
SPE: 97.80 ± 1.60%

F1: 0.89 ± 0.04
Fibro-calcific:

SEN: 91.20 ± 6.40%
SPE: 96.20 ± 1.60%

F1: 0.72 ± 0.07

Manual segmentation, pre &
post noise cleaning and

active learning

Lee et al. [157] Automatic lipid/calcium
characterization comparison

4892 images (57 pullbacks,
55 patients)

Polar transform, non-local
mean filtering

CNN (SegNet VGG16),
Deeplab 3+, dynamic

programming

Manual segmentation,
pixel-wise vs. A-line

Lee et al. [169]
Fully automated 3D calcium

segmentation
and reconstruction

8231 images (68 patients)
4320 ex vivo images (four

cadavers)

Polar transform, Gaussian
filtering, opening & closing

3D CNN &
SegNet with Tversky loss
function, CRF & dynamic

programming

SEN: 97.70%
SPE: 87.70%

F1: 0.92

Manual segmentation,
one-step approach
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Li et al. [135] Segmentation of vulnerable
plaque regions

2000 images (50%
vulnerable plaque) Polar transform

Deep Residual U-Net
(ResNet101) & combined

cross-entropy and dice loss

ACC: 93.31%
MIoU: 0.85
FIoU: 0.86

PRE: 94.33%
REC: 91.35%

Manual segmentation,
prototype U-Net; VGG16,

ResNet50,
ResNet101

Liu et al. [144] Automated fibrous
plaque detection 1000 images Polar & Hough transform CNN (VGG16) ACC ˆ: 94.12%

REC: 94.12%
Expert annotation, SSD,

YOLO-V3

Liu et al. [150] Vulnerable plaque detection
2000 training images, 300

testing images, data
augmentation

Polar transform,
erosion/dilation, de-noising

Deep CNN (Adaboost,
YOLO, SSD, Faster R-CNN)

PRE: 88.84%
REC: 95.02% Manual segmentation

Liu et al. [162]

Classification of six tissue types:
mixed, calcification, fibrous,

lipid-rich, macrophages,
necrotic core

135 images (ex vivo) Polar transform,
median filtering

Attenuation,
backscatter, intensity

Attenuation and backscatter
can differentiate six

tissue types

Expert annotation &
histology

Prabhu et al. [115] Detection of fibro-lipidic and
fibro-calcific A-lines

6556 in vivo images
(49 pullbacks), 440 ex vivo

images (10 pullbacks)

Polar transform, texture
features from Leung–Malik

filter bank

RF, SVM, DB, mRMR,
binary Wilcoxon & CRF

ACC: 81.58%
Fibro-lipidic:
SEN: 94.48%
SPE: 87.32%

Fibro-calcific:
SEN: 74.82%
SPE: 95.28%

Expert annotation

Rico-Jimenez et al. [129]
Automated tissue

characterization with
A-line features

513 images Polar transform, entropy &
frost filter

Linear
Discriminant Analysis ACC: 88.20% Manual segmentation

Rico-Jimenez et al. [153] Macrophage
infiltration detection

28 ex vivo coronary
segments

Normalized-intensity
standard deviation ratio

ACC: 87.45%
SEN: 85.57%
SPE: 88.03%

Manual segmentation and
histological evaluation

Shibutani et al. [154]
Automated plaque

characterization in ex
vivo sections

1103 histological cross
sections

(45 autopsied hearts)

CNN
(ResNet50), scene parsing

network (PSPNet)

FC AUC: 0.91
PIT AUC: 0.85

TCFA AUC: 0.86
HER AUC: 0.86

Expert annotation and
histological evaluation

Wang et al. [128] Fibrotic plaque
area segmentation 20 images (nine patients) Adaptive diffusivity

Log-likelihood function of
Gaussian mixture model

(GMM)

MCR **: 0.65 ± 0.66
PRI: 0.99 ± 0.01

Manual segmentation,
GMM, FCM, SMM,

FRSCGMM, AFPDEFCM,
GMM-SMSI

Yang et al. [127]
Automatic classification of
plaque (fibrous, calcific and

lipid-rich)

1700 images (20 pullbacks,
nine patients)

Mean filtering,
graph-cut method

SVM (C-SVC) with HEM
training, K-means, radial

basis function
ACC: 96.80 ± 0.02% Manual segmentation
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Zhang et al. [120]
Automated fibrous cap

thickness quantification and
plaque classification

18 images (two patients,
1008 images after DA)

CNN (U-Net), CNN
(FC-DenseNet), SVM

U-Net ACC *: 95.40%
FC-DenseNet ACC: 91.14%

SVM ACC: 81.84%

Manual segmentation
guided by VH-IVUS

Zhang et al. [126] Comparison of automated lipid,
fibrous and background

tissue segmentation
77 images (five patients)

CNN (U-Net based
architecture) and SVM Focal
loss function, local binary

patterns, gray level
co-occurrence matrices

CNN ACC *: 94.29%
SVM ACC: 69.46%

Manual segmentation
guided by VH-IVUS

Table A4. Classified articles investigating automated stent segmentation. 3D—Three-dimensional. ADAM—Gradient based adaptive optimization. ANN—Artificial
neural network. AP—Average precision. ASSD—Average symmetric surface distance. AUC—Area under the curve. CCC—Concordance-correlation-coefficient.
CFD—Computational fluid dynamics. CT—Computed Tomography DA—Data augmentation. DICE—Dice loss coefficient. F1—F1-score. FPR—False positive ratio.
JS—Jaccard similarity index. MADA—Mean average difference in area. OCT—Optical coherence tomography. PPV—Positive predictive value. PRE—Precision.
R2—Coefficient of determination. REC—Recall. SEN—Sensitivity. SPE—Specificity. SVM—Support vector machine. TPR—True positive ratio. * Results for the best
outcome are shown in the Table, please refer to the article for detailed inter/intra-observer variability and method comparisons.

First Author [Ref] Aim Dataset Morphological Operations Feature
Detection/Classification Outcome Comparison

Bologna et al. [64]
Automated lumen contour and

stent strut selection for
3D reconstruction

1150 images (23 pullbacks) Thresholding, opening,
closing, nonlinear filtering Sobel edge detection

Lumen:
SPE: 97.00%
SEN: 99.00%

Stent:
SPE: 63.00%
SEN: 83.00%

Manual segmentation

Cao et al. [176] Automatic stent segmentation
and malapposition evaluation

4065 images (12,550 struts,
15 pullbacks)

Cascade AdaBoost classifier,
dynamic programming

DICE: 0.81
TPR: 90.50%
FPR: 12.10%

F1: 0.90

Expert annotation

Chiastra et al. [187]
Stent strut and lumen contour

detection through OCT
and micro-CT

Eight stented bifurcation
phantom arteries (in vitro),

four in vivo patients

Polar transform,
opening, thresholding Sobel edge detection

Stent *:
DICE: 0.93 ± 0.06

JS: 0.87 ± 0.10
SPE: 94.75 ± 7.60%
SEN: 90.87 ± 9.44%

Manual segmentation

Elliot et al. [190]
Automated 3D stent

reconstruction through OCT
and micro-CT

2156 images, four stented
phantom arteries (in vitro) Polar transform

A-line intensity profile,
peak intensity, number

of peaks
ASSD: 184 ± 96 µm Manual segmentation
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Jiang et al. [178] Automatic segmentation of
metallic stent struts

165 images, 1200 post DA
on (10 pullbacks)

YOLOv3 (binary
cross-entropy loss) and

region-based
fully-convolutional network

(R-FCN), Darknet53

YOLOv3 vs. R-FCN
PRE: 97.20% vs. 99.80%
REC: 96.50% vs. 96.20%
AP: 96.00% vs. 96.20%

Manual segmentation and
between two classifiers

Junedh et al. [179] Automation of polymeric stent
strut segmentation 1140 images (15 patients) Polar transform,

bilateral filter K-means
R2: 0.88

PPV: 93.00%
TPR: 90.00%

Expert annotation

Lau et al. [180] Segmentation of metallic and
bioresorbable vascular scaffolds

51 pullbacks (27 patients),
13,890 training images, 3909

test images

U-Net with combined
MobileNetV2 and

DenseNet121

DICE *: 0.86
PRE *: 92.00%
REC *: 92.00%

Manual segmentation

Lu et al. [182] Automatic classification of
covered/uncovered stents

7125 images (39,000 covered
struts, 16,500 uncovered

struts, 80 pullbacks)
Polar transform

SVM (LIBSVM), bagged
decision trees classifier,

pixel patch method, mesh
growing, active learning

relabeling

SPE: 94.00 ± 3.00%
SEN: 90.00 ± 4.00%

AUC: 0.97
Expert annotation

Lu et al. [184]

Development of automated
OCT image visualization and

analysis toolkit for stents
(OCTivat-stent)

(292 pullbacks) Polar transform

SVM (LIBSVM), bagged
decision trees classifier,

pixel patch method, mesh
growing, active learning

relabeling

Lumen CCC: 0.99
Stent CCC: 0.97 Expert annotation

Migliori et al. [189]

Framework for automated stent
segmentation and lumen

reconstruction for
CFD simulation

540 images, 0ne phantom
(in vitro)

Polar transform,
intensity/area thresholding

Fuzzy logic, Sobel edge
detection and

linear interpolation

Stent *:
DICE: 0.87 ± 0.13
JS: 0.78 ± 0.18%

SPE: 77.8 ± 28.20%
SEN: 91.7 ± 13.20%

Manual segmentation of
95 images

Nam et al. [174] Automatic stent apposition and
neointimal coverage analysis 5420 images (20 pullbacks) Polar transform,

Gaussian smoothing
ANN, image gradient and

intensity
PPV: 95.60%
TPR: 92.90%

Manual segmentation on
800 images

O’Brien et al. [186]
Enhanced stent and lumen 3D

reconstruction for
CFD simulation

Four swine pullbacks Decision tree, ramp edge
detection

Lumen (62 frames) MADA:
0.42 ± 0.13 mm2

Stent (57 frames) MADA:
0.20 ± 0.17 mm2

Manual segmentation

Wu et al. [175] Automated stent strut detection
in multiple stent designs

Training: 10,417 images (60
pullbacks)

Testing: 21,363 images (170
pullbacks)

Polar transform, Manual
training mask

U-Net based deep
convolutional model

(ADAM optimizer, binary
cross-entropy and Tversky

loss functions)

DICE: 0.91 ± 0.04
JS: 0.84 ± 0.06

PRE: 94.30 ± 3.60%
REC: 94.00 ± 3.90%

F1: 0.94 ± 0.04

Expert annotation and
QIvus v3.1 (Medis Medical
Imaging System BV, Leiden,

The Netherlands)
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