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Abstract: The cerebellum, a crucial brain region, significantly contributes to various brain functions.
Although it occupies a small portion of the brain, it houses nearly half of the neurons in the nervous
system. Previously thought to be solely involved in motor activities, the cerebellum has since been
found to play a role in cognitive, sensory, and associative functions. To further elucidate the intricate
neurophysiological characteristics of the cerebellum, we investigated the functional connectivity of
cerebellar lobules and deep nuclei with 8 major functional brain networks in 198 healthy subjects.
Our findings revealed both similarities and differences in the functional connectivity of key cerebellar
lobules and nuclei. Despite robust functional connectivity among these lobules, our results demon-
strated that they exhibit heterogeneous functional integration with different functional networks.
For instance, lobules 4, 5, 6, and 8 were linked to sensorimotor networks, while lobules 1, 2, and
7 were associated with higher-order, non-motor, and complex functional networks. Notably, our
study uncovered a lack of functional connectivity in lobule 3, strong connections between lobules 4
and 5 with the default mode networks, and connections between lobules 6 and 8 with the salience,
dorsal attention, and visual networks. Additionally, we found that cerebellar nuclei, particularly
the dentate cerebellar nuclei, were connected to sensorimotor, salience, language, and default-mode
networks. This study provides valuable insights into the diverse functional roles of the cerebellum in
cognitive processing.
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1. Introduction

The cerebellum is one of the most important brain regions (lobules); it is sometimes
considered another brain (in Latin, its name means ‘little brain’). The cerebellum was
formerly believed to be exclusively involved in motor processes; however, research later
showed that it was also involved in cognitive, sensory, and associative functions [1–5]. Most
of our physiological functional understanding of the cerebellum is based on investigations
using functional magnetic resonance imaging (fMRI) with a specific experimental task [6,7].
Such investigations are restricted by either the narrow focus of the study on the function
of a single sub-cerebellar region, which limits our understanding of how other cerebellar
regions behave physiologically, or their experimental design is limited to a single purpose
and set of hypotheses.

Resting-state fMRI (rsfMRI), which assists in identifying functional integrations of
brain regions while subjects are at rest (i.e., not performing experimental tasks), is one of the
most sophisticated and effective techniques applied to improve our understanding of the
complex organization and neurophysiological processes of the brain [8]. Because rsfMRI
creates functional, integrative networks of various regions specific to brain functions, its
results are more realistic in terms of the nuanced characterization of brain neurophysiology,
making this method powerful [9]. Furthermore, this strategy is effective because it does
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not require individuals to complete a specific task, which makes it a desirable approach for
patients who have complex neurodegenerative symptoms.

It is important to note that the cerebellum’s role in the overall functionality of the brain
has been historically underestimated due to its relatively small size compared to other
regions and traditional research methodologies. However, with the advent of advanced
neuroimaging techniques such as rsfMRI, the scientific community has been presented
with an opportunity to delve deeper into the cerebellum’s intricate connections and its vital
contributions to numerous brain functions [8,9]. This increased focus on the cerebellum
has led to a broader understanding of its significance in both normal and pathological
conditions, which, in turn, has opened new avenues for therapeutic interventions.

Few previous studies have investigated cerebellar regions and their functional integra-
tions, while very rare studies have looked at the physiological changes of the cerebellar
nuclei, e.g., [2,10–17]. However, these studies either focused on single cerebellar regions
or did not investigate the connectivity of the cerebellar lobules with functionally related
regional networks (i.e., several brain regions that form a network responsible for a specific
function). Therefore, the aim of this study was to investigate, in one single study using a
large cohort, the functional connectivity of cerebellar lobules as well as the deep cerebellar
nuclei (DCN), namely lobules 1–10 and 4 cerebellar nuclei: Interposed (emboliform and
globose), fastigial, ventral dentate, and dorsal dentate nuclei. In addition, the integrative
networks of various brain functions, such as default-mode, visual, sensorimotor, salience,
dorsal attention, frontoparietal, cerebellar, and language networks, were selected as target
networks of interest. The specific aim is to further improve the understanding of the
complex neurophysiological formations of the cerebellum and its connections with other
brain regions.

2. Methods
2.1. Data Source

For this investigation, 198 healthy volunteers were enlisted (171 were right-handed;
range of age was 18–30; 123 were females). The Cambridge-Buckner dataset, a component of
the 1000 Functional Connectomes Project (an open-access platform without any restrictions;
see the IRP statement http://fcon_1000.projects.nitrc.org (accessed on 9 April 2022)), was
used to collect and download the data [9].

2.2. Scanning Parameters

Each subject was diagnosed using a Siemens 3 Tesla Trim Trio scanner with the
subsequent factors: rsfMRI using a T2* weighted Echo Planner Imaging (EPI) sequence
with repetition time (TR) = 3000 ms; TE = 30 ms; number of slices = 47 interleaved axial
slices to cover the whole brain including the cerebellum; voxel size: 3.0 × 3.0 × 3.0 mm3;
number of time points (i.e., volumes) = 119 volumes; T1-weighted MPRAGE images with
the following parameters: number of slices: 192; matrix size 144 × 192; voxel size: 1.20 ×
1.00 × 1.33 mm3. Please see The Cambridge-Buckner dataset, which is a component of the
1000 Functional Connectomes Project (an open-access platform without any restrictions;
see the IRP statement http://fcon_1000.projects.nitrc.org (accessed on 9 April 2022)); for
more information, see [9].

2.3. Pre-Processing

MATLAB (R2020a) (MathWorks, Middlesex, Massachusetts, United States), CONN
(https://web.conn-toolbox.org (accessed on 9 April 2022)) [18], and Statistical Parametric
Mapping software (SPM12) (Univeristy College London, London, United Kingdom) [19–22]
were used to analyze the whole functional integrations of the data. The rsfMRI images
were pre-processed using customary methods. The pre-processing steps included slice
timing adjustments to correct temporal differences in image acquisition between slices,
functional volume realignments to account for head motion, normalization to a common
space template using each subject’s structural data, outlier detection using CONN’s im-
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planted artifact detection tools (ART), and smoothing the functional volumes with an
8 × 8 × 8 mm3 kernel. Additionally, blood-oxygen-level-dependent (BOLD) signal of
rsfMRI was subjected to temporal processing employing data denoising to reduce the
impact of artifacts and confounds. This included regressing out signals from white matter,
cerebrospinal fluid (CSF), motion parameters, and scrubbing factors.

2.4. Selection of Regions of Interest

In this study, 10 cerebellar lobules in both hemispheres were identified as seeds. To
accurately pinpoint these lobules, the Harvard–Oxford cortical and subcortical structural
atlas was employed, which utilizes the statistical likelihood of numerous areas to precisely
define each brain region. Additionally, four distinct cerebellar nuclei were determined
through cytoarchitecture analysis and classified as Interposed (emboliform and globose),
fastigial, ventral dentate, and dorsal dentate nuclei [23,24].

Furthermore, the target brain regions encompassed large groups of functional net-
works, as delineated by CONN. These networks were derived from the human connectome
research project, which included 497 healthy participants (ICA). Among the functionally
targeted networks were the default mode, attention, sensorimotor, visual, salience, dorsal
attention, frontoparietal, cerebellar, and language networks. This comprehensive approach
allowed for a thorough examination of the interplay between cerebellar lobules and nuclei
with various functional networks, offering valuable insights into the cerebellum’s intricate
involvement in diverse brain processes.

2.5. Statistical Analysis

The statistical analyses were performed at two statistical levels: subject and group
levels. At the first level of analysis (subject’s level), matrices of regions of interest (ROI)-to-
ROI connections between and among the termed ROIs were calculated for each participant
using weighted general linear bivariate correlation models. Bivariate Fisher-transformed
correlation coefficients between the pair ROI time series were used to build these matrices.
The Fisher transformation, given by the equation z = 0.5 × ln((1 + r)/(1 − r)), where r is
the correlation coefficient, allows for more accurate confidence intervals and hypothesis
testing. The transformation converts Pearson’s correlation coefficients into z-scores, which
follow a normal distribution and are easier to work with statistically. At the second level of
analysis (group’s level), functional connectivity measures were calculated and compared
using group-level statistical analysis, T-tests, and/or F-tests where appropriate, identifying
and comparing the rsfMRI networks connected to each of the cerebellar regions. The
standard of statistics for the results is displayed using a corrected false discovery rate (FDR)
(p < 0.05) (multivariate statistics parametric (MVPA) omnibus test) [18]. With this approach,
every connection is effectively subjected to a multivariate parametric general linear model
analysis. Moreover, to better understand the functional connectivity within the brain,
visualizations were generated using a matrix-based functional display. This approach, as
defined in the CONN software, allows for the comprehensive analysis and interpretation
of the complex relationships between different brain regions, ultimately providing valuable
insights into their interactions and functional integration.

3. Results

Overall, the results of the functional connectivity are shown in Figures 1–3. In gen-
eral, there were strong connections among and between the cerebellar regions in both
hemispheres. It is noticed that lobules of the anterior cerebellum have strong connections
with each other, while lobules of the posterior cerebellum have strong connections with
each other. One of the interesting results was the lack of functional connection seen with
cerebellar lobules 3. Additionally, cerebellar nuclei have strong connections with each other
in both hemispheres. It is also noted that the posterior cerebellum, especially lobules 8–10,
has an increase in functional integrations with all the cerebellar nuclei.
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Figures 4 and 5 show the results of functional connectivity between the ten cerebellar
lobules and four nuclei with major brain networks as a matrix of statistical connections
between the selected brain regions. When observing the functional connectivity between
the cerebellar areas and different brain networks, the cerebellar lobules that were connected
strongly with the sensorimotor network were lobules 4, 5, 6, and 8, as well as the ventral
part of the dentate nuclei. The default mode network was positively connected to lobules
2, 4, 5, 6, 7, 9, and partially with lobule 10. The dentate nuclei were also connected with
the default mode network, especially the dorsal part. A notable finding of this study was
the strong positive connection between the frontoparietal network and lobules 1, 2, and 7.
Only the dorsal part of the deep cerebellar dentate nuclei was connected to this network.
Looking at the integrations between the cerebellar lobules and nuclei with the language
network, almost the same observation is seen as with the frontoparietal network. Here,
lobules 1 and 2, parts of lobules 6 and 7, as well as left ventral and dorsal dentate nuclei
were strongly connected to the language network. The visual network, including all its
regions, was connected strongly to lobules 1, 6, and 8 bilaterally, and to the left hemisphere
of lobule 9. This network was also connected to the left ventral dentate nucleus and right
dorsal dentate nucleus. Parts of the visual network were also connected to lobules 4, 5, and
10, as well as the Interposed (emboliform and globose) and fastigial nuclei. Additionally,
the dorsal attention network and its respective regions were strongly connected to lobules 6
bilaterally. This network was also partially connected to lobules 4, 5, 7, 8, and 10. The strong
connection was obvious with the intraparietal sulcus. Moreover, the salience network was
strongly connected to several cerebellar regions, including lobules 6 and 8, as well as the
left Interposed (emboliform and globose) and right ventral dentate nuclei. Furthermore,
negative correlations (anti-correlations) were observed among different cerebellar regions
with several functional brain networks, including the frontoparietal, language, dorsal
attention, and salience networks. These negative correlations were observed more frequently



Tomography 2023, 9 888

when using cerebellar lobules 3 and 9 as seeds and were less evident within the cerebellar nuclei.
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4. Discussion

This study used a large cohort to investigate the functional connectivity between
cerebellar lobules and deep cerebellar nuclei with eight regional network functions using
rsfMRI with functional integration. The aim of this study was to investigate the similarities
and differences between these cerebellar lobules and nuclei with functionally related resting
state networks in a single, large cohort study and to determine whether the cerebellum is
only involved in mediating and controlling motor functions or whether it has more complex
functional involvement in other higher-order functions, as reported in other recent task
fMRI studies [17,25]. By examining this extensive dataset, the researchers sought to provide
a comprehensive understanding of the cerebellum’s diverse roles, further elucidating its
contributions to cognitive, emotional, and sensory processing in addition to its well-known
motor functions. This investigation aimed to clarify the cerebellum’s involvement in
various networks and potentially expand our knowledge of its functional significance in
the human brain.

The results of this study indicated that these cerebellar regions were linked to several
functional networks in the brain in similar ways; however, there were differences in how
they were linked to these networks and in the existence of functional connections between
them. This study demonstrated the significant functional roles and involvement of the
anterior and posterior cerebellum. The results are consistent with earlier research that
reported the significance of these cerebellar regions in influencing a number of brain
functions [16]. The findings also showed how the four cerebellar nuclei have significant
connections with several cerebellar lobules, indicating the important functional roles as
well of these nuclei [12–14,26]. There were increased functional integrations, especially
within the dentate nuclei with most of the functional brain networks, which indicates the
significant roles of these deep nuclei in a variety of different functions, including motor
and non-motor.

In addition, the findings reveal that cerebellar lobules 4 and 5 are more related to
sensorimotor networks and the default-mode networks. Indeed, the involvement and
connections between the anterior cerebellum and the different sensorimotor areas are not
surprising as this has been demonstrated using several task-related fMRI experiments,
and the topology of the cerebellum is well known [5,15]. The unexpected result of this
study was the increased involvement of these lobules in the default-mode network. The
involvement of the default-mode network was also seen with several cerebellar nuclei,
including the ventral and dorsal dentate nuclei. The medial prefrontal cortex, lateral parietal
cortex, and posterior cingulate cortex are three interconnected brain areas that make up
the default-mode network. These interconnected brain areas typically exhibit distinctive
patterns compared with other networks [19]. The default-mode network is typically notably
altered in neurological illnesses and is associated with intrinsic changes [20–22]. In addition,
studies have shown that this network may be involved in motor-related functions, including
motor imagery and learning [23]. These results highlight the significance of the cerebellar
connections to the default mode network and suggest a potential role for the default mode
network in cerebellum-controlled brain activities.

An additional observation in this study was related to cerebellar lobules 6 and 8,
which were not only strongly connected to sensorimotor regional networks but were also
integrated with higher-order complex networks, such as salience, dorsal attention, and
visual networks. To further elucidate these findings, different task-related fMRI studies
could be applied to investigate how the cerebellum behaves during these tasks. For example,
previous studies have shown that lobule 6 is not only engaged during simple motor tasks,
but it tends to be engaged during complex motor tasks, such as tool usage, squeezing
balls with different force levels, and motor planning [27,28]. Furthermore, lobule 6 has
been shown to be involved in higher-order, cognitive, and non-motor functions, including
reading, working memory, and executive functions [16]. These findings could explain
the greater functional integrations of bilateral lobules 6 and 8 of the cerebellum. This is
especially the case in the attention and salience networks, where it has been demonstrated
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that the salience network is connected to a variety of sophisticated brain functions, including
communication, social behavior, and self-awareness [29,30].

One of the interesting observations seen in this study is the strong involvement
of the deep cerebellar nuclei with several functional-related brain networks. This was
especially the case when looking at functional integrations between the dentate nuclei and
the default mode, language, visual and salience networks. This observation highlights the
importance of the deep cerebellar nuclei, including the dentate nucleus, in cognitive and
affective processes beyond motor control. The strong involvement of the dentate nucleus
in functional networks beyond the motor system may suggest that it plays a crucial role in
the coordination of complex cognitive and affective processes [13,16,17,28,29].

The functional integration between the dentate nucleus and the default mode network
is particularly noteworthy. The default mode network is a network of brain regions that is
most active during passive or self-referential tasks, such as mind-wandering, daydreaming,
and introspection [19,20,30]. The dentate nucleus has been shown to be involved in error
detection and correction, which are important for maintaining accuracy in complex motor
tasks [31–33]. The functional integration between the dentate nucleus and the default mode
network could suggest that these two regions work together to monitor internal states,
thoughts, and emotions and adjust behavior accordingly.

Similarly, the involvement of the dentate nucleus in the language network suggests
a role in language processing, perhaps contributing to the formation and maintenance
of internal representations of language. The dentate nucleus has also been shown to be
functionally connected to the visual network, suggesting a role in visual processing, such
as object recognition, spatial awareness, and attention [9,18,28]. Additionally, the dentate
nucleus’s involvement in the salience network is consistent with its role in monitoring
internal and external states and switching between different task demands. The salience
network is thought to play a crucial role in attention allocation by detecting relevant and
important stimuli and directing attention accordingly [26,27,34].

One limitation of this study is the use of a relatively larger voxel size compared to the
small size of the deep cerebellar nuclei, as well as smoothing with an 8 mm kernel. However,
recent studies have suggested that when investigating regional-to-regional resting func-
tional integration analysis, there are fewer differences between larger or smaller smoothing
kernel voxels [31]. One of the most important considerations that should be taken into
account in future studies is the use of a probabilistic dedicated cerebellar atlas to accurately
define detailed cerebellar regions based on their cytoarchitectonic properties [24,32–34].
In addition, the limitation in our sample, where 72% of the participants are women is
acknowledged. Although our findings may be less affected by the gender imbalance based
on the available literature, we emphasize the need for further research with more balanced
samples to better understand the potential impact of gender on cerebellar functional connec-
tivity. Furthermore, in this study, several negative functional connectivities were observed
between the cerebellar regions with other brain networks. Negative correlation, in the
context of functional connectivity, refers to an inverse relationship between the activity
of two brain regions. When one region’s activity increases, the other region’s activity
decreases, and vice versa. This may reflect competitive or inhibitory interactions between
brain regions, as they can serve distinct or sometimes opposing functions. Interpreting neg-
ative correlations in functional connectivity studies can be challenging for several reasons,
including understanding the physiological basis, whether they are context dependency,
related to Inter-individual variability, or related to some sort of artifacts [35–38]. As our
understanding of the neurobiological mechanisms underlying negative functional connec-
tivity continues to evolve, we may be better equipped to interpret these findings in future
studies. Future studies investigating the functional connectivity of the cerebellum should
consider adopting voxel-based analysis methods to provide a more detailed and accurate
understanding of functional boundaries and connectivity patterns. Examining the cere-
bellum at a voxel resolution may help identify subtle variations in functional connections
and activity patterns that are not discernible at the lobular level. Furthermore, the imple-
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mentation of advanced neuroimaging techniques and machine learning algorithms for the
analysis of voxel-level data could reveal novel insights into the cerebellum’s involvement
in cognitive processing, sensorimotor integration, and other brain functions, ultimately
contributing to a more comprehensive understanding of this complex brain region.

5. Conclusions

The functional connections between several cerebellar lobules and the main networks
of the brain were compared in this study. The results demonstrated that cerebellar lobules
have heterogeneous functional integrations with various functional networks despite hav-
ing significant functional connectivity between them. The anterior cerebellum (lobules 4
and 5) is more connected to sensorimotor-related networks, while the posterior cerebel-
lum (lobule 6) is connected to the motor and higher-order, complex functional nonmotor
networks. In addition, this study revealed the importance of anatomical identification of
cerebellar areas, and future studies should consider identifying all lobules constituting
the anterior and posterior cerebellum. Furthermore, this study highlighted the strong
involvement of the deep cerebellar nuclei, particularly the dentate nucleus, in various
functional networks, emphasizing their crucial role in cognitive and affective processes
beyond motor control. These findings underscore the importance of investigating both
cerebellar lobules and nuclei to gain a comprehensive understanding of the cerebellum’s
diverse roles in human brain function.
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1. Default Mode Network (DMN):
MPFC: Medial Prefrontal Cortex
LP (L): Left Lateral Parietal Cortex
LP (R): Right Lateral Parietal Cortex
PCC: Posterior Cingulate Cortex
2. SensoriMotor Network (SMN):
Lateral (L): Left Lateral Sensorimotor Cortex
Lateral (R): Right Lateral Sensorimotor Cortex
Superior: Superior Sensorimotor Cortex
3. Visual Network (VN):
Medial: Medial Visual Cortex
Occipital: Occipital Visual Cortex
Lateral (L): Left Lateral Visual Cortex
Lateral (R): Right Lateral Visual Cortex
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4. Salience Network (SN):
ACC: Anterior Cingulate Cortex
AInsula (L): Left Anterior Insula
AInsula (R): Right Anterior Insula
RPFC (L): Left Rostral Prefrontal Cortex
RPFC (R): Right Rostral Prefrontal Cortex
SMG (L): Left Supramarginal Gyrus
SMG (R): Right Supramarginal Gyrus
5. Dorsal Attention Network (DAN):
FEF (L): Left Frontal Eye Field
FEF (R): Right Frontal Eye Field
IPS (L): Left Intraparietal Sulcus
IPS (R): Right Intraparietal Sulcus
6. FrontoParietal Network (FPN):
LPFC (L): Left Lateral Prefrontal Cortex
PPC (L): Left Posterior Parietal Cortex
LPFC (R): Right Lateral Prefrontal Cortex
PPC (R): Right Posterior Parietal Cortex
7. Language Network (LN):
IFG (L): Left Inferior Frontal Gyrus
IFG (R): Right Inferior Frontal Gyrus
pSTG (L): Left Posterior Superior Temporal Gyrus
pSTG (R): Right Posterior Superior Temporal Gyrus
8. Cerebellar Network (CN):
Anterior: Anterior Cerebellum
Posterior: Posterior Cerebellum
Ndentv: Dentate Nucleus Ventral
Ndentd: Dentate Nucleus Dorsal
Ninterp: Interposed Nucleus, which can be further divided into:
a. Globose Nucleus (GN)
b. Emboliform Nucleus (EN)
Nfast: Fastigial Nucleus
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