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Abstract: There has been an increase in the use of interventional neuroradiology procedures because
of their non-invasiveness compared to surgeries and the improved image quality of fluoroscopy,
digital subtraction angiography, and rotational angiography. Although cone-beam computed tomog-
raphy (CBCT) images are inferior to multi-detector CT images in terms of low-contrast detectability
and lower radiation doses, CBCT scans are frequently performed because of their accessibility. This
study aimed to evaluate the image quality and radiation dose of two different high-resolution CBCTs
(HR CBCT): conventional (C-HR CBCT) and wide-field HR CBCT (W-HR CBCT). The modulation
transfer function (MTF), noise power spectrum (NPS), and contrast-to-noise ratio (CNR) were used
to evaluate the image quality. On comparing the MTF of C-HR CBCT with a 256 × 256 matrix and
that of W-HR CBCT with a 384 × 384 matrix, the MTF of W-HR CBCT with the 384 × 384 matrix was
larger. A comparison of the NPS and CNR of C-HR CBCT with a 256 × 256 matrix and W-HR CBCT
with a 384 × 384 matrix showed that both values were comparable. The reference air kerma values
were equal for C-HR CBCT and W-HR CBCT; however, the value of the kerma area product was
1.44 times higher for W-HR CBCT compared to C-HR CBCT. The W-HR CBCT allowed for improved
spatial resolution while maintaining the image noise and low-contrast detectability by changing the
number of image matrices from 256 × 256 to 384 × 384. Our study revealed the image characteristics
and radiation dose of W-HR CBCT. Given its advantages of low-contrast detectability and wide-area
imaging with high spatial resolution, W-HR CBCT may be useful in interventional neuroradiology
for acute ischemic stroke.

Keywords: cone-beam computed tomography (CT); image quality; radiation dose; cerebral angiography;
disaster medicine; resilience; interventional neuroradiology (INR)

1. Introduction

There has been an increase in the use of interventional neuroradiology (INR) proce-
dures because of their non-invasiveness compared to surgeries and the improved image
quality of fluoroscopy, digital subtraction angiography, and rotational angiography [1–4].
Although cone-beam computed tomography (CBCT) images are inferior to multi-detector
CT images in terms of low-contrast detectability and lower radiation doses, CBCT scans
are frequently performed because of their accessibility [5–10]. During cerebral angiography,
a CBCT is performed without transferring the patient to the CT room. Therefore, it is
important to evaluate the radiation doses to patients in INR [11,12].
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The high-resolution CBCT (HR CBCT) in cerebral angiography is useful for evaluating
the intracranial stent expansion in cases of stent-assisted coil embolization and for visual-
ization of the intracranial major/microvessels [13–15]. The HR CBCT with contrast media
in patients with acute ischemic stroke (AIS-CBCT) is an efficient method owing to its ability
to visualize the vessels distal to the occlusion site and the collateral vessels [16,17]. The
conventional HR CBCT (C-HR CBCT) has a limited field of view (FOV) with a diagonal size
of 22 cm; however, a 27-cm diagonal wide-area HR CBCT (W-HR CBCT) is available and
expected to be clinically useful. The W-HR CBCT is a useful imaging method in AIS-CBCT,
where the entire head is the object of observation, from the perspective of being able to
image large areas.

When using an intracranial stent in HR-CBCT, the image reconstruction conditions
require the highest possible spatial resolution of the CBCT image because it is necessary to
visualize the fine stent structure [14,15]. On the contrary, the contrast dilution concentration
in the vessel lumen is ultra-low for AIS-CBCT relative to HR CBCT, which uses undiluted
contrast media. Therefore, the image reconstruction conditions prioritize spatial resolution
resulting in noise and decreased contrast detectability. This results in a decrease in the over-
all image quality; therefore, it is necessary to determine the optimal image reconstruction
conditions for AIS-CBCT. In INR, the number of HR CBCT scans has been increasing, and
the estimation of the radiation dose to the patient is important [18–23]. An increase in the
FOV size may affect the spatial resolution, noise characteristics, low-contrast detectability,
and radiation dose to the patients. Although some reports have described the physical
evaluation, and radiation dose of C-HR CBCT, cerebral angiography, and computed to-
mography [20,22–28], there are no reports on W-HR CBCT. The purpose of this study was
two-fold: to evaluate the image quality and radiation dose of W-HR CBCT, compare it with
C-HR CBCT, and determine the optimal image reconstruction for AIS-CBCT.

2. Materials and Methods

The study was conducted using a phantom imaging experiment; therefore, approval
from an institutional review board was not required.

2.1. HR CBCT Protocol and Image Reconstruction

A biplane X-ray device (Azurion7 B20/15; Philips Healthcare, Best, The Netherlands)
equipped with flat panel detectors was used in this study. Two types of HR CBCT protocols
with different detector FOV sizes were used to evaluate the image quality. The scan
protocols for HR-CBCT were as follows: tube voltage = 80 kVp; tube current = 250 mA;
additional filter = none; frame rate = 30 frames/s; source-to-image distance = 120 cm; scan
time = 20.8 s; and X-ray tube rotation angle = 240◦. The scan conditions for C-HR CBCT
and W-HR CBCT were the same, except for the detector FOV size (C-HR CBCT: 22 cm
diagonal and W-HR CBCT: 27 cm diagonal).

The projection data of the HR-CBCTs were reconstructed using the following parame-
ters: slice thickness = 5.0 mm, reconstruction kernel = stent, and image matrix number =
256 × 256, 384 × 384, and 512 × 512.

2.2. Spatial Resolution

A phantom (Catphan 700 Phantom; Phantom Laboratory, Salem, NY, USA) was used
for the C-HR and W-HR CBCT. To evaluate the high-contrast detectability, a high-contrast
module (CTP 714 module of Catphan) with fine slit-line pairs (LPs) was assessed, focusing
on the identification limits of the LP module.

The spatial resolution was quantitatively assessed by measuring the modulation
transfer function (MTF) using the CTP 682 module with a tungsten wire. The values of 50%
and 10% were calculated from the MTF curve data.
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2.3. Noise Characteristics

To evaluate the frequency characteristics of the image noise, we calculated the noise
power spectrum (NPS) using the virtual slit method with a CTP 715 module. The NPS
curve was obtained from the central (256 × 256 matrix) region of interest (ROIs) used to
analyze the image noise.

2.4. Low-Contrast Detectability

To evaluate the low-contrast detectability, the contrast-to-noise ratio (CNR) was calcu-
lated using a homemade phantom. The homemade phantom comprised cylindrical rods
with a diameter of 7 mm implanted in diluted contrast media and an overall diameter of
230 mm. The rods contained 300 mgI/mL of contrast medium diluted 50, 75, 100, 125, and
150 times (Figure 1). The contrast media dilutions were selected based on the clinical image
of AIS-CBCT.
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The CNR was calculated using the following equation:

CNR =
Meancontrast − MeanBG

NoiseBG
(1)

where the Meancontrast and MeanBG are the pixel values measured in the rod and back-
ground ROIs, respectively (Figure 2).
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2.5. Radiation Dose

The values of the reference air kerma (Ka,r) and kerma area product (PKA) recorded by
the angiographic machine were analyzed when C-HR and W-HR CBCT were performed
on the Catphan phantom.

3. Results
3.1. Spatial Resolution

Figure 3 shows the phantom images of the high-contrast module (CTP528) of the
Catphan phantom. In the visual assessment of C-HR CBCT, the minimum distinguishable
line pair (LP) slits at matrix numbers 256 × 256, 384 × 384, and 512 × 512 were 1.1 LP/mm,
1.5 LP/mm, and 2.0 LP/mm, respectively. In the visual assessment of W-HR CBCT, the
minimum distinguishable LP slits at matrix numbers 256 × 256, 384 × 384, and 512 × 512
were 0.9 LP/mm, 1.3 LP/mm, and 1.8 LP/mm, respectively.

Tomography 2023, 9, FOR PEER REVIEW 4 
 

 

 
Figure 2. CBCT image of the homemade phantom. Each rod contained 50-, 75-, 100-, 125-, and 150-
fold dilutions of the contrast media. The contrast-to-noise ratio was defined as the pixel value minus 
the background pixel value divided by the background standard deviation. 

2.5. Radiation Dose 
The values of the reference air kerma (Ka,r) and kerma area product (PKA) recorded by 

the angiographic machine were analyzed when C-HR and W-HR CBCT were performed 
on the Catphan phantom. 

3. Results 
3.1. Spatial Resolution 

Figure 3 shows the phantom images of the high-contrast module (CTP528) of the 
Catphan phantom. In the visual assessment of C-HR CBCT, the minimum distinguishable 
line pair (LP) slits at matrix numbers 256 × 256, 384 × 384, and 512 × 512 were 1.1 LP/mm, 
1.5 LP/mm, and 2.0 LP/mm, respectively. In the visual assessment of W-HR CBCT, the 
minimum distinguishable LP slits at matrix numbers 256 × 256, 384 × 384, and 512 × 512 
were 0.9 LP/mm, 1.3 LP/mm, and 1.8 LP/mm, respectively. 

 
Figure 3. CBCT images of the high-contrast module (CTP528) of Catphan phantom. (A) C-HR CBCT, 
matrix: 256 × 256; (B) C-HR CBCT, matrix: 384 × 384; (C) C-HR CBCT, matrix: 512 × 512; (D) W-HR 
CBCT, matrix: 256 × 256; (E) W-HR CBCT, matrix: 384 × 384; (F) W-HR CBCT, matrix: 512 × 512. 

Figure 3. CBCT images of the high-contrast module (CTP528) of Catphan phantom. (A) C-HR CBCT,
matrix: 256 × 256; (B) C-HR CBCT, matrix: 384 × 384; (C) C-HR CBCT, matrix: 512 × 512; (D) W-HR
CBCT, matrix: 256 × 256; (E) W-HR CBCT, matrix: 384 × 384; (F) W-HR CBCT, matrix: 512 × 512.

Figure 4 and Table 1 show the MTF curves and the 50% MTF and 10% MTF values
for each matrix number in C-HR and W-HR CBCT. Compared to the MTFs for the same
scan method, the MTFs improved as the number of matrices increased. The MTFs of W-HR
CBCT were worse than those of C-HR CBCT when comparing the MTFs for the same
number of matrices. On comparing the MTF of the C-HR CBCT with a 256 × 256 matrix
and that of the W-HR CBCT with a 384 × 384 matrix, the MTF of the W-HR CBCT with a
384 × 384 matrix was improved.

3.2. Noise Characteristics

The NPSs of each matrix in C-HR and W-HR CBCT are shown in Figure 5. Compared
to the NPS for the same scan method, the NPS increased as the number of matrices increased.
When comparing the NPS for the same number of matrices, it decreased when the scan
method was changed from C-HR to W-HR CBCT. On comparing the NPS of C-HR CBCT
with a 256 × 256 matrix and that of W-HR CBCT with a 384 × 384 matrix, the NPS of W-HR
CBCT with a 384 × 384 matrix was slightly larger in the mid-to high-frequency bands.
However, both were equivalent in the low-frequency bands.
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Table 1. The value of 50% MTF and 10% MTF for C-HR CBCT and W-HR CBCT.

Matrix 50% MTF 10% MTF

C-HR CBCT
256 × 256 0.620 1.031
384 × 384 0.929 1.527
512 × 512 1.240 2.015

W-HR CBCT
256 × 256 0.366 0.760
384 × 384 0.675 1.218
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3.3. Low-Contrast Detectability

Figure 6 shows the CNRs of each matrix in C-HR and W-HR CBCT. The CNRs de-
creased as the dilution factor of the contrast medium increased. On comparing the CNRs
for the same number of matrices between C-HR and W-HR CBCT, the CNR of W-HR CBCT



Tomography 2023, 9 1688

improved. The CNRs of the C-HR CBCT with a 256 × 256 matrix and those of the W-HR
CBCT with a 384 × 384 matrix at each contrast dilution concentration were comparable.
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3.4. Radiation Dose

Table 2 shows the radiation doses of C-HR and W-HR CBCT. The Ka,r and PKA values
of the C-HR CBCT were 157 mGy and 12.8 Gy·cm2. The Ka,r and PKA values of the W-HR
CBCT were 157 mGy and 18.4 Gy·cm2. The values of Ka,r were equal between C-HR
CBCT and W-HR CBCT; however, the PKA was 1.44 times higher in W-HR CBCT than in
C-HR CBCT.

Table 2. Radiation doses for C-HR CBCT and W-HR CBCT.

Reference Air-Kerma (mGy) Kerma Area Product
(Gy·cm2)

C-HR CBCT 157 12.8
W-HR CBCT 157 18.4

4. Discussion

In this study, W-HR CBCT, which has a wider FOV size than C-HR CBCT, was eval-
uated for application in neuro-CBCT imaging in terms of technical performance (spatial
resolution, noise characteristics, low-contrast detectability, and radiation dose) using a
Catphan and a homemade phantom. To the best of our knowledge, this is the first study to
evaluate the image quality and radiation dose of W-HR CBCT.

The spatial resolution was evaluated by a visual assessment of the high-contrast
module of the Catphan phantom and the MTF. The discrimination limits of the high-
contrast module and the 10% MTF values were generally in agreement. On comparing
C-HR and W-HR CBCT, the spatial resolution of the W-HR CBCT decreased for the same
number of matrices. This reflected the difference in the pixel binning process owing to
the change in FPD size: 1 × 1 binning for C-HR CBCT and 2 × 2 binning for W-HR CBCT.
The C-HR CBCT is a modification of the standard CBCT protocol used during and after
cerebral angiography to assess the brain parenchyma, which provides a small FOV but a
high-spatial-resolution X-ray image without pixel binning. The physicians should be aware
that, while the FOV size increases with W-HR CBCT, the spatial resolution of the images
also changes.

In the evaluation of the noise characteristics with low-contrast detectability, the NPS
and CNR values were higher for W-HR CBCT compared to C-HR CBCT in all the recon-
struction matrices. We believe that a change in the FOV size results in an increase in the
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matrix size and a decrease in the amount of noise contained in a pixel. When considering
the use of W-HR CBCT in AIS CBCT, the reduction in image noise and improvement in
low-contrast detectability are beneficial factors that contribute to improved image quality.
This is because the tube current and scan time are constant regardless of the object size.

Regarding image reconstruction conditions in AIS-CBCT, Iwasaki et al. reported the
usefulness of reconstructed images with a 256 × 256 matrix [17]. As AIS-CBCT images
require the assessment of the lumen of major vessels and perforators, it is necessary to
acquire images with the highest possible spatial resolution. As the CNR of the 256 × 256
matrix in C-HR CBCT and the 384 × 384 matrix in W-HR CBCT were equivalent, it was
possible to improve the spatial resolution while maintaining a low-contrast detectability in
W-HR CBCT.

Regarding the noise characteristics, the NPS of W-HR CBCT with a 384 × 384 matrix
was slightly larger in the mid-to-high frequency bands; however, both were equivalent
in the low-frequency band below 0.50 cycles/mm. In AIS-CBCT, it is important to assess
the large vessels between 1 and 4 mm in diameter, corresponding to a spatial frequency
band below 0.50 cycles/mm. Overall, the change from a 256 × 256 matrix in C-HR CBCT
to a 384 × 384 matrix in W-HR CBCT resulted in improved spatial resolution without
affecting noise characteristics and low-contrast detectability. The image reconstruction
using 2 × 2 binning in W-HR CBCT results in a decrease in spatial resolution, which can be
compensated by increasing the number of reconstruction matrices.

A radiation dose analysis was performed using the Ka,r and PKA, provided by an
angiographic machine. Although the values of Ka,r were identical between C-HR and
W-HR CBCT, the value of PKA was 1.44 times higher in W-HR CBCT compared to C-HR
CBCT. This is because Ka,r reflects the air kerma at the patient entrance reference point, and
the scan conditions are the same except for the FOV size. Furthermore, PKA is defined as
the product of the air kerma and irradiation field area, which was larger in W-HR CBCT
with a larger FOV size. Several skin injuries due to radiation have been reported in the field
of INR [29–32]. These factors are associated with prolonged fluoroscopy, increased DSA
exposure, and repeated procedures [33–37]. The International Commission on Radiological
Protection Publication 118 reported that the threshold for the absorbed dose was 500
mGy [38]. This report suggested that in INR, appropriate radiation protection is required
not only for the skin but also for the lens. The contribution of CBCT to the total lens dose
has been estimated to be non-negligible, and the methods for lens protection during CBCT
have been reported [20,22,23]. Several studies have reported that tube current modulation,
organ-based tube current modulation, gantry tilt, and shielding methods with protective
materials protect the lenses in head multidetector CT scans [39–46]. In neuro-CBCT, scan
conditions such as the tube voltage, tube current, and additional filters are part of a fixed
protocol, and the shielding method is the only method to protect the lens. As W-HR CBCT
contributes more to radiation exposure compared to C-HR CBCT, appropriate radiation
protection must also be considered.

In summary, in recent years, the usefulness of mechanical thrombectomy for AIS
has been widely reported, and AIS-CBCT has become an essential imaging tool [16,17].
The INR procedures, including mechanical thrombectomy, tend to be complex and may
sometimes increase the fluoroscopy time and resultant radiation doses to both the patients
and staff [47–60]. W-HR CBCT, which has wide-area HR CBCT, is available in cerebral
angiography. It is expected to be clinically useful, especially for cases of AIS. However,
the image quality and the radiation dose of W-HR CBCT are unknown. Therefore, we
investigated the image quality and radiation dose of W-HR CBCT and C-HR CBCT and
determined the optimal image reconstruction for AIS-CBCT. The MTF, NPS, and CNR were
used to evaluate the image quality. The MTF of W-HR CBCT with a 384 × 384 matrix was
larger than that of C-HR CBCT with a 256 × 256 matrix. The NPSs and CNRs of C-HR
CBCT with a 256 × 256 matrix and W-HR CBCT with a 384 × 384 matrix were comparable.
The values of Ka,r were equal for C-HR CBCT and W-HR CBCT; however, the value of the
PKA was 1.44 times higher for W-HR CBCT than for C-HR CBCT. A wider FOV increases
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the area that can be imaged. This is beneficial for the assessment of collateral vessels and
the vessels distal to the occlusion, which is important for AIS. In patients with AIS, a rapid
procedure is required because the duration from disease onset to recanalization is related
to patient outcomes [61,62]. The AIS-CBCT may shorten the duration from puncture to
recanalization because it provides sufficient information to guide the selection of treatment
strategies. We believe that further reductions in the duration of procedures and improved
outcomes are expected with the use of W-HR CBCT for the treatment of AIS. The W-HR
CBCT can be a useful imaging tool in INR procedures for AIS.

5. Conclusions

This study investigated the image quality and radiation dose of two different HR
CBCT protocols (C-HR CBCT and W-HR CBCT) used in cerebral angiography. The W-HR
CBCT allows improved spatial resolution while maintaining image noise and low-contrast
detectability by changing the number of image matrices from 256 × 256 to 384 × 384. As
influenced by the expansion of the FOV size, the value of PKA was larger in W-HR CBCT
compared to C-HR CBCT. Our study revealed the image characteristics and radiation dose
of W-HR CBCT. The W-HR CBCT is useful for INR in patients with AIS, as it improves the
image quality of the phantom and increases the coverage for imaging.
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