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Abstract: Computer-aided diagnosis systems play a crucial role in the diagnosis and early detection
of breast cancer. However, most current methods focus primarily on the dual-view analysis of a single
breast, thereby neglecting the potentially valuable information between bilateral mammograms. In
this paper, we propose a Four-View Correlation and Contrastive Joint Learning Network (FV-Net)
for the classification of bilateral mammogram images. Specifically, FV-Net focuses on extracting
and matching features across the four views of bilateral mammograms while maximizing both their
similarities and dissimilarities. Through the Cross-Mammogram Dual-Pathway Attention Module,
feature matching between bilateral mammogram views is achieved, capturing the consistency and
complementary features across mammograms and effectively reducing feature misalignment. In
the reconstituted feature maps derived from bilateral mammograms, the Bilateral-Mammogram
Contrastive Joint Learning module performs associative contrastive learning on positive and negative
sample pairs within each local region. This aims to maximize the correlation between similar local
features and enhance the differentiation between dissimilar features across the bilateral mammogram
representations. Our experimental results on a test set comprising 20% of the combined Mini-DDSM
and Vindr-mamo datasets, as well as on the INbreast dataset, show that our model exhibits superior
performance in breast cancer classification compared to competing methods.

Keywords: bilateral mammograms; deep learning; breast cancer; computer-aided diagnosis;
interpretable classifier

1. Introduction

According to 2023 statistics, breast cancer is the most prevalent cancer type among
women in the United States, with an estimated 297,790 new cases, accounting for 31% of all
new cancer cases, and an expected death toll of 43,170 [1]. These figures highlight the signif-
icant threat that breast cancer poses to women’s health, underscoring the importance of its
prevention and early screening. Mammography screening, essential for breast cancer pre-
vention, typically comprises two ipsilateral views of each breast: the bilateral cranio-caudal
(CC) view, a top-down perspective, and the mediolateral oblique (MLO) view, angled from
the chest center toward the armpit at 45 to 50 degrees [2,3]. In addition to analyzing and
comparing these two views, radiologists also compare ipsilateral views (the CC view and
MLO view of the same breast) and bilateral views (the same view of both breasts), as such
comparisons provide a richer set of feature information [4], facilitating the search for global
structural distortions, local tumors, and calcifications, thereby enabling a comprehensive
analysis of each breast [5]. For each patient, four high-resolution mammographic images
of the left and right breasts are taken. Any detected abnormalities will require further
diagnostic imaging and tissue biopsy for confirmation. Based on the standards of the
American College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS),
radiologists perform a standardized assessment for each screening mammogram, providing
specific follow-up recommendations based on the BI-RADS score for each patient [6].
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In contemporary practice, deep learning methods have rapidly evolved in the field
of medical image analysis and have achieved significant results [7]. Many medical fields
now employ Computer-Aided Detection (CAD) systems, providing radiologists with rapid,
objective recommendations that enhance clinical decision-making during large-scale breast
cancer screenings. The prevailing approach involves using multi-view image information
as the input for models. For works that use ipsilateral views as model inputs, the CC
and MLO views are used for feature extraction for cancer diagnosis [8,9], but each view
extracts features independently and then combines them, resulting in a lack of informa-
tion interaction between views, leading to the loss of inter-view information relationships.
In 2021, van Tulder et al. [10] introduced an inter-view attention mechanism for informa-
tion transfer between views. This method allows the model to connect different views at
a more detailed spatial feature level, rather than merely concatenating at a global feature
level. In 2022, Chen et al. [5] proposed the Local Co-occurrence and Global Consistency
method, which not only completed the information interaction between views but also
introduced inter-view similarity learning. In 2023, the CVR-RCNN network framework [11]
was proposed. It aims to transfer visual and geometric information between two views,
thereby enhancing tumor detection in one view. In 2023, Wang et al. [12] introduced
DCHA-Net, employing Hybrid Attention in their Hybrid Attention modules for feature
interaction and registration between views, thereby mitigating the feature misalignment
problem between dual views. Nguyen et al. [13] introduced DIVF-Net, a network that
first fuses features from bilateral views of the same breast. This process is followed by the
element-wise addition of the resultant fused features to the feature map of the primary view,
thereby enhancing the information of the primary view. In 2021, Yan et al. [14] proposed
a unified Siamese network for simultaneous patch-level mass or non-mass classification
and dual-view mass matching. In 2018, Wang et al. [15] introduced the MV-DNN approach,
in which LSTM is utilized to effectively aggregate data from dual views of a unilateral
breast, integrating contextual information from both views. In 2016, Bekker et al. [16]
proposed the MV-NN method, which employs view-level classifiers for individual view
classification judgments, followed by a neural network layer to integrate decisions from
the two view levels. Although these methods demonstrated good performance, they only
utilized information from dual views, neglecting the feature information of the patient’s
contralateral breast and the interactive information between breasts.

Regarding the work using bilateral four-view mammograms as model inputs, in 2021,
Li et al. [17] developed a multi-stream network architecture to integrate four views from bilateral
breasts, enabling the network to independently learn features from each view. In the network’s
later stages, features from different views are concatenated, thereby enhancing classification
performance. While this approach demonstrates good performance, it does not fully exploit
the latent relationships between bilateral breasts. Nguyen et al. [18] proposed a two-stage
multi-view model for breast imaging. In the first stage, features are extracted separately from
the left and right breasts. In the second stage, these features are averaged and input into
separate BI-RADS and density classifiers using LightGBM. The final classification output is
determined by taking the maximum value of the predictions from both breasts. Chen et al. [19]
introduced the MVT model, which utilizes four views of bilateral mammograms as inputs. This
model segments the four views into multiple patches, extracts features independently from each
patch, and employs Global Transformer blocks to analyze the relationships between patches.
However, due to the non-rigid nature of breasts, morphological variations across different views
present significant challenges, making it difficult for the model to capture features directly
related to cancer. In 2022, Lopez et al. [4] proposed the PHYSEnet model. They employed a
parameterized hypercomplex neural network capable of handling breast cancer classification
by capturing the intrinsic correlations between different views and using a shared encoder
to analyze all four views (left and right CC and MLO), thus achieving inter-breast feature
interaction. However, simply inputting all four views into a shared backbone without feature
registration and contrastive work can lead to feature misalignment learning in the model.
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Inspired by the limitations of these previous works, we have pioneered an approach to
perform correlation and contrastive learning between the features of bilateral mammogram
views. Our method requires only image-level labels to achieve accurate and robust clas-
sification of the entire mammograms of both the left and right breasts. Additionally, our
approach utilizes the four-view feature information from bilateral mammograms. We have
also successfully addressed the issue of incorrect feature matching between the left and
right mammograms. Furthermore, our approach integrates joint and contrastive learning
of cancerous and normal tissue features. This method enhances the similarity between
corresponding features in the left and right mammograms while amplifying the differences
between dissimilar features. Consequently, the model more effectively distinguishes be-
tween normal tissue and malignant breast lesions. Moreover, our model facilitates local
feature interaction learning with the global region of the contralateral feature map, improv-
ing the classification of benign and malignant breasts. This four-view diagnostic method
aligns with the practice of physicians who both analyze ipsilateral views and compare
contralateral views during the diagnostic process. Our model demonstrates excellent classi-
fication performance, greatly enhancing the model’s robustness and generalizability, and
achieves competitive results. In summary, our contributions are as follows:

1. We propose a novel approach to the associative matching learning of local features
across global regions of bilateral mammograms, achieving feature interaction con-
sistency and complementarity between them, effectively alleviating the issue of mis-
aligned feature matching, and significantly enriching the information content of the
related features.

2. We devised a novel joint contrastive learning strategy for bilateral mammograms
capable of capturing the correlational characteristics of each local region between
bilateral breast feature maps to maximize similarity. Concurrently, it facilitates the
contrastive learning of distinct features to maximize feature disparity. This approach
aids the model in identifying the features of cancerous regions and distinguishing them
from those of normal tissue, and furthermore, it precludes the occurrence of misaligned
feature learning.

3. We evaluated the performance of our proposed FV-Net model on a 20% test set of a
combined dataset comprising Mini-DDSM [20] and Vindr-mamo [21], as well as on the
INbreast dataset [22]. The experimental results confirm that our method outperforms
competing methods on multiple datasets.

2. Related Work

Deep learning models are now widely used in the diagnosis of breast cancer, with two
primary approaches to classification. The first approach requires a binary segmentation
mask during training. Ru et al. [23] proposed the Att-U-Node for automatically segmenting
breast tumors. This network utilizes an attention module to guide a framework based on
neural ODEs, addressing several challenges faced by popular deep neural networks, such
as large parameter counts, a lack of interpretability, and issues with overfitting. Tsochatzidis
et al. [24] introduced a method that integrates tumor segmentation information from mam-
mograms into a Convolutional Neural Network (CNN), aiming to improve the diagnosis of
breast cancer in mammograms. Furthermore, Ghosh et al. [25] designed an innovative auto-
matic mammogram segmentation method. This method employs Intuitionistic Fuzzy Soft
Sets (IFSS) and multi-granularity rough sets. It introduces a novel hybrid soft computing
approach, which is integrated into the segmentation process. This enhances the early detec-
tion of breast cancer. Sarangi et al. [26] developed a model using a single-layer Legendre
neural network, which was trained with a Block-Based Normalized Sign-Sign Least Mean
Square (BBNSSLMS) algorithm to enhance performance. However, the aforementioned
methods require experienced radiologists to annotate regions of interest (ROIs) at the
pixel level, significantly increasing data annotation costs. The second approach no longer
requires pixel-level ROI annotations, and many of its methods employ CNN technology
to diagnose breast cancer [27–31]. For instance, Albashish et al. [30] employed a transfer
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learning model based on the Visual Geometry Group’s 16-layer deep model architecture
(VGG16), outperforming the latest classical machine learning algorithms in breast cancer
diagnosis. Heenaye-Mamode Khan et al. [32] used a pretrained ResNet50 model to develop
an enhanced deep learning model, achieving an accuracy of 88%. Although these methods
have achieved significant success in medical image processing and play an important role
in breast cancer screening, due to the limited receptive field of convolutional kernels, CNN
methods struggle to capture the interactive information of bilateral mammograms and thus
leverage their potentially valuable information. The limitations of CNNs make it difficult
to utilize global information. Our proposed method not only employs CNNs to extract
features from bilateral mammograms but also realizes local-to-global area feature attention
correlation learning between the two breasts, overcoming the limitation of the CNN’s local
receptive field. Additionally, in terms of model design, current works [5,8–12,14,33–36]
mainly focus on improving the diagnostic accuracy for individual breasts, with only a few
methods designing models for four-view analysis [4,18,19,37]. However, these models fail
to fully explore the relationship between bilateral mammograms. Therefore, it is both ur-
gent and crucial to enhance the diagnostic capabilities of bilateral multi-view breast models
for clinical decision-making. Our proposed method leverages information from four views
to diagnose bilateral mammogram images simultaneously, enhancing the model’s classifi-
cation capability by utilizing the latent relationship between the bilateral mammary glands.
This approach culminates in an end-to-end model capable of concurrently predicting the
probability of breast cancer in both breasts.

3. Materials
3.1. Data Collection

The datasets used in this study include the Mini-DDSM dataset, the Vindr-mamo
dataset, and the INbreast dataset. Each breast in the datasets has CC (cranio-caudal) and
MLO (mediolateral oblique) mammographic X-ray views, with each case comprising four
mammograms. Due to the insufficient number of cases and their label distribution in either
Mini-DDSM or Vindr-mamo alone, which did not meet our requirements for various case
types, we decided to merge these two datasets. Together, the Mini-DDSM and Vindr-mamo
datasets include a total of 6952 cases of full-field digital mammographic X-ray images.
However, two cases from the Vindr-mamo dataset are missing some mammograms, leading
to a final count of 6950 cases. Figure 1 shows a few mammography images from the datasets
we used.

Mini-DDSM: The Mini-DDSM dataset contains 7808 mammograms. The breast
classification labels in this dataset are categorized as benign, cancer, and normal. In our
study, we classify normal and benign cases as negative (label: 0) and cancer cases as positive
(label: 1). The dataset includes 679 cancer cases, 671 benign cases, and 602 normal cases.

Vindr-mamo: The original Vindr-mamo dataset contains 5000 cases, but only 4998
cases are actually usable. This dataset does not directly provide breast classification
labels but rather offers BI-RADS scores ranging from 1 to 5 for each full-field digital
mammographic X-ray image. In our study, we consider cases with BI-RADS scores of 1 to 3
as negative and those with scores of 4 and 5 as positive.

INbreast: The INbreast dataset consists of 115 cases (410 images), of which only
75 cases are composed of four views from bilateral mammograms; thus, these 75 cases
were used as the test set. This dataset provides various types of annotations, including
BI-RADS classification scores, masks for the segmentation of masses or calcifications, and
other data annotations. We primarily determine the labels based on the BI-RADS rating
scale: BI-RADS levels 1–3 are considered negative, while 4–6 are deemed positive.
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(a) (b) (c) (d) (e) (f)
Figure 1. Examples from the training and test datasets of mammography images. (a,b) Vindr-mamo
mammography images; (c,d) Mini-DDSM mammography images; (e,f) INbreast mammography
images.

3.2. Data Preprocessing

Given the abundance of irrelevant background information in mammograms and the fact
that the lesion area occupies only a small part of the entire mammographic image, combined
with the certain obscurity of the breast lesion area, it is necessary to preprocess the mammogra-
phy images to enhance the contrast and recognizability of different features within the breast
area. We employ various processing techniques, including Breast Region Detection (BRD),
Contrast-Limited Adaptive Histogram Equalization (CLAHE), and truncated normalization.

3.2.1. Breast Region Detection (BRD)

As shown in Figure 2a, mammograms contain a large amount of irrelevant black
background pixel information. Removing background pixels unrelated to classification
allows the model to focus only on the features of the breast area. We employ our custom-
designed Breast Region Detection (BRD) method to preprocess the mammograms. First, the
module conducts orientation detection on all mammographic images to ensure all images
are oriented toward the right-hand side, thus preventing the model from being influenced
by varying image orientations during the learning process. It uses a GaussianBlur with
a 5 × 5 kernel for image smoothing to reduce noise. It then utilizes OTSU thresholding
to automatically determine the optimal threshold for the mammographic images and
performs binarization, significantly separating the breast area from the background. The
findContours function is used to detect the edges of the breast area in the binary image,
eventually obtaining the rectangular area of the largest contour of the breast area, as shown
in Figure 2b.

(a) (b) (c) (d)
Figure 2. The data preprocessing procedure. (a) The original image; (b) the image processed with
BRD; (c) the image processed with BRD and cropping; (d) the image processed with BRD, cropping,
CLAHE, and truncated normalization.

3.2.2. Contrast-Limited Adaptive Histogram Equalization and Truncated Normalization

Due to the extremely subtle differences between healthy and pathological tissues
in the breast, we enhance local pixel contrast by applying Contrast-Limited Adaptive
Histogram Equalization (CLAHE) [38]. After analysis and comparison, we set the clipLimit
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parameter value to 1.0. Additionally, considering the presence of extremely dark and bright
areas within the breast, we empirically set two percentile thresholds at 5% and 99%. This
means ignoring the lowest 5% and the highest 1% of all pixel values in the image. The
clipped pixel values are then normalized, which reduces image variations caused by noise
or non-representative features and further enhances image contrast. Figure 2d presents the
final effect of data preprocessing.

3.3. Data Upsampling

Due to the significant imbalance in the dataset distribution, it is crucial to prevent
the model from disproportionately focusing on the majority negative sample categories,
thereby neglecting the minority positive categories. Therefore, it is necessary to upsample
cases with cancer in both breasts as well as cases with cancer in only one breast. When
integrating the Mini-DDSM and Vindr-mamo datasets, we do not simply merge them
into a single dataset. Instead, we rearrange the data by individual cases to ensure a
uniform distribution of different case categories, thereby better addressing the issue of data
imbalance. Subsequently, we allocate 20% of the processed dataset to the test set and the
remaining 80% to the training set, with the specific data distribution detailed in Table 1.

As shown in Table 2, after upsampling the data in the training set, we obtain data for
4629 patients with no cancer in either breast, 2749 patients with cancer in both breasts, and
1880 patients with cancer in only one breast. This approach ensures that the sum of the
number of cases with cancer in both breasts and the number of cases with cancer in only
one breast is equal to the number of cases where both breasts are normal.

Table 1. Distribution of data categories without upsampling.

Dataset Name
Number of
Cases with Both
Breasts Normal

Number of
Cases with Both
Breasts
Cancerous

Number of
Cases with
Cancer in Only
One Breast

Total

Original dataset 5790 692 468 6950
Training dataset 4629 555 376 5560
Test dataset 1161 137 92 1390

Table 2. Distribution of data categories after upsampling.

Dataset Name
Number of
Cases with Both
Breasts Normal

Number of
Cases with Both
Breasts
Cancerous

Number of
Cases with
Cancer in Only
One Breast

Total

Training dataset 4629 2749 1880 9258
Test dataset 1161 137 92 1390

4. Methods
4.1. Problem Statement

We established a training dataset that includes bilateral four-view mammographic
images and applied weakly supervised learning to the dual views of each breast per case,
indicating that the entire mammogram requires only an image-level label. The labels for
different views of the same breast are identical, denoted by D = {(Rm

i , Rc
i , Lm

i , Lc
i , yi)}

|D|
i=1,

where Rm
i and Rc

i represent the MLO (mediolateral oblique) and CC (cranio-caudal) views
of the patient’s right breast, respectively, and Lm

i and Lc
i represent the MLO and CC views

of the left breast for the same patient. The index i denotes the patient number. The label
yi ∈ Y = {0, 1}, where 1 indicates cancer (positive) and 0 indicates normal (negative). Here,
the label yi refers to the annotations made by doctors indicating whether the mammogram
is of a cancerous or normal breast. The test set is defined in the same manner. The ultimate
goal is to accurately predict the probability of cancer in each patient’s left and right breasts.
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4.2. Motivation

Considering that most existing methods primarily focus on the analysis of dual-
view mammography images of a single breast, only a few studies have explored feature
learning across four-view mammography images of bilateral breasts. We have found that
the existing four-view methods typically enable only simplistic and direct interactions of
features between bilateral mammography images. These interactions are clearly insufficient
for complex four-view analysis. Our approach addresses a critical issue in the analysis
of bilateral breast four-view mammography: when extracting features using four-view
mammography images of bilateral breasts, the uncertainty in the size and location of lesions
in the bilateral breasts often leads to incorrect feature matching, as shown in Figure 3. This
issue can make it difficult for the model to effectively distinguish between cancerous
and non-cancerous tissues, thereby severely affecting the model’s learning performance.
We introduce a novel local-feature-matching learning mechanism for bilateral breasts.
Additionally, we developed a contrastive joint learning method for bilateral breasts. These
innovations effectively alleviate the issue of incorrect feature matching in bilateral breasts
and significantly enhance the model’s ability to differentiate between features.

(a) (b) (c) (d)
Figure 3. (a) The left CC (cranio-caudal) view; (b) The left MLO (mediolateral oblique) view; (c) The
right CC view; (d) The right MLO view. The areas within the red bounding boxes represent the lesion
regions of the mammograms.

One potential solution is to employ semantic segmentation methods [39,40] to ex-
plicitly delineate the lesion areas’ location and size in the breast for the model. However,
this approach necessitates fine-grained pixel-level annotations of mammography images
by doctors, implying substantial manual annotation costs and the risk of errors due to
repetitive, intensive labor. Observing the characteristics of the dataset, we noted that the
bilateral breast distribution in cases can be categorized into three scenarios: (1) both breasts
are normal; (2) both breasts are cancerous; (3) only one breast is cancerous. Therefore, to
address cross-breast feature learning in these distinct scenarios, we introduced a bilateral
breast local-feature-matching learning mechanism and achieved inter-breast similarity fea-
ture correlation learning, as well as dissimilar feature contrastive learning, thus resolving
the aforementioned issues. Our proposed Four-view Correlation and Contrastive Joint
Learning Model (FV-Net) primarily comprises the following modules:

1. Pretrained truncated EfficientNet-b0: used for extracting features from both breasts.
2. Cross-Mammogram Dual-Pathway Attention Module: used for calculating local-

feature-matching relationships between the left and right breast feature maps.
3. Bilateral-Mammogram Contrastive Joint Learning: used for the joint contrastive learn-

ing of the interaction feature maps.
4. Classifier and loss function: includes fully connected layers for the left and right breasts,

BCE loss, and global average pooling.

4.3. Pretrained Truncated EfficientNet-b0 Module

In processing unilateral breast images, we first concatenate the CC (cranio-caudal)-
view and MLO (mediolateral oblique)-view mammographic images of the left breast for
each case, applying the same procedure for the right breast. The concatenated mammo-
graphic images of the left and right breasts are then fed into a shared feature extractor.
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We opt for a truncated version of EfficientNet-b0, pretrained on ImageNet-1K [41], as our
feature extractor; detailed information about its architecture can be found in the “shared
weights” section in Figure 4. Diverging from the classic EfficientNet-b0, we removed the
final fully connected layer and pooling layer, retaining only the feature extraction module
to preserve more spatial information. The feature extractor reduces the size of the original
image by 1024 times, outputting feature maps of the left and right breasts with dimen-
sions of 40 × 20 and a feature channel count of 1280. Each pixel point corresponds to a
receptive field of size 32 × 32 in the original image; this is specifically achieved through the
following equations:

FL = f (Lm
i , Lc

i ) (1)

FR = f (Rm
i , Rc

i ) (2)

Figure 4. Our proposed FV-Net framework utilizes a shared modified truncated EfficientNet-b0 for
feature extraction and employs the CMDPA to reshape the fea ture maps, along with the BMCJL
module for four-view local feature joint contrastive learning.

4.4. Cross-Mammogram Dual-Pathway Attention Module

Our method incorporates an attention block [42] comprising three core elements: Q
(Query vector), K (Key vector), and V (Value vector). The Query vector represents the
feature item currently being processed, the Key vector is used for matching with the Query
vector, and the Value vector contains the actual content of information. This content, after
being weighted by attention, is used to construct the final output. Q, K, and V are typically
represented as feature tensors of the shape RC×D. The computation of relations is achieved
by computing the dot product of the Query with all Key items, dividing by

√
C (where C

represents the dimension of the Key vector), and then applying the softmax function to
obtain attention weights for the input elements. These weights are multiplied by the Value
vector V to obtain a weighted summary containing information weighted based on the
association between the Query and the Keys. The computation equation is as follows:

F(Q, K, V) = softmax
(

QKT
√

C

)
V (3)

Next, we describe an innovative application of Equation (3) in our study, namely, the
cross-mammogram local multi-head interaction relationship, as detailed in Figure 5. As
illustrated in Figure 5, our proposed Cross-Mammogram Dual-Pathway Attention Module
adopts a dual-path architecture, aiming to capture the feature correlation and matching
information between bilateral mammograms. Taking the original high-dimensional feature
maps of bilateral breast images, FL, FR ∈ RB×C×H×W , as input, we first reshape the input
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features into the shape of (B, L, C), forming the feature matrices of the left and right
breasts, AL =

[
aL

1 , aL
2 , . . . , aL

n
]
, AR =

[
bR

1 , bR
2 , . . . , bR

n
]
. Subsequently, through two linear

transformation branches, AL and AR are mapped into PL, PR ∈ RB×L×3C. By performing
sliding segmentation on the channel dimension of the mapped PL and PR, the Query map,
Key map, and Value map ∈ (B, M, L, C′) are generated. From these, we separate out M sets
of Qi, Ki, Vi, and Qi, Ki, Vi ∈ RB×L×d, i = 0, . . . , M − 1, where the parameter M controls the
number of feature attention heads in multi-head attention. Here, the parameter d represents
the dimension of the features within each attention head. The value of d can be calculated
by the following equation:

d = C′ =
3C
M

(4)

For each Q in the Query map, we compute its dot-product attention with all Ks in the Key
map of the contralateral mammograms and employ the softmax function to obtain normalized
bilateral breast local feature correlation attention weights. These attention weights are then
used to weight the corresponding Vs in the Value map. This process is symmetrically applied
to both breasts. Therefore, the relation maps for each attention head of the left and right
mammography views are, respectively, calculated by the following equations:

Fmha
Li

(Q, K, V) = softmax

(
QLi K

T
R√

C

)
VR (5)

Fmha
Ri

(Q, K, V) = softmax

(
QRi K

T
L√

C

)
VL (6)

In Equations (5) and (6), QLi and QRi represent the Query of each local feature attention
head for the left and right mammography feature maps, respectively. KL, KR, VL, and VR cor-
respond to all Keys and Values within the Key maps and Value maps of the mammographic
feature representations. Finally, after linear projection and feature reshaping, the weighted
feature matrix obtained from each attention head is recombined into a cohesive feature map.
The resulting new feature maps, denoted by F′′

L , F′′
R ∈ RC×H×W , maintain their complete

spatial structure. This facilitates the associative matching of local feature information from
each mammogram with the global feature regions of the contralateral breast.

Figure 5. Detailed architecture of Cross-Mammogram Dual-Pathway Attention Module, (heads) # L
× C’ represents numerical units with the total number of heads and a size of L × C’ , and the others
are similarly defined.

4.5. Bilateral-Mammogram Contrastive Joint Learning

Inspired by the diverse distribution of label combinations in bilateral breast images,
in FV-Net, we innovatively design a contrastive joint loss function, introducing a novel
method for local feature interaction learning between bilateral mammographic feature
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maps. This method aims to maximize the similarity between the most similar local features
and enhance the disparity between the most dissimilar local features. As shown on the
right side of Figure 4, the recombined feature maps of the left and right mammograms, F′′

L ,
F′′

R , processed by the " Cross-Mammogram Dual-Pathway Attention Module ", are divided
into equally sized, non-overlapping patch blocks. Each block consists of H×W

k2 patches,

where {F′′
Li

, F′′
Ri
} ∈ RC×k2

for i = 0, . . . , H×W
k2 − 1. Each patch block size is (C, K, K), and the

feature map is divided from (C, H, W) into (N, C, K, K), where N is the number of patches,
and K is set to 5.

We calculate the similarity between the feature maps F′′
Li

of each left mammographic
image and the feature maps F′′

Ri
of the contralateral mammographic image. This process is

accomplished by comparing similarity scores between different patch blocks to identify
pairs of patches in F′′

L and all patch blocks in F′′
R with the highest and lowest similarity

scores. The patch pairs with the highest similarity scores are considered positive samples,
while those with the lowest scores are considered negative samples. Specifically, when
the labels of the left and right breasts indicate unilateral or bilateral cancer, we need to
determine the indices of the feature patch pairs with the highest and lowest similarity, that
is, the positive and negative sample pairs. However, when both breasts are normal, we
only need to identify the most similar patch index pairs, that is, the positive sample pairs.

More specifically, we first normalize the given feature vectors Xi and Yj (representing
two patch blocks from bilateral mammograms) separately. This step is achieved by dividing
each feature vector by its L2 norm (adding a small constant ϵ = 1 × 10−6). The normalized
feature vectors Xi and Yj ensure consistency in length, making the subsequently calculated
similarity scores reflect only directional differences. The similarity score, Sim, is obtained
by calculating the dot product of the normalized feature vectors as follows:

Sim(Xi, Yj) =
Xi

∥Xi∥+ ϵ
·

Yj

∥Yj∥+ ϵ
(7)

The method for identifying positive and negative sample pairs is as follows: after
calculating the similarity between all pairs of patches, we use the following Equation (8)to
determine the indices of the most similar (positive sample pairs) and the least similar
(negative sample pairs) patch pairs:

j(i) = arg max Sim(Xi, Yj) (8)

j′(i) = arg min Sim(Xi, Y′
j ) (9)

Equation (8) implements the assignment of each index i to index j of the patch Yj in
the contralateral breast’s feature map that is most similar to the patch Xi on this side of the
breast’s feature map, thereby establishing a positive sample pair between the feature maps
of the left and right breasts. Similarly, the index of the patch pair with the lowest similarity
score is determined through Equation (9), thereby establishing a negative sample pair.

After determining all positive and negative sample pairs, we employ the designed
joint contrastive loss function Lsim for learning. This loss function aims to reward the
similarity between positive sample pairs and penalize the similarity between negative
sample pairs. Its expression is as follows:

Lsim =
1

2N

N−1

∑
i=0

(1 − I(y))

[
exp

(
−

Sim(Xi, Yj(i))

t

)
+ exp

(
Sim(Xi, Y′

j′(i))

t

)]

+
1
N

N−1

∑
i=0

I(y) exp

(
−

Sim(Xi, Yj(i))

t

) (10)



Tomography 2024, 10 858

Here, N represents the total number of patch blocks in the reconstructed feature map
of a unilateral breast, and t represents the temperature parameter, which we set to 0.5. I(y)
is an indicator function that is true when the labels for a pair of mammographic images are
both normal. In this scenario, the loss function primarily focuses on the similarity of the
most similar patch pairs. When at least one image is labeled as abnormal, the loss function
takes into account the similarity of both the most similar and the least similar patch pairs.
We calculate the similarity Lsimi for each pair of patch blocks in the model and then compute
their average. Our proposed joint contrastive learning loss function encourages the model to
reduce differences between positive sample pairs and increase differences between negative
sample pairs. This strategy facilitates the model’s ability to more easily differentiate
between cancerous and non-cancerous features, thereby significantly enhancing the model’s
robust classification capabilities.

4.6. Classifier and Loss Function

In our proposed FV-Net framework, the ultimate goal is to concurrently classify
bilateral mammogram images. To this end, on top of the extracted and reconstructed
feature maps, we design a dual-path classifier with non-shared weights for the classification
predictions of the left and right breasts, denoted by Lcls and Rcls, respectively. The shape of
the reconstructed feature maps for the left and right breasts is (2, 1280, 40, 20). First, we
perform global average pooling on each breast feature map to obtain a 1280-dimensional
feature vector representation. Then, through their respective sequences of fully connected
layers, followed by a sigmoid function, we predict the probability of cancer presence p for
each breast, where p denotes the likelihood of malignant tumor lesions in the input images.
The classification training loss functions for the left and right breasts are defined as follows:

Lcls_loss = − 1
S

S

∑
i=1

[
yi log(PLi ) + (1 − yi) log(1 − PLi )

]
(11)

Rcls_loss = − 1
S

S

∑
i=1

[
yi log(PRi ) + (1 − yi) log(1 − PRi )

]
(12)

During the training process, the BCE (Binary Cross-Entropy) loss is utilized to quantify
the discrepancy between the predicted values PLi and PRi and the true value yi. The total
loss of the FV-Net model is calculated, as expressed in Equation (13), where u1 and u2 are
the weighting coefficients, set to 5/6 and 1/6, respectively.

Ltotal_loss = u1 · Lsim + u2 · (Lcls_loss + Rcls_loss) (13)

5. Experiment
5.1. Implementation Details

First, we adjust the size of the mammography images, which consist of concatenated
dual-view images of each breast for every case, to a resolution of 1280 × 640 pixels. In the
dataset, 20% of the cases are allocated to a test set, while the remaining 80% are designated
for the training set and are subjected to upsampling. Care is taken to ensure that data
from the same patient do not appear in both the training and test sets concurrently. For
the training set, we implement a series of data augmentation techniques, including the
random horizontal and vertical flipping of images, applying RandomResizedCrop and
adjusting the cropping area to a resolution of 1280 × 640 pixels, employing random affine
transformations, conducting random color enhancement, and utilizing the RandomErasing
technique. The proposed FV-Net model is implemented using the PyTorch library, with
model training completed on an NVIDIA GeForce RTX 4090 GPU with 24 GB of memory.
The Adam optimizer is employed, with the initial learning rate set to 1 × 10−4 and the
weight decay at 5 × 10−4. A ReduceLROnPlateau learning rate scheduler is used, reducing
the learning rate by a factor of 10 if there is no improvement in the loss value over 3
consecutive epochs. The loss function for the classification head is BCEWithLogitsLoss, and
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the batch size is set to 8. Each batch is fed with upsampled training data using a custom
sampler (PatientSampler), ensuring that an equal number of cases are randomly selected
from each category (cancer and normal), thereby balancing the class ratio in each batch and
effectively learning the features of breast lesion areas in each iteration.

5.2. Evaluation Metrics

Our proposed FV-Net model is employed to predict whether a mammographic image
represents a malignant or normal breast, thus presenting a classification challenge. To eval-
uate the performance of the model, we utilize the commonly adopted evaluation metrics
for classification models in most of the literature, namely, the Area Under the Receiver Op-
erating Characteristic Curve (AUC-ROC) and accuracy (ACC). The Area Under the Curve
(AUC) of the ROC, where the ROC curve’s x-axis represents the False Positive Rate (FPR)
and the y-axis represents the True Positive Rate (TPR), is a crucial metric for assessing the
performance of a binary classification model. An AUC value closer to 1 indicates better
model performance [43]. The calculation of accuracy (ACC) is as follows:

Accuracy =
TP + TN

FP + FN + TP + TN
× 100% (14)

The True Positive Rate (TPR) and False Positive Rate (FPR) are defined, respectively,
as follows:

TPR =
TP

TP + FN
(15)

FPR =
FP

FP + TN
(16)

In this context, TP (True Positive), TN (True Negative), FP (False Positive), and
FN (False Negative), respectively, represent the number of malignant samples correctly
identified, the number of normal samples correctly identified, the number of normal sam-
ples incorrectly identified as malignant, and the number of malignant samples incorrectly
identified as normal.

5.3. Ablation Analysis

To evaluate the effectiveness of each component of our proposed FV-Net model, we
conduct an ablation study on the well-known public mammographic X-ray image dataset
INbreast. As shown in Table 3, we compare the performance of five different model variants
on the INbreast dataset based on accuracy (ACC) and AUC-ROC results. These variants
include (1) training on the baseline model efficientnet-b0 using raw data without prepro-
cessing (first row); (2) training on the efficientnet-b0 baseline model with data processed by
the preprocessing module (second row); (3) combining the preprocessing module with the
Cross-Mammogram Dual-Pathway Attention Module (CMDPA) (third row); (4) combining
the preprocessing module with Bilateral-Mammogram Contrastive Joint Learning (BMCJL)
(fourth row); (5) using FV-Net, which both employs the preprocessing module and integrates
the CMDPA and BMCJL (fifth row).

Table 3. Model variants’ performance on INbreast dataset.

Preprocessing
Module CMDPA BMCJL ACC (%) AUC

× × × 68.00 0.7818
✓ × × 80.00 0.8627
✓ ✓ × 84.67 0.8877
✓ × ✓ 86.67 0.8848
✓ ✓ ✓ 87.34 0.9322
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The results of the ablation experiments demonstrate that the baseline model without
preprocessing exhibits the poorest performance, whereas the model incorporating the
preprocessing module, CMDPA, and BMCJL concurrently manifests superior performance.
Compared to the original baseline model, our proposed FV-Net significantly enhances
the accuracy by 19.34% and the Area Under the Curve (AUC) by 0.1504. This highlights
the combined efficacy of the three components: the preprocessing module, the CMDPA,
and BMCJL. Specifically, the implementation of the preprocessing module alone results
in an increase of 12% in accuracy and 0.0809 in AUC. Furthermore, the combined use
of the preprocessing module and CMDPA, in contrast to the baseline model, leads to a
16.67% rise in accuracy and a 0.1059 boost in AUC. On the other hand, the integration
of the preprocessing module and BMCJL compared to the baseline model increases the
accuracy by 18.67% and the AUC by 0.103. It is noteworthy that adding the CMDPA alone
leads to an increase of 4.67% in accuracy and an enhancement of 0.025 in AUC. Similarly,
incorporating only the BMCJL module results in an improvement of 6.67% in accuracy and
a rise of 0.0221 in AUC. When the preprocessing module, the CMDPA, and BMCJL are
employed simultaneously, there is an additional improvement of 7.34% in accuracy and
0.0695 in AUC compared to the model that incorporates only the preprocessing module.
The above experimental data clearly demonstrate that the data preprocessing module
effectively addresses the issue of poor image quality in the original training dataset. It
trims the background areas and highlights the pixels of the lesion areas, allowing the
model to focus solely on the features of the breast region. Secondly, the CMDPA effectively
facilitates the matching learning of local feature correlations across global regions of the
breast, significantly mitigating potential misalignment issues between the features of
bilateral mammogram views. Additionally, the experimental results demonstrate that the
contrastive joint loss function applied by the BMCJL module effectively enables the model
to learn the differences between lesion area features and normal tissue features, as well
as the similarities among features within the same category. This not only facilitates the
model’s ability to distinguish between lesion areas and normal tissue regions in the breast
but also allows it to acquire a more comprehensive set of similar feature information.

To visualize our experimental results, we plot ROC-AUC curves for five model variants
on the INbreast dataset. As shown in Figure 6, these variants include (1) the Vanilla Baseline
Model, corresponding to the first row on the bottom right of the graph; (2) the Preprocessed
Baseline Model, corresponding to the second row; (3) the Preprocessed Baseline Model
with the CMDPA, corresponding to the third row; (4) the Preprocessed Baseline Model with
BMCJL, corresponding to the fourth row; (5) the complete FV-Net model, corresponding to
the fifth row. These ROC-AUC curves clearly demonstrate that our experimental results
are entirely consistent with the above analysis, unequivocally confirming the effectiveness
of the preprocessing module, the CMDPA, and BMCJL.

Figure 6. ROC curves graph from ablation study on the public INbreast dataset.
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To further demonstrate the role of the components that we propose in the process
of predicting the probability of breast cancer through our model, clarify the extent to
which our method enhances the model’s ability to identify tumor regions, and improve the
model’s credibility by visualizing and explaining the rationale behind model predictions,
we utilized Grad-CAM [44] to visualize the most suspicious cancerous areas predicted by
different method groups. Grad-CAM, which is used as a visualization explanation method
to generate model focus areas, highlights key areas for classification decisions by computing
the gradient of the cancer probability prediction relative to the feature maps of the last
convolutional layer. These gradients indicate the contribution of each unit (i.e., each pixel or
region) within the feature map to the final cancer probability prediction, with the brightest
areas representing the most suspicious tumor regions contributing the most to the final
cancer probability prediction. As shown in Figure 7b, when using only the Preprocessed
Baseline Model for predicting the probability of cancer, the absence of interactive learning
of bilateral breast feature maps prevents the association and comparative learning of
bilateral mammogram views, and thus, the model is easily distracted by some irrelevant
features, with the model’s attention only focused on small areas at the tumor edge. As
shown in Figure 7c, after solely incorporating the joint contrastive learning module, the
model focuses on the local area of the tumor rather than the peripheral areas. Moreover,
compared to Figure 7b, the area of attention of the model is more comprehensive, covering
a larger extent of the tumor area. This is attributed to the joint contrastive learning of
the features of bilateral mammogram views. As shown in Figure 7d through Grad-CAM,
by integrating the joint contrastive module (BMCJL) with the Cross-Mammogram Dual-
Pathway Attention Module (CMDPA), the model is capable of more comprehensively and
accurately focusing on and identifying tumor regions in both CC and MLO views. This not
only enables the model to effectively distinguish between cancerous regions and normal
tissue areas but also mitigates the issue of incorrect feature space matching.

(a) (b)

(c) (d)
Figure 7. A comparison of visualization results for the most suspicious malignant tumor areas in
paired CC and MLO views of the same case predicted by different method groups. (a) Raw image;
(b) Preprocessed Baseline; (c) Preprocessed Baseline Model with BMCJL; (d) FV-Net.

5.4. Comparison with Other Methods

As demonstrated in Table 4, we first conduct a comparison on the well-known pub-
lic INbreast dataset against eight competing methodologies. These methods include
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ConvNext-small, proposed by Liu et al. [45] in 2022; RegNet_x_1_6gf, introduced by
Xu et al. [46] in 2021; MobileNet-v2, presented by Sandler et al. [47] in 2019; EfficientNet-b0
and EfficientNet-b3, proposed by Tan et al. [48] in 2019; ResNext101_32×8d, introduced by
Xie et al. [49] in 2017; and ResNet50 and ResNet101, proposed by He et al. [50] in 2016. Ad-
ditionally, we plot Figure 8, which illustrates the ROC (Receiver Operating Characteristic)
curves of our FV-Net model compared with these eight competing approaches, visually rep-
resenting the classification performance of each method. To ensure fairness, the comparison
of all models is conducted under uniform conditions involving data augmentation, data
preprocessing techniques, training strategies, and Data Division methods. Notably, our
proposed FV-Net model excels over all compared methods in terms of both accuracy and
AUC, achieving an accuracy of 87.34% and an AUC of 0.9322. This further substantiates
the effectiveness of our proposed Cross-Mammogram Dual-Pathway Attention Module
and Bilateral-Mammogram Contrastive Joint Learning in proficiently mining the latent
correlative and distinctive features across bilateral mammogram views.

Additionally, we conduct evaluations on a 20% independent test set, as shown at the
bottom of Table 4. In comparison with the other eight methods, our proposed FV-Net model
achieves the best performance in both accuracy and AUC, reaching 98.02% and 0.9664,
respectively. To more clearly demonstrate the comparative performance of all models,
Figure 9 presents the ROC curves of our method against the other competitors on the 20%
independent test set.

Table 4. Quantitative comparison of different methods on the INbreast dataset and a 20% test set.

Methods View Approach Data Division #Params (M) ACC (%) AUC

Dataset: INbreast

ResNet-50 [50] Four-view patient 105.69 72.00 0.7075
ResNet-101 [50] Four-view patient 178.14 74.00 0.6657
ConvNext-small [45] Four-view patient 190.90 72.67 0.7245
ResNext101_32x8d [49] Four-view patient 346.91 70.00 0.6699
EfficientNet-b0 [48] Four-view patient 21.55 80.00 0.8627
EfficientNet-b3 [48] Four-view patient 49.81 86.67 0.8823
MobileNet-v2 [47] Four-view patient 14.74 80.00 0.8841
RegNet_x_1_6gf [46] Four-view patient 34.75 74.00 0.9029
Ours Four-view patient 71.57 87.34 0.9322

Dataset: 20% test set

ResNet-50 [50] Four-view patient 105.69 96.22 0.7140
ResNet-101 [50] Four-view patient 178.14 96.19 0.6363
ConvNext-small [45] Four-view patient 190.90 96.15 0.6996
EfficientNet-b0 [48] Four-view patient 21.55 96.94 0.9463
EfficientNet-b3 [48] Four-view patient 49.81 97.01 0.9343
MobileNet-v2 [47] Four-view patient 14.74 95.83 0.8572
RegNet_x_1_6gf [46] Four-view patient 34.75 95.97 0.9481
ResNext101_32x8d [49] Four-view patient 346.91 94.96 0.6859
Ours Four-view patient 71.57 98.02 0.9664

Furthermore, as clearly demonstrated in Table 4, compared with some of the other
competing methods, our proposed FV-Net model has a smaller number of parameters
(71.57 M), yet it still maintains the best performance on two different test sets. This
underscores the efficacy of our meticulously designed Cross-Mammogram Dual-Pathway
Attention Module and Bilateral-Mammogram Contrastive Joint Learning module, which
significantly optimize model performance even with a smaller parameter count, thus
confirming the superior efficiency of our model in terms of parameter utilization. This
advantage is particularly valuable in clinical settings with limited computational resources,
as it reduces the computational burden without sacrificing diagnostic accuracy.
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Figure 8. The ROC curves comparison of the classification performance of FV-Net and eight
competing methods on the INbreast dataset.

Figure 9. The comparison of ROC curves for the classification performance of FV-Net and eight
competing methods on a 20% independent test set.

To further present the experimental results, as illustrated in Figure 10, we plot a visual
comparison of the confusion matrix on the INbreast dataset for the FV-Net model versus
the other eight methods. It is evident that our model outperforms in effective classification
capability when compared to the others. This outstanding classification performance can
be attributed to the effective combination of the CMDPA and BMCJL. Moreover, across
both datasets, our methodology yields significant performance enhancements relative to
the baseline model and consistently outperforms all other methodologies assessed. This
unequivocally demonstrates that our approach not only elevates the model’s capacity for
classification but also exhibits certain generalization capabilities.
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To demonstrate that our proposed FV-Net model has higher lesion area recognition
accuracy compared to other assessed model methods, we employ Grad-CAM technology.
This technique generates heatmaps based on the output feature maps of the last convolu-
tional layers of different models and is used to conduct comparisons on the INbreast test set.
The comparison results in Figure 11 clearly show the heatmaps of different models: models
such as ResNet101, ConvNext_small, MobileNet-v2, and RegNet_x_1_6gf mainly focus on
the edges or background areas of the breast; the EfficientNet-b0 and EfficientNet-b3 models
perform slightly better, focusing on the edges of the lesion; additionally, the attention of
ResNext101_32×4d widely disperses across normal breast tissue areas, while the focal areas
of ResNet50 sporadically concentrate within normal breast tissue areas. In contrast, the
FV-Net model identifies breast lesion areas more concentratedly and comprehensively, with
its focus area almost overlapping with the entire lesion area, thereby achieving a more
reasonable and precise diagnosis of breast cancer.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 10. A comparison of the confusion matrices for our method against other methods on the INbreast
dataset. (a) ResNet50; (b) ResNet101; (c) EfficientNet-b0; (d) ConvNext_small; (e) EfficientNet-b3; (f) Reg-
Net_x_1_6gf; (g) MobileNet-v2; (h) ResNext101_32×4d; (i) Ours.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)
Figure 11. Visual comparison of the most suspicious malignant lesion areas predicted by different models.
(a) Raw image; (b) ResNet50; (c) ResNext101_32×4d; (d) EfficientNet-b0; (e) ConvNext_small; (f) Efficient-
Net-b3; (g) RegNet_x_1_6gf; (h) MobileNet-v2; (i) ResNet101; (j) Ours.

6. Conclusions

In this paper, we employ deep learning techniques to classify and diagnose normal and
cancerous cases using bilateral mammograms. We preprocess the original dataset to obtain
updated samples, which enhances the model’s performance in early breast cancer screening
and better conforms to actual clinical diagnostics. We innovatively propose a bilateral
breast four-view feature interaction model named FV-Net, containing two key components
aimed at enhancing the classification capabilities of mammographic images. First, the Cross-
Mammogram Dual-Pathway Attention Module (CMDPA) method achieves the association
matching of the local features of each breast with the local features of the contralateral
breast’s global region. This approach not only effectively mitigates the negative impact
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of misalignment issues in inter-breast feature matching but also captures the consistency
and complementarity information between the bilateral breasts. Furthermore, the Bilateral-
Mammogram Contrastive Joint Learning (BMCJL) module, by processing the recombined
feature maps after bilateral breast associative learning, further enhances the correlation
between similar features and increases the distinguishability of dissimilar features. This
module significantly enhances the model’s ability to recognize distinct features and learn
richer information on similar features. Extensive experiments conducted on test sets show
that each key component of our proposed FV-Net model effectively enhances the model’s
performance. Furthermore, we use Grad-CAM to conduct an interpretability analysis of
the proposed method and the compared models, visualizing the regions of interest during
the models’ decision-making process. This not only demonstrates the credibility and
accuracy of our proposed model in identifying lesion areas but also more fully illustrates
the effectiveness of the component methods we propose. The study results indicate that
on a 20% independent test set, the accuracy reaches 98.02% with an AUC of 0.9664; on the
INbreast test set, the accuracy reaches 87.34% with an AUC of 0.9322. Notably, our method
surpasses the performance of various existing competing approaches.
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