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Abstract: Deep learning image reconstruction (DLIR) algorithms employ convolutional neural net-
works (CNNs) for CT image reconstruction to produce CT images with a very low noise level, even 
at a low radiation dose. The aim of this study was to assess whether the DLIR algorithm reduces the 
CT effective dose (ED) and improves CT image quality in comparison with filtered back projection 
(FBP) and iterative reconstruction (IR) algorithms in intensive care unit (ICU) patients. We identified 
all consecutive patients referred to the ICU of a single hospital who underwent at least two consec-
utive chest and/or abdominal contrast-enhanced CT scans within a time period of 30 days using 
DLIR and subsequently the FBP or IR algorithm (Advanced Modeled Iterative Reconstruction [AD-
MIRE] model-based algorithm or Adaptive Iterative Dose Reduction 3D [AIDR 3D] hybrid algo-
rithm) for CT image reconstruction. The radiation ED, noise level, and signal-to-noise ratio (SNR) 
were compared between the different CT scanners. The non-parametric Wilcoxon test was used for 
statistical comparison. Statistical significance was set at p < 0.05. A total of 83 patients (mean age, 59 
± 15 years [standard deviation]; 56 men) were included. DLIR vs. FBP reduced the ED (18.45 ± 13.16 
mSv vs. 22.06 ± 9.55 mSv, p < 0.05), while DLIR vs. FBP and vs. ADMIRE and AIDR 3D IR algorithms 
reduced image noise (8.45 ± 3.24 vs. 14.85 ± 2.73 vs. 14.77 ± 32.77 and 11.17 ± 32.77, p < 0.05) and 
increased the SNR (11.53 ± 9.28 vs. 3.99 ± 1.23 vs. 5.84 ± 2.74 and 3.58 ± 2.74, p < 0.05). CT scanners 
employing DLIR improved the SNR compared to CT scanners using FBP or IR algorithms in ICU 
patients despite maintaining a reduced ED. 
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1. Introduction 
CT image reconstruction has evolved from the original filtered back projection (FBP) 

to hybrid and model-based iterative reconstruction (IR) algorithms, with a significant de-
crease in the radiation dose [1]. The main advantage of FBP is its computational efficiency, 
whereas its disadvantages include significant noise at low radiation doses and limited 
artifact reduction [1]. Iterative reconstruction (IR) algorithms are widely employed in CT 
image reconstruction to preserve image quality, even in low-dose CT acquisitions, with 
reduced image noise and artifacts [1,2]. Hybrid IR algorithms employ both FBP and IR 
algorithms (ranging from 50% to 90% with complementary levels of FBP) and allow fast 
CT image reconstruction with a reduction in image noise [1] and an improvement in im-
age quality at lower radiation doses. Model-based IR algorithms are fully IR algorithms 
that use forward and backward reconstruction steps from the sinogram domain to the 
image domain [1]. The main advantage of model-based IR is the maintenance of CT image 
quality with low noise, even at low doses; however, its disadvantage is the need for high 
computational power and low capability in the detection rate of low-contrast structures 
on low-dose CT images [1–4]. 
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In recent years, there has been growing interest in the application of deep learning 
image reconstruction (DLIR) algorithms. DLIR is a recently introduced CT image recon-
struction algorithm based on deep learning which employs convolutional neural net-
works (CNNs) for CT image reconstruction to produce CT images with a very low noise 
level, even at low radiation effective dose (ED) [4]. CNNs handle millions of parameters 
trained with thousands of paired high-quality, high-ED, and low-noise ground-truth CT 
images obtained from a large number of phantoms and patients. After training, a low-
dose sinogram is provided to the CNN, and a final image with a very low noise level is 
obtained by comparing the output image to a ground-truth image across multiple param-
eters such as image noise, low contrast resolution, low contrast detectability, and noise 
texture. The backpropagation operation reports the differences to the network, which then 
strengthens some equations and weakens others, and the process is repeated until there is 
a proximity between the output and ground-truth images. The performance of DLIR al-
gorithms for CT image reconstruction relies mainly on the quality and quantity of the 
training data and high-quality reference ground-truth CT images [5,6]. Commercially 
available DLIR algorithms include direct algorithms that use ground-truth images recon-
structed by FBP and sinogram data directly fed into a CNN–True Fidelity (GE Healthcare) 
and Precise Image (Philips Healthcare) and indirect algorithms that use ground-truth im-
ages reconstructed by model-based IR algorithms (AiCE, Canon Medical System). The 
DLIR strengths of the FBP and IR algorithms can be selected by the operator as low (DLIR-
L), medium (DLIR-M), or high (DLIR-H). In our study, we employed high DLIR strength 
according to the default settings of the CT equipment. 

A marked reduction in radiation ED is particularly required in ICU patients who are 
exposed to high radiation exposure, frequently higher than 100 mSv during a single hos-
pital admission, and particularly in those patients with prolonged hospitalization time 
[7,8] due to the extremely frequent use of X-ray imaging modalities. In particular, ICU 
patients undergo frequent CT scans, often with extended scanning lengths, hampered by 
low image quality and artifacts due to external or internal medical devices and patient 
arms placed along the body. No previous study has provided an intra-patient comparison 
between hybrid IR/FBP and DLIR CT reconstruction algorithms implemented in different 
CT scanners in terms of the radiation ED and image quality in ICU patients. 

The aim of the present study was to assess whether the DLIR algorithm may reduce 
the CT effective dose (ED) and improve CT image quality in comparison with FBP and 
iterative reconstruction (IR) algorithms in ICU patients. 

2. Materials and Methods 
2.1. Patients 

This study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Ethics Committee of our hospital (Prot. n. 0000569 approved on 4 January 
2023). Patient informed consent was waived due to the retrospective nature of this study. 
We initially identified all consecutive patients referred to the ICU of our hospital because 
of their severe clinical status, major traumas, or even recent thoracic or abdominal major 
surgery (extended tumor resection or liver, cardiac, or lung transplant) between 1 October 
2021 and 28 February 2023. Subsequently, we retrospectively selected only those patients 
who underwent at least two subsequent chest and/or abdominal contrast-enhanced CT 
scans with comparable scan lengths covering the same body region (chest, abdomen, or 
both chest and abdomen) during the same hospital admission. The DLIR algorithm was 
used in the first CT scan for CT image reconstruction, whereas FBP or Adaptive Iterative 
Dose Reduction 3D (AIDR3D) hybrid or even Advanced Modeled Iterative Reconstruction 
(ADMIRE) model-based IR algorithms were used in the second CT scan. To ensure that 
significant physical changes in patient features, including body mass index, occurred be-
tween the two CT scans, only those obtained within a limited timeframe of 30 days were 
included. 
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2.2. CT Scanning Protocols 
Because it was not possible to use different CT image reconstruction algorithms on 

the same raw data obtained from the same patients owing to the different CT acquisition 
technical settings related to the subsequent CT image reconstruction algorithm (DLIR) ap-
plied to CT scans acquired with a lower tube kV and mAs than IR or FBP, we compared 
different CT scanners equipped with different CT image reconstruction algorithms, ac-
cording to the manufacturer’s technical solutions (Table 1). CT images were reconstructed 
at 3 mm and with a 512 × 512-pixel matrix. The DLIR strength was set to the highest level 
(DLIR-H), according to the manufacturer’s default settings. 

Table 1. CT scanning parameters. FBP = filtered back projection; DLIR = deep learning image recon-
struction; ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative reconstruc-
tion algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D—hybrid iterative reconstruction 
algorithm. 

System (Vendor) Reconstruction Algorithm Pitch 
Somatom Sensation 64  

(Siemens Healthineers, Enlargen, Germany) 
FBP 0.8 

Somatom Definition Edge  
(Siemens Healthineers, Enlargen, Germany) 

ADMIRE 0.6 

Aquilion ONE  
(Canon Medical Systems, Otawara-shi, 

Tochigi, Japan) 
AIDR 3D 0.81 

Revolution Evo  
(GE Healthcare, Chicago, IL, USA) 

DLIR 0.51 

In every patient, CT was performed craniocaudally with a scan range from the lower 
neck to the costophrenic angle level on chest CT and from the diaphragm level to the pel-
vis on abdominal CT before and after iodinated contrast agent injection (ioexol 350 
mgI/mL; Omnipaque 350, GE HealthCare, Barrington, IL, USA) or iodixanol 270 mg/mL 
(Visipaque 270, GE Healthcare, Barrington, IL, USA), iopromide 370 mgI/mL (Ultravist 
370, Bayer, Leverkusen, Germany), or iomeprol 400 mgI/mL (Iomeron 400, Bracco, Milan, 
Italy). Patients were scanned with their arms placed along the body owing to their critical 
clinical status. The volume of contrast medium was calculated based on the patient’s lean 
body weight (LBW) which was estimated from the patient’s weight, height, and gender 
using Boer’s equation [9]. The arterial phase was triggered by placing a region of interest 
(ROI) over the abdominal CT scan at the level of the second lumbar vertebral body and 
starting the scan when the density level achieved 100 HU. The portal venous and late 
phases were obtained at 70 and 180 s after iodinated contrast injection. The contrast agent 
was injected into the antecubital vein (total contrast volume and injection speed adjusted 
by the patient’s body weight to 3–4 mL/sec) and saline push (10 s at the same rate). The 
following CT parameters were used: tube voltage, 100–120 kVp; automatic tube current 
modulation; gantry rotation period, 280 ms; and detector collimation, 0.625 mm. The CT 
dataset was then reconstructed at 1.25 mm section thicknesses with 512 × 512 matrices, 
using standard kernels for soft tissues. 

Although the same scanning protocol was generally used in both the first and second 
CT scans, a mismatch in scanning length, presence or absence of unenhanced CT scans, or 
even the number of contrast-enhanced dynamic phases (arterial, portal venous, or delayed 
phases) was possible between the two subsequent thoracic and/or abdominal CT scans. 
Therefore, these patients were excluded from analysis. In patients who underwent more 
than two repeated CT scans, only the two closest CT scans reconstructed using the DLIR 
and FBP or IR algorithms were considered for analysis. 

Generally, the same iodinated contrast agent dosage and concentration were used in 
both the first and second CT scans unless the use of a different iodinated contrast agent 
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type was required (e.g., suspicion of bleeding after major surgery, change in iodinated 
contrast type and/or injected contrast volume due to anaphylactoid reaction or incoming 
acute kidney injury, even suspicious pulmonary embolism). Patients in whom the io-
dinated contrast agent type, injected volume, and/or iodine dose was changed or modified 
were excluded from the analysis. 

2.3. Radiation Effective Dose Analysis 
The CT dose index volume (CTDIvol) and dose-length product (DLP) were obtained 

retrospectively from CT dose reporting produced automatically by the CT equipment at 
the end of the scan and archived on the PACS. The radiation ED was calculated by multi-
plying the DLP by the body-region-specific conversion coefficient, k, according to the 
ICRP recommendations [10,11]. 

2.4. Visual Image Quality Analysis 
Visual image quantitative analysis was performed 2 weeks before quantitative anal-

ysis. Two radiologists with 3 and 10 years of experience performed independent subjective 
analyses of the three groups of images. The radiologists were blinded to the image recon-
struction techniques and patient characteristics. The images were displayed in random 
order in a preset window, displaying a sequence at a time. The radiologists were able to 
scroll through the images and adjust the window width and position randomly. We used 
a 5-point scale, according to Table 2. 

Table 2. Subjective visual image quality of mediastinal and abdominal parenchyma tissues. 

Score Definition 
1 Poor definition of parenchyma borders and clearly visible noise (unacceptable image) 
2 Moderate definition of parenchyma borders and moderately visible noise (suboptimal image) 
3 Moderate definition of parenchyma borders and barely visible noise (acceptable image) 
4 Good definition of parenchyma borders and barely visible noise (good image) 
5 Excellent definition of parenchyma borders and very low image noise (optimal image) 

2.5. Quantitative Image Quality Analysis 
CT image noise was calculated off-site on a dedicated PC using MATLAB (MATLAB 

version: 9.13.0 (R2022b), Natick, MA, USA: The MathWorks Inc.; 2022) with the Global 
Noise Level (GNL) algorithm for automatic noise measurement [12,13] by a medical stu-
dent with specific competence in CT image quantitation software analysis over 4 years. 
The GN algorithm was used to analyze only the selected slice images. Observers selected 
similar slice locations, and therefore approximately similar noise, by using anatomical 
landmarks for slice selection. This assumption was tested by measuring the variation in 
the selected slice locations across the observers. The slice locations selected by the observ-
ers were averaged, and the slice image closest to this location was selected for GN analysis. 

To objectively compare image quality, the signal-to-noise ratio (SNR) was measured 
for different reconstruction algorithms (FBP, DLIR, AIDR 3D, and ADMIRE). For thoracic 
evaluation, the SD of the values in Hounsfield units (HUs) was measured in regions of 
interest (ROIs) measuring ≥ 1 cm2 drawn in the bilateral abdominal fat (SDax1 and 
SDax2), and the average HU values were measured in the bilateral paraspinal muscles 
(HUPSM1 and HUPSM2). The noise and SNR for each scan were calculated using the fol-
lowing equations: 

Noise = (SDax1 + SDax2)/2 

SNR = (HUPSM1 + HUPSM2)/(SDax1 + SDax2) 
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2.6. Statistical Data Analyses 
Statistical data analyses were performed using SciPy 1.11.2, an open-source software 

using Python 3.12 programming language, by a medical student with specific competence 
in statistical software analysis over 4 years. After the Shapiro–Wilk test failed to show a 
normal distribution, the Wilcoxon signed-rank test for paired data was used to assess the 
differences between the FBP, IR, and DLIR effective doses and image quality. The minimal 
appropriate patient number (n = 65) to be included in this study was estimated by consid-
ering a statistical power of 0.8, a significance criterion of 0.05, and a standard deviation of 
20 for the effective dose expressed in mSv. Cohen’s kappa statistic was calculated for an 
agreement on the independent scoring of the image quality between the two radiologists. 
A kappa statistic of 0.81~1.00 implies an excellent agreement; 0.61~0.80, a substantial 
agreement; 0.41~0.60, a moderate agreement; 0.21~0.40, a fair agreement; and 0.00~0.20, a 
poor agreement. For all statistical tests, a p value < 0.05 was set to indicate a statistically 
significant difference. 

3. Results 
3.1. Patients 

Figure 1 shows the patient flow chart. 

 
Figure 1. Patient flow chart. 

Initially, we identified 14,431 patients who were admitted to the ICU. We excluded 
13,417 patients due to a temporal distance of >30 days between the two subsequent CT 
scans; 860 patients due to a mismatch in the scanning length between the two CT scans (n 
= 350) or differences in CT scanning protocols (n = 251), including the absence of an unen-
hanced scan, different numbers of dynamic phases, or even changes in contrast agent type 
and/or contrast volume administration (n = 259); and 71 patients due to CT scans that did 
not include the chest and/or abdomen (e.g., brain and limb). The total hospitalization pe-
riod was 10–45 days (mean ± SD, 22 ± 10 days). 

Finally, we included 83 patients (Table 3) who underwent CT scans of the chest (n = 
14; 5 patients were scanned on unenhanced CT and during the arterial phase, while 9 pa-
tients underwent both unenhanced CT and contrast-enhanced CT on arterial and portal 
venous phases), abdomen (n = 51; 32 patients scanned on unenhanced CT and arterial 
phase and 19 patients scanned both on unenhanced CT and arterial and portal venous 
phases), and both chest and abdomen (n = 18; 12 patients scanned on unenhanced CT and 
arterial phases and 6 patients scanned both on unenhanced CT and arterial and portal 
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venous phases). The timeframe between the two CT scans considered for quantitative 
analysis was 10.8 ± 8.6 days (range, 1–30 days). 

Table 3. Patient features. 

Patients Total FBP vs. DLIR ADMIRE vs. DLIR AIDR 3D vs. DLIR 
Patients included 83 12 59 12 

Male/female 56/27 9/3 37/22 10/2 
Age, years mean ± SD (range) 59 ± 15 (31–73) 64 ± 8 (52–64) 54 ± 16 (34–73) 50 ± 27 (31–70) 
CT time interval, days mean 

± SD (range) 11 ± 9 (1–30) 17 ± 10 (2–29) 9 ± 8 (1–30) 11 ± 8 (2–27) 

CT scans     
Chest CT 

(percentage) 14/83 (17%) 4/12 (33%) 10/59 (17%) 0/12 (0%) 

Abdomen CT 
(percentage) 51/83 (61%) 5/12 (42%) 35/59 (59%) 11/12 (92%) 

Chest and abdomen CT 
(percentage) 18/83 (22%) 3/12 (25%) 14/59 (24%) 1/12 (8%) 

3.2. Visual Analysis 
The visual analysis results showed significant differences in the image quality of soft 

tissue among the three reconstruction methods (all p < 0.05) (Table 4). The image score of 
DLIR (mean score = 5) was higher than that of ADMIRE (mean score = 4), AIDR 3D (mean 
score = 3), and FBP (mean score = 3) (Table 4). Both radiologists believed that DLIR had 
outstanding noise reduction. The subjective scores of the two radiologists were consistent 
(kappa value range: 0.48–0.91) (Figure 2). 

 
Figure 2. (a–f) Visual analysis. Visual differences in abdominal parenchyma border definition and 
noise among different reconstruction algorithms: (a,b) 45-year-old male patient after major surgery; 
(c,d) 47-year-old male patient after lung transplant; and (e,f) 55-year-old male patient after cardiac 
transplant. Filtered back projection (FBP) (a), Advanced Modeled Iterative Reconstruction 
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(ADMIRE) model-based iterative reconstruction (c), and Adaptive Iterative Dose Reduction 3D 
(AIDR 3D) hybrid iterative reconstruction (e) vs. deep learning image reconstruction (DLIR) (b,d,f). 
FBP, ADMIRE, and AIDR 3D were scored as 2, 4, and 3, respectively, whereas DLIR images were 
scored as 5 by all reviewers. 

Table 4. Dose analysis results. * indicates a p value < 0.05, compared with DLIR. FBP = filtered back 
projection; ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative recon-
struction algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D—hybrid iterative reconstruc-
tion algorithm; DLIR = deep learning image reconstruction; CTDIvol = CT dose index volume; DLP 
= dose-length product. DLIR differed significantly only from FBP in terms of radiation dose, while 
the difference was not found to be significant between DLIR and iterative algorithms and between 
FBP and iterative algorithms ADMIRE and AIDR 3D. 

Algorithm CTDI (mGy) 
Mean ± SD, Range 

DLP (mGy × cm) 
Mean ± SD, Range 

Effective Dose (mSv) 
Mean ± SD, Range 

FBP 29.5 ± 12.46 (6.41–51.79) * 1476.81 ± 626.30 (284–2105) * 22.06 ± 9.55 (3.98–31.57) * 
ADMIRE 29.42 ± 5.86 (3.52–35.27) 1472.86 ± 1191.68 (106–6778) 22.19 ± 17.91 (1.48–101.67) 
AIDR 3D 30.83 ± 5.86 (3.52–35.27) 1545.35 ± 1191.68 (106–6778) 23.08 ± 17.91 (1.48–101.67) 

DLIR 24.67 ± 61.01 (3.45–355.42) 1235.53 ± 873.67 (145.89–4528.42) 18.45 ± 13.16 (2.04–67.93) 

3.3. Effective Dose and Quantitative Analysis 
DLIR differed significantly only from FBP in terms of radiation dose, while the dif-

ference was not found to be significant between DLIR and iterative algorithms and be-
tween FBP and iterative algorithms ADMIRE and AIDR 3D (Table 4). DLIR improved both 
the image noise and SNR compared to both the FBP and IR algorithms (Table 5). Among 
IR algorithms, compared to AIDR 3D, ADMIRE provided similar exposure data (Table 4) 
with lower noise and a higher SNR (Table 5). 

Table 5. Image quality results. * indicates a p value < 0.05 compared to DLIR. FBP = filtered back 
projection; ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative recon-
struction algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D—hybrid iterative reconstruc-
tion algorithm; DLIR = deep learning image reconstruction. DLIR improved the visual score, image 
noise, and SNR compared to both the FBP and IR algorithms. 

Algorithm 
Visual Analysis Mean 

(Range) Noise HU Mean ± SD (Range) SNR HU Mean ± SD (Range) 

FBP 3 (1–3) * 14.85 ± 2.73 (11.50–18.94) * 3.99 ± 1.23 (2.37–6.15) * 
ADMIRE 4 (2–4) * 14.77 ± 32.77 (7.33–105.50) * 5.84 ± 2.74 (0.21–8.71) * 
AIDR 3D 3 (2–3) * 11.17 ± 32.77 (7.33–105.50) * 3.58 ± 2.74 (0.21–8.71) * 

DLIR 5 (4–5) 8.45 ± 3.24 (4.29–18.19) 11.53 ± 9.28 (6.55–30.30) 

4. Discussion 
Radiation ED in CT is determined by technical parameters (kV, mA, collimation, and 

pitch) employed in the acquisition phase. Reconstruction algorithms do not directly re-
duce the radiation dose but may compensate for image quality loss due to a reduction in 
radiation dose or may improve the image quality by maintaining a constant radiation 
dose. In our study, we found that DLIR improved the SNR compared to both the FBP and 
IR algorithms in ICU patients despite maintaining a reduced ED. 

ICU patients are generally exposed to high radiation doses due to frequent and ex-
tended chest and/or abdominal CT scans, especially in patients who undergo major sur-
gery or organ transplant and in patients with prolonged hospitalization time, as in the 
ICU patients included in our study. Therefore, we focused on the ICU patient cohort be-
cause our aim was to analyze the major advantages of DLIR in terms of radiation dose 
exposure and CT image quality under extreme clinical conditions, which justified the use 
of repeated CT scans over a relatively restricted period. 
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Our study confirmed that DLIR for CT images provides significant benefits in terms 
of image quality over the FBP and IR algorithms despite maintaining a reduced ED in ICU 
patients, which emphasizes the advantage of the DLIR approach and its potential in daily 
clinical practice, in keeping with previously published papers [14–16]. 

In our study, DLIR provided a reduction in radiation ED compared to both IR algo-
rithms included in our study, although this result did not achieve statistical significance. 
This was due to the selected CT technical acquisition factors, including the tube voltage 
and automatic tube current modulation grade, which were similar between the different 
CT scanners. Consequently, the radiation ED did not change significantly, with the ad-
vantage of reduced CT image noise, owing to the use of the DLIR algorithm. Most likely, 
DLIR may provide a reduction in the radiation dose, even when compared to IR algo-
rithms, provided that a similar image quality in terms of both the noise level and SNR 
between the DLIR and IR algorithms is preliminarily planned. In this case, a comparable 
SNR between CT images produced by CT scanners employing DLIR vs. those scanners 
employing IR algorithms would imply a higher patient radiation ED in CT scanners using 
IR, which is related to the higher tube current required to reduce noise. This reflects the 
generally higher attention paid to CT image quality than to patient radiation exposure in 
general clinical practice, even if repeated CT scans are required over a limited temporal 
range to strictly monitor clinical evolution, as in ICU patients. 

DLIR may provide an improved image quality even with a reduced ED in ICU pa-
tients who are frequently examined using different X-ray imaging modalities, including 
plain X-ray film and CT scans. CT scans provide the highest dose from medical exposure, 
although they are often penalized by low image quality in ICU critical patients. The main 
result is that all the advantages provided by DLIR algorithms translate into safer imaging 
practices, higher diagnostic confidence and more accurate diagnosis from radiologists, 
and, ultimately, better patient care. Considering this increase, it is reasonable to expect a 
wider implementation of DLIR algorithms in the future given the increasing computa-
tional power of CT scanners. However, further evaluation is needed to investigate the po-
tential differences between DLIR and IR algorithms, even in other anatomical locations 
such as the head or limbs, or in specific diseases, and to assess whether the improved 
image quality provided by DLIR may significantly affect subjective CT image quality, CT 
workflow, and efficiency in terms of the time needed to assess CT images or to achieve the 
correct diagnosis by a radiologist. 

The strict inclusion criteria employed in this study to minimize the intrinsic bias re-
lated to the different CT scanners employed determined a reduced sample size with a 
consequently wide standard deviation. However, the minimal appropriate patient num-
ber (n = 65), which is lower than the number of patients finally included in this study, was 
estimated by considering a statistical power of 0.8, a significance criterion of 0.05, and a 
standard deviation of 20 for the effective dose expressed in mSv. 

The first limitation of the present study includes the approximate approach we used 
for estimating the radiation ED based on the DLP obtained by multiplying the CTDIvol 
by the scan length by the body-region-specific conversion coefficient k [10,11]. Monte 
Carlo (MC) simulation is generally considered the most accurate method for estimating 
radiation ED, owing to its ability to provide an effective and realistic model of the physical 
interactions between radiation and tissues, considering the CT source, filtration, tube cur-
rent, and scanner geometry [10,11]. Moreover, a size-specific dose estimate (SSDE) would 
have been useful in patient dose comparison, provided that patient lateral and anteropos-
terior diameters are known, although the SSDE does not take the organs in the CT scan’s 
field of view into account and is not a measure of ED. The SSDE is a better estimate of 
patient radiation dose from CT than CTDIvol in systems that use automated exposure 
control [17]. 

The second limitation of this study corresponds to the wide variation in CT scanner 
characteristics and technical features related to the use of different CT image reconstruc-
tion algorithms, detector designs and configurations, dose modulation algorithms, and 
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patient positioning/handling which may affect the outcomes of this study. However, there 
is no other way to compare the CT image quality from the same patient by using different 
CT scanners employing different reconstruction algorithms. The basic CT image technical 
parameters—tube voltage, automatic tube current modulation, detector collimation, sec-
tion thicknesses, image matrix, kernels, iodinated contrast agent type, injected volume, 
and/or iodine dose—were kept constant between different scanners. A mismatch in scan-
ning length, presence or absence of unenhanced CT scans, or even in the number of con-
trast-enhanced dynamic phases (arterial, portal venous, or delayed phases) determined 
the exclusion of patients from the analysis. 

Other limitations are the retrospective nature of this study, the reduced sample size, 
and the wide patient population with very different clinical features. 

5. Conclusions 
In conclusion, CT scanners employing DLIR improved the SNR compared to CT 

scanners using FBP or IR algorithms in ICU patients despite maintaining a reduced ED. 
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