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Abstract: The prediction of an occult invasive component in ductal carcinoma in situ (DCIS) before
surgery is of clinical importance because the treatment strategies are different between pure DCIS
without invasive component and upgraded DCIS. We demonstrated the potential of using deep
learning models for differentiating between upgraded versus pure DCIS in DCIS diagnosed by
core-needle biopsy. Preoperative axial dynamic contrast-enhanced magnetic resonance imaging
(MRI) data from 352 lesions were used to train, validate, and test three different types of deep
learning models. The highest performance was achieved by Recurrent Residual Convolutional
Neural Network using Regions of Interest (ROIs) with an accuracy of 75.0% and area under the
receiver operating characteristic curve (AUC) of 0.796. Our results suggest that the deep learning
approach may provide an assisting tool to predict the histologic upgrade of DCIS and provide
personalized treatment strategies to patients with underestimated invasive disease.

Keywords: ductal carcinoma in situ; underestimation of invasive cancer; deep learning; magnetic
resonance imaging; machine learning

1. Introduction

Ductal carcinoma in situ (DCIS) is a noninvasive breast cancer with the presence of
abnormal cells inside a milk duct [1]. Unlike invasive ductal carcinoma (IDC) that spreads
into surrounding breast tissue, the proliferation of malignant cells in DCIS is confined
within the basement membrane of milk ducts [2]. Therefore, it permits relatively less-
invasive therapy options compared to IDC, which usually requires axillary interventions.
While core-needle biopsy (CNB) is a gold standard for the diagnosis of breast lesions, a
presurgical diagnosis of DCIS using CNB with a small caliper poses a potential sampling
error and may result in the upgrading of DCIS to invasive disease in the histopathology
of surgically excised specimens. The percentage of DCIS at CNB to upgraded DCIS after
surgery has been shown to be 6–41% [3,4].

The differentiation of pure DCIS from upgraded DCIS with invasive component is of
clinical importance because the treatment strategies and prognosis of these two conditions
are markedly different. Sentinel lymph node biopsy (SLNB) is not recommended for
DCIS when breast-conserving surgery is planned because of the low incidence of axillary
involvement in pure DCIS (1–2%) [5]. In cases of upgraded DCIS, however, SLNB or axillary
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lymph node dissection (ALND) is necessary. Presurgical prediction of DCIS with occult
invasive component would equip clinicians with an important assisting tool to provide
optimal medical care to these patients.

A number of efforts have been made to evaluate the preoperative factors that are pre-
dictive of occult invasive component in DCIS using various breast imaging modalities [6–9].
Several studies have shown that magnetic resonance imaging (MRI) has the potential to
distinguish DCIS with occult invasive component from pure DCIS [6,10,11]. These studies ex-
amined the conventional MR imaging features, such as cancer size and lesion signal intensity,
for identifying predictors of occult invasive component in DCIS. Recently, deep-learning-
based methods have emerged as one of the most powerful tools for computerized pattern
recognition in the analysis of medical images. Zhu et al. demonstrated that a convolutional-
neural-network (CNN)-based algorithm using breast MRI can predict DCIS with occult
invasion with a borderline performance of AUC (0.68–0.7) [12].

The aim of this study was to develop deep learning models based on breast MRI to
distinguish between pure vs. upgraded DCIS diagnosed by CNB. A total of three CNN-
based models, which differed in the type of input images and the CNN architectures, were
developed to investigate the feasibility of using them to predict the upgrading status of DCIS.

2. Materials and Methods
2.1. Subjects

This retrospective study was approved by the institutional review board (IRB No. CNUHH-
2022-110), and informed consent was waived. A total of 352 lesions diagnosed with DCIS by
CNB in patients who underwent preoperative breast MRI examination from 2011 to 2017
were included. We assigned the study patients into two groups: pure DCIS (n = 202) and
upgraded DCIS (n = 150). When the histopathologic analysis of the surgical specimen showed
microinvasive or invasive foci within a tumor, the tumor was histologically defined as upgraded
DCIS. Preoperative axial T1-weighted dynamic contrast-enhanced MRI was acquired using
clinical 3T scanners (Tim trio, Skyra, or Skyra II, Siemens Healthcare, Erlangen, Germany) and
consisted of one pre-contrast and five post-contrast series. We used the subtraction images
which were generated by subtracting pre-contrast imaging sequence from each of the five
post-contrast series. The data were selected based on the assumption that only one side of the
breast contains DCIS. Figure 1 exhibited examples of subtraction images from pure DCIS and
upgraded DCIS. The entire datasets were divided into training (n = 220), validation (n = 60), and
testing (n = 72) sets. Table 1 described the distribution of each set in pure and upgraded DCIS.
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Table 1. The distribution of training, validation, and testing sets in two groups.

Training Validation Testing Total

Pure DCIS 126 35 41 202

Upgraded DCIS 94 25 31 150

Total 220 60 72 352
DCIS, ductal carcinoma in situ.

2.2. Pre-Processing

Standard normalization was applied to the original subtraction images. Based on the
histogram of the 3-dimensional MRI data, the outlier removal algorithm was applied by
changing the intensities of voxels with 1% upper and lower bounds to those of 1% and 99%
voxels, respectively.

2.3. Data Preparation

Two types of input data were prepared (Figure 2). Each type of data was constructed
as 3-channel arrays with each channel corresponding to the 1st, 2nd, and 3rd subtraction
images, respectively. First, the original subtraction images were cropped into four parts with the
ratio of 65:35 in vertical axis and 50:50 in horizontal axis. The top-left and top-right quarters
corresponded to two sides of breast. The quarter image that contained DCIS was selected as the
first type of input data, as shown in Figure 2b. The selected quarter image could contain not only
the breast with lesion, but also the background and small part of other tissues such as lung and
heart. The models that were trained with the first input data were named a Detection-Transfer
Recurrent Residual Convolutional Neural Network (D-T RRCNN) model because the model
was first trained with a detection network for the purpose of focusing on lesion area and then
fine-tuned with RRCNN. In D-T RRCNN model, there was no user involvement in defining the
extent of tumor. The second type of input data tried to capture tumor mass with a minimum
involvement of other tissues. Intratumor Regions of Interest (ROIs) were manually drawn on
the 1st subtraction images by a breast radiologist with 4 years of experience using a 3D-slicer
(http://www.slicer.org) (accessed on 1 May 2022). A 5 mm peritumor ROI was automatically
created by extending the boundary of the intratumor ROI using a built-in segmentation tool
in 3D Slicer, and the final tumor ROI was obtained by merging intratumor- and donut-like
peritumor ROIs. The second input data were then created by cropping the images with the
smallest bounding box that encompassed the three-dimensional volume of tumor ROIs. The
cropping box were applied to the 2nd and 3rd subtraction images as well. The models that were
trained with the second type of input data were named an ROIs model.
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2.4. Model Development

Three types of deep learning models were constructed. The first one was the D-T
RRCNN model, which was a sequential model where 3D MRI slices were considered as a
sequence of 2D images. D-T RRCNN used the first type of input data: one quarter image as
explained the previous section. A total of 20 imaging slices were selected from each patient
based on the location of tumor. The second one was the RRCNN with ROIs model, which
utilized a sequence of the second type of input data: image cropped with the smallest
tumor bounding box. Similar to the D-T RRCNN model, 20 imaging slices were selected as
input. The third one was the CNN with ROIs model, which was a 2D CNN model where a
single imaging slice from the second type of input data (image cropped with the smallest
tumor bounding box) was used as input. During the model training, the label (pure or
upgraded DCIS) for a particular patient was used as labels for all input imaging slices. For
the final model testing, the classification decision of a patient was made using the imaging
slice with the highest output score.

The convolution blocks of the proposed models are similar to the structure of RRCNN [13],
which was adapted from VGG16 [14] and ResNet [15]. The first block had two convolution
layers with a kernel size of 7 × 7. The other blocks had three convolution layers with a kernel
size of 3 × 3. The numbers of feature map in each convolution block were 64, 128, 256, 512, and
512, respectively. For the D-T RRCNN and RRCNN with ROIs models, the long short-term
memory (LSTM) layer, which contained 512 hidden nodes, was attached to the final convolu-
tion block to capture sequential information. Before the model training, the input images were
augmented by a random rotation from 10- to 30-degree, a horizontal flip, a vertical flip, and
the addition of Gaussian noise. Our models were trained using TensorFlow-GPU with two
NVIDIA GTX 1080 Ti. Table 2 shows the setup parameters of each model, including batch size,
learning rate, input size, and the physical size of ROI bounding boxes. We used the Adam
optimizer and set the number of epochs to 1000 for all models. The following sections contain
the detailed description of three models.

Table 2. The summary of model parameters setup for three deep learning algorithms.

Batch Size Learning Rate Input Size Size of ROI
Bounding Box *

D-T RRCNN 32 3 × 10−6 128 × 128 × 3 × 20

RRCNN with ROIs 32 8 × 10−7 64 × 64 × 3 × 20 20 × 30
(7 × 10~50 × 55)

CNN with ROIs 128 10−5 64 × 64 × 3 20 × 30
(7 × 10~50 × 55)

RRCNN, Recurrent Residual Convolutional Neural Network; ROIs, Regions of Interest; D-T RRCNN,
Detection-Transfer Recurrent Residual Convolutional Neural Network. * in mm, mean (min~max).

2.4.1. D-T RRCNN Model

A 2-step algorithm was implemented to apply a transfer learning method in training
the model parameters. The detailed diagram of the proposed algorithm is illustrated in
Figure 3. First, we designed a CNN, which received a single imaging slice as an input
and performed the task of localizing the tumor bounding box containing. This network
consisted of 4 convolution blocks and a regression layer was attached at the end to generate
the coordinates (x, y, width, height) of the tumor bounding box (Training Step 1 in Figure 3).
Second, we fine-tuned this CNN in the first step by adding an extra convolution block,
followed by a LSTM layer, and replacing the regression layer with a SoftMax classifier
(Training Step 2 in Figure 3). The parameters of the first four convolution blocks in the
training step 1 were trained and update first. The parameters in the other layers were
then updated in the training step 2. The LSTM layer was utilized for capturing sequential
information through multiple MRI slices. The CNN in the first step was trained to perform
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the detection task and at the same time, served as a pre-training model for the classification
network in the second step.
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Figure 3. The diagram of Detection-Transfer Recurrent Residual Convolutional Neural Network (D-T
RRCNN) model. The output of the Training Step 1 is Tumor Bounding Box marked by the red square.
Please refer to Figure 5 for the architecture of the convolution blocks. Conv, convolution block; FC,
fully connected layer; LSTM, long short-term memory.

2.4.2. RRCNN with ROIs Model

Since the extent of tumor ROIs varied across different imaging slices in one patient’s
MRI data, the sizes of tumor bounding boxes were synchronized throughout the entire
imaging slices by expanding tumor ROIs to the size of the biggest ROI. The CNN structure
used in this model is similar to the RRCNN, which contains five blocks of convolution and
one LSTM layer. The diagram of the RRCNN with ROIs model is shown in Figure 4.
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2.4.3. CNN with ROIs Model

The input of this model was a single imaging slice with the smallest tumor bounding
box. Similar to other models, the input contained 3 channels corresponded to the 1st, 2nd,
and 3rd subtraction image, respectively. This model had a minor modification to RRCNN,
by removing the LSTM layer (Figure 5). The imaging slices that contained DCIS with an
area greater than 5 × 5 pixels were considered as input.
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2.5. Performance Evaluation

The performance of the three deep learning models was evaluated and compared
using the validation and testing datasets. Sensitivity (upgraded DCIS considered as a
positive condition), specificity, accuracy with a threshold of 0.5, and the area under the
receiver operating characteristic curve (AUC) were calculated.

3. Results

Table 3 shows the comparison of performance between the three classifiers: D-T
RRCNN, RRCNN with ROIs, and CNN with ROIs models. For the validation data, the three
models demonstrated comparable performances with the sensitivity, specificity, accuracy,
and AUC ranging from 0.600 to 0.640, from 0.800 to 0.828, from 73.3% to 75.0%, and from
0.767 to 0.785, respectively.

Table 3. Comparison of performance between the three deep learning models. The 95% confidence
intervals are listed in parentheses.

Models Validation Testing

Sensitivity Specificity Acc. (%) AUC Sensitivity Specificity Acc. (%) AUC

D-T RRCNN 0.600
(0.408–0.792)

0.828
(0.703–0.953)

73.3
(62.1–84.5)

0.781
(0.657–0.904)

0.645
(0.476–0.813)

0.804
(0.682–0.925)

73.6
(63.4–83.8)

0.762
(0.647–0.877)

RRCNN
with ROIs

0.640
(0.451–0.828)

0.800
(0.667–0.932)

73.3
(62.1–84.5)

0.785
(0.663–0.907)

0.677
(0.512–0.842)

0.804
(0.682–0.925)

75.0
(65.0–85.0)

0.796
(0.688–0.904)

CNN with
ROIs

0.640
(0.451–0.828)

0.828
(0.703–0.953)

75.0
(64.1–86.0)

0.767
(0.641–0.893)

0.645
(0.476–0.813)

0.756
(0.624–0.887)

70.8
(60.3–81.3)

0.755
(0.639–0.871)

RRCNN, Recurrent Residual Convolutional Neural Network; ROIs, Regions of Interest; D-T RRCNN, Detection-
Transfer Recurrent Residual Convolutional Neural Network; Acc., Accuracy; AUC, area under the receiver
operating characteristic curve.

For the testing data, the RRCNN with ROIs model achieved the highest performance
with the sensitivity, specificity, accuracy, and AUC of 0.677, 0.804, 75.0%, and 0.796, respec-
tively. The D-T RRCNN model demonstrated a performance similar to that of the RRCNN
with ROIs model with the sensitivity, specificity, accuracy, and AUC of 0.645, 0.804, 73.6%,
and 0.762, respectively. The CNN with ROIs model exhibited a slightly lower performance
compared to those of other two models with the sensitivity, specificity, accuracy, and AUC
of 0.645, 0.756, 70.8%, and 0.755, respectively. Figure 6 shows the comparison of receiver
operating characteristic (ROC) curves between the three deep learning models.
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RRCNN with ROIs model with the sensitivity, specificity, accuracy, and AUC of 0.645, 
0.804, 73.6%, and 0.762, respectively. The CNN with ROIs model exhibited a slightly lower 
performance compared to those of other two models with the sensitivity, specificity, ac-
curacy, and AUC of 0.645, 0.756, 70.8%, and 0.755, respectively. Figure 6 shows the com-
parison of receiver operating characteristic (ROC) curves between the three deep learning 
models. 

 
Figure 6. Receiver operating characteristic curves for the proposed three models: Recurrent Residual
Convolutional Neural Network (RRCNN) with Regions of Interest (ROIs), Detection-Transfer (D-T)
RRCNN, and 2D Convolutional Neural Network (CNN) with ROIs models.
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4. Discussion

This study demonstrated the feasibility of deep learning models based on breast MRI
for distinguishing pure and upgraded DCIS. Our proposed models provided the highest
accuracy and AUC of 75.0% and 0.796, respectively. These results suggest that a deep-
learning-based approach has a potential to be used for the accurate prediction of upgrading
the status of DCIS using presurgical MRI data.

Although the differentiation of upgraded DCIS from pure DCIS is of clinical im-
portance due to distinct treatment strategies between the two diseases, the pre-surgical
prediction of DCIS with occult invasion using medical imaging data is challenging. Several
previous researchers have attempted to use various breast imaging modalities, including
mammography and MRI, to evaluate the preoperative factors that are predictive of upgrad-
ing DCIS [7–11,16–18]. Most of these efforts, however, have used conventional ways to
analyze medical imaging data, which are based on the qualitative assessment of imaging
parameters. For example, Lamb et al. reported that larger size on MRI and the presence of
comedonecrosis at biopsy were significantly associated with the upgrade of DCIS [17].

Recently, a few reports have applied deep learning methods for the prediction of the
upgrading of DCIS [12,19,20]. Using mammograms for the prediction of upgrading the
status of DCIS, Shi et al. showed that the deep learning features from a CNN that was
pretrained on non-medical images and the hand-crafted computer vision (CV) features
provided comparable performances with the borderline AUCs of 0.70 and 0.68 for the
deep and handcrafted CV features, respectively [20]. In another study, Hou et al. applied
a deep learning model using the domain adaptation approach for distinguishing DCIS
with atypical ductal hyperplasia (ADH) and DCIS with invasive component and showed
a performance with an AUC of 0.697 [19]. Although MRI is the most sensitive tool for
malignancy detection among different breast imaging tools [21,22], the application of deep
learning approach to MRI for predicting the upgraded status of DCIS is very limited. Com-
pared to mammogram, the larger amount of data contained in the three-dimensional format
in MRI requires elaborate efforts when MRI data are used for deep learning applications.
One previous study demonstrated the application of a pre-trained deep learning algorithm
using breast MRI for the prediction of DCIS with occult invasion and reported an AUC
of 0.68–0.70. In comparison, the deep learning models proposed in our study displayed
relatively higher performances with the AUCs ranging from 0.755 to 0.796.

In this study, we tried to compare the performance between models using multiple
MRI slices (sequential model, RRCNN) and a single MRI slice (2D model, CNN) as input.
The performance of the RRCNN with ROIs model (accuracy = 75.0%, AUC = 0.796) was
higher than those of the CNN with ROIs model (accuracy = 70.8%, AUC = 0.755). The
information that was extracted between multiple MRI slices in the sequential model may
have helped to assist the classification of upgraded versus pure DCIS. The high value of
specificity (>0.8) from sequential models indicated that the relative information between
slices plays an important role for indicating pure DCIS cases. In addition, the RRCNN with
ROIs model showed a comparable, but slightly higher performance than the D-T RRCNN
model (accuracy = 73.6%, AUC = 0.762). One advantage of the D-T model over the RRCNN
with ROIs model is that it does require a manual annotation of ROIs. The information
transferred from the detection network directly feeds the quarter of the subtraction images
in the D-T model, while the ROIs models (both the RRCNN with ROIs and CNN with
ROIs models) require the manual input of the lesion location. As the manual lesion
annotation usually takes a great deal of human effort and time, the D-T RRCNN model
may be beneficial by minimizing human involvement during the process of model training,
especially when handling a large amount of data.
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All three models showed relatively high specificities (0.756–0.804 on testing data), but
low sensitivities (0.645–0.677 on testing data). A high level of specificity from these models
means that a considerable number of upgraded DCIS were underestimated as pure DCIS.
The relatively small number of upgraded DCIS (n = 150) compared to pure DCIS patients
(n = 202) may have caused this imbalance between the sensitivity and specificity of model
performances. In addition, the variations of pattern in upgraded DCIS and the consequent
high level of difficulty in identifying it may demand more upgraded DCIS patient data for
training deep learning models.

There are several limitations in our study. First, the proposed study was a retrospective
effort without external test data. Future studies with an external validation from multi-
center data will enhance the validity of our approach. The compilation of multi-center
patient data from our collaborating institutions are currently ongoing. Second, we utilized
only subtraction images to train our models. Because DCIS usually appears as non-mass
enhancement, it is challenging to define tumor boundary from background parenchymal
tissue in T2-weighted MRI. Further studies are necessary to properly define and delineate
the lesions in T2-weighted images, and to evaluate the effects of adding multi-parametric
MRI data on the predictive performance of the proposed models. Third, the process of
selecting 20 imaging slices for the sequential models still required expert involvement. The
total number of imaging slices contained in each MRI data can vary and only a part of the
entire imaging slices from the MRI sequence contained tumors. These factors made the
imaging slice selection process challenging to automate and required human involvement
in the slice selection process.

The proposed models showed the feasibility of using deep learning as an assistant tool
for estimating invasiveness in DCIS diagnosed by core-needle biopsy. The performance
shown by sensitivity could not reach our expectations compared to the specificity. Even
though we applied augmentation to make the training more balanced, the small number of
upgraded DCIS patients (n = 150) still made the proposed models generate bias toward
pure DCIS patients. The high level of difficulty and the variant of upgraded DCIS patterns
also demand more upgraded DCIS patients for training a deep learning model with less
bias towards pure DCIS.

5. Conclusions

We developed deep learning models based on breast MRI and demonstrated the
feasibility of differentiating between upgraded versus pure DCIS in DCIS diagnosed by
CNB. Our results suggest that this approach has the potential to be used as an assist-
ing tool for providing personalized treatment strategies to patients with underestimated
invasive disease.
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