
Citation: Ping, X.; Jiang, N.; Meng, Q.;

Hu, C. Prediction of the Benign or

Malignant Nature of Pulmonary Pure

Ground-Glass Nodules Based on

Radiomics Analysis of

High-Resolution Computed

Tomography Images. Tomography

2024, 10, 1042–1053. https://doi.org/

10.3390/tomography10070078

Academic Editors: Pascal N. Tyrrell

and Emilio Quaia

Received: 21 May 2024

Revised: 1 July 2024

Accepted: 3 July 2024

Published: 5 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Prediction of the Benign or Malignant Nature of Pulmonary Pure
Ground-Glass Nodules Based on Radiomics Analysis of
High-Resolution Computed Tomography Images
Xiaoxia Ping , Nan Jiang, Qian Meng and Chunhong Hu *

Department of Radiology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street,
Suzhou 215006, China; pingxiaoxia@suda.edu.cn (X.P.); jiangnan@suda.edu.cn (N.J.);
mengqian1987@suda.edu.cn (Q.M.)
* Correspondence: sdhuchunhong@sina.com

Abstract: To evaluate the efficacy of radiomics features extracted from preoperative high-resolution
computed tomography (HRCT) scans in distinguishing benign and malignant pulmonary pure
ground-glass nodules (pGGNs), a retrospective study of 395 patients from 2016 to 2020 was conducted.
All nodules were randomly divided into the training and validation sets in the ratio of 7:3. Radiomics
features were extracted using MaZda software (version 4.6), and the least absolute shrinkage and
selection operator (LASSO) was employed for feature selection. Significant differences were observed
in the training set between benign and malignant pGGNs in sex, mean CT value, margin, pleural
retraction, tumor–lung interface, and internal vascular change, and then the mean CT value and
the morphological features model were constructed. Fourteen radiomics features were selected by
LASSO for the radiomics model. The combined model was developed by integrating all selected
radiographic and radiomics features using logistic regression. The AUCs in the training set were
0.606 for the mean CT value, 0.718 for morphological features, 0.756 for radiomics features, and 0.808
for the combined model. In the validation set, AUCs were 0.601, 0.692, 0.696, and 0.738, respectively.
The decision curves showed that the combined model demonstrated the highest net benefit.
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1. Introduction

Pulmonary ground-glass nodules (GGNs) are a type of lung lesion that exhibit height-
ened opacity on computed tomography (CT) scans and do not obscure the underlying
bronchial and vascular architectures within the lung parenchyma [1]. Histopathologically,
GGNs are caused by partial alveoli filling due to a variety of reasons, such as thickening
of the alveolar walls caused by fluid accumulation, cellular infiltration, or fibrosis; partial
alveoli collapse; increased capillary blood volume; or a combination of these, which to-
gether lead to the partial replacement of lung air [2]. Consequently, GGNs can represent
benign lesions such as inflammation, hemorrhage, or localized interstitial fibrosis, as well
as lung cancer or pre-cancerous lesions. Some benign GGNs may disappear over time or
with anti-inflammatory treatment, while persistent GGNs often indicate a high risk of lung
cancer [3]. Succony et al. [4] reported that 37% of GGNs disappear on CT review after three
months, whereas 10% of GGNs ultimately develop into invasive lung cancer.

In recent years, with growing health consciousness and the widespread application of
high-resolution CT (HRCT) scans of the chest, the detection of lung cancer presenting as
GGNs has become increasingly frequent [5]. Currently, the clinical management strategy
for pulmonary GGNs, especially pure ground-glass nodules (pGGNs), mainly involves
follow-up examinations [6,7]. However, long-term follow-up may impose substantial
psychological stress and economic burdens on patients [8,9]. If the benign or malignant
nature of GGNs can be predicted at the time of the initial examination, it would significantly
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reduce the need for unnecessary follow-ups and alleviate concerns about underdiagnosing
stable lung cancer nodules. Additionally, it would minimize the resection of benign nodules
without delaying lung cancer diagnosis.

Traditional imaging assessment methods, such as evaluating size, morphology, and
margin characteristics, are still the primary method for distinguishing benign from malig-
nant lung nodules [3,10]. However, these methods often yield unstable results and lack
accuracy in determining the nature of GGNs, particularly for nodules with blurred borders,
slow growth, or atypical morphology [11].

In 2012, Lambin et al. [12] introduced the concept of radiomics, revolutionizing the
analysis and interpretation of medical images. This field has developed rapidly in recent
years. Its applications in pulmonary lesions primarily include predicting the benignity
and malignancy of lung lesions [13,14], as well as forecasting the invasiveness of lung
cancer [15,16], predicting gene mutations [17,18], and assessing prognosis [19,20]. How-
ever, there are fewer studies applying radiomics to the benign and malignant analysis of
pGGNs [21].

In this study, we extracted the CT radiomics features of pGGNs, developed a prediction
model, and compared it with the radiographic features, aiming to explore the value of
radiomics in predicting the malignancy of pGGNs.

2. Materials and Methods
2.1. Study Population

This study was a retrospective study approved by the Ethics Committee of our hospital,
and informed patient consent was waived (approval 2023-No. 203 of the Ethics Committee).

A comprehensive search was conducted to identify all patients who presented with
pulmonary nodules at our institution between 2016 and 2020. Inclusion criteria were as
follows: (1) preoperative chest CT scans available in the Picture Archiving and Communi-
cation System (PACS) with thin-section lung window images (slice thickness < 1.5 mm);
(2) lesions appearing as pure ground-glass nodules; (3) interval between scanning and
surgery < 1 month; and (4) complete pathological data. Exclusion criteria were as follows:
(1) poor scan quality with significant image artifacts (e.g., respiratory motion artifacts,
foreign body artifacts outside the body) not meeting post-processing requirements; (2) inva-
sive diagnostic or therapeutic procedures (e.g., biopsy, radiofrequency ablation) performed
before CT scanning; and (3) simultaneously associated with other tumors. Based on the
inclusion and exclusion criteria, 395 patients were included in this study, comprising
146 males (51.37 ± 12.14 years) and 249 females (52.45 ± 11.43 years), with 128 benign
pGGNs and 267 malignant pGGNs (Figure 1).
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Figure 1. The flow chart shows the inclusion and exclusion criteria of the study. 

2.2. Image Acquisition 
All patients underwent routine CT scans using multi-slice spiral CT: TOSHIBA Aq-

uilion (Toshiba Medical Systems, Ōtawara, Japan); Somatom Sensation 64, Somatom Def-
inition (Siemens Healthineers, Erlangen, German); GE revolution, Discovery CT 750 HD 
(GE Healthcare, Chicago, IL, USA). Patients were scanned in the supine position while 
breath-holding. The scanning range extended from the lung apex to the diaphragm. The 
scanning parameters were as follows: tube voltage of 100 kV (TOSHIBA), 120 kV (GE, 
SIMENS), automatic tube current, matrix 512 × 512, and field of view of 400 mm 
(TOSHIBA), 500 mm (GE, SIMENS). Thin-section lung window images were obtained us-
ing standard algorithms with a slice thickness of 1.0 mm or 1.25 mm, window width of 
1500 HU, and window level of −600 HU. Subsequently, the acquired images were im-
ported into MaZda software (version 4.6, http://www.eletel.p.lodz.pl/programy/mazda/ 
(accessed on 11 January 2021) in a DICOM (digital imaging and communications in med-
icine) format for analysis. 

2.3. Image Analysis and Feature Extraction 
CT imaging characteristics of pulmonary lesions were evaluated, including mean di-

ameter [(long diameter + short diameter)/2], locate(lobe), CT attenuation value, shape 
(round/oval, irregular), margin features (spiculated), tumor–lung interface (clear smooth, 
clear rough, or blurred), pleural retraction (fine linear shadows between the lesion and 
pleura), vacuole sign (1–3 mm air-containing low-density areas within the lesion), vascu-
lar changes including external vascular change (vascular cluster sign) and internal vascu-
lar change (thickening, distortion). Measurements and assessments of images were per-
formed by physicians with 5 and 11 years of diagnostic imaging experience, and a con-
sensus was reached through consultation in case of discrepancies. 

After importing the images into the MaZda software, gray-scale normalization was 
performed using µ ± 3σ to reduce the influence of contrast and brightness variations. The 
lesion images were then reviewed, and the maximum level of the lesion was selected. The 
region of interest (ROI) was manually delineated along the lesion contour using the seg-
mentation tool in MaZda software to obtain the radiomics features (Figure 2). The final 
segmentation of all images was finally completed by the physician with 11 years of expe-
rience in obtaining radiomic features. 
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All patients were randomly assigned to the training set and validation set in a 7:3 ratio,
with 276 cases (89 benign, 187 malignant) in the training set and 119 cases (39 benign,
80 malignant) in the validation set.

2.2. Image Acquisition

All patients underwent routine CT scans using multi-slice spiral CT: TOSHIBA Aquil-
ion (Toshiba Medical Systems, Ōtawara, Japan); Somatom Sensation 64, Somatom Defini-
tion (Siemens Healthineers, Erlangen, German); GE revolution, Discovery CT 750 HD (GE
Healthcare, Chicago, IL, USA). Patients were scanned in the supine position while breath-
holding. The scanning range extended from the lung apex to the diaphragm. The scanning
parameters were as follows: tube voltage of 100 kV (TOSHIBA), 120 kV (GE, SIMENS),
automatic tube current, matrix 512 × 512, and field of view of 400 mm (TOSHIBA), 500 mm
(GE, SIMENS). Thin-section lung window images were obtained using standard algorithms
with a slice thickness of 1.0 mm or 1.25 mm, window width of 1500 HU, and window level
of −600 HU. Subsequently, the acquired images were imported into MaZda software (ver-
sion 4.6, http://www.eletel.p.lodz.pl/programy/mazda/ (accessed on 11 January 2021))
in a DICOM (digital imaging and communications in medicine) format for analysis.

2.3. Image Analysis and Feature Extraction

CT imaging characteristics of pulmonary lesions were evaluated, including mean
diameter [(long diameter + short diameter)/2], locate(lobe), CT attenuation value, shape
(round/oval, irregular), margin features (spiculated), tumor–lung interface (clear smooth,
clear rough, or blurred), pleural retraction (fine linear shadows between the lesion and
pleura), vacuole sign (1–3 mm air-containing low-density areas within the lesion), vascular
changes including external vascular change (vascular cluster sign) and internal vascular
change (thickening, distortion). Measurements and assessments of images were performed
by physicians with 5 and 11 years of diagnostic imaging experience, and a consensus was
reached through consultation in case of discrepancies.

After importing the images into the MaZda software, gray-scale normalization was
performed using µ ± 3σ to reduce the influence of contrast and brightness variations. The
lesion images were then reviewed, and the maximum level of the lesion was selected.
The region of interest (ROI) was manually delineated along the lesion contour using the
segmentation tool in MaZda software to obtain the radiomics features (Figure 2). The
final segmentation of all images was finally completed by the physician with 11 years of
experience in obtaining radiomic features.

2.4. Statistical Analysis

Graphpad-prism (version Prism 9, https://www.graphpad.com/ (accessed on 15 April
2022)) and R software (version 4.2.2, https://www.r-project.org/ (accessed on 1 February
2023)) were utilized for statistical analysis. Normally distributed continuous data were
expressed as mean ± standard deviation (M ± SD) and analyzed using the independent
sample t-test. Non-normally distributed continuous data were represented as median (in-
terquartile range) [M (Q1, Q3)] and analyzed using the Mann–Whitney U test. Categorical
data were presented as numbers (percentages) and analyzed using the chi-square test.

The least absolute shrinkage and selection operator (LASSO) was employed for data
dimensionality reduction and feature selection. LASSO is a regularization method for linear
regression problems that selects a small number of key features in high-dimensional data,
thereby reducing model complexity and preventing overfitting. The selected features were
used to construct a predictive model by logistic regression.

The mean CT value, morphological features, radiomics features, and combined model
were constructed, and the predictive performance of each model was evaluated using re-
ceiver operating characteristic (ROC) curves. A significance level of p < 0.05 was considered
statistically significant. The clinical net benefit of each predictive model was evaluated
using the decision curve analysis (DCA).

http://www.eletel.p.lodz.pl/programy/mazda/
https://www.graphpad.com/
https://www.r-project.org/
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Figure 2. Example of region of interest (ROI) delineation. (a–d) A 42-year-old male was first discov-
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features. Postoperative pathology revealed focal fibrous tissue proliferation with inflammatory cell 
infiltration. (e–h) A 70-year-old male was first discovered with a right upper lobe pGGN in Decem-
ber 2017 (e). The follow-up in October 2020 showed an increase in the nodule size (f). (g,h) show the 
ROI and the extracted radiomics features. Postoperative pathology confirmed adenocarcinoma (pa-
pillary + acinar + lepidic subtypes). 
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Figure 2. Example of region of interest (ROI) delineation. (a–d) A 42-year-old male was first discov-
ered with a left lower lobe pure ground-glass nodule (pGGN) in December 2019 (a). The follow-up in
October 2020 showed no change in the nodule (b). (c,d) show the ROI and the extracted radiomics
features. Postoperative pathology revealed focal fibrous tissue proliferation with inflammatory cell
infiltration. (e–h) A 70-year-old male was first discovered with a right upper lobe pGGN in December
2017 (e). The follow-up in October 2020 showed an increase in the nodule size (f). (g,h) show the ROI
and the extracted radiomics features. Postoperative pathology confirmed adenocarcinoma (papillary
+ acinar + lepidic subtypes).

3. Results
3.1. General Information and CT Imaging Features

Among the 395 patients, there were 267 cases of pulmonary adenocarcinoma and pre-
cancerous lesions, and 128 cases of benign lesions (including chronic inflammation, focal
fibrous tissue proliferation, alveolar epithelial hyperplasia, granulomatous inflammation,
and carbon deposition). Statistical analysis of clinical data and morphological features of
benign pGGNs and malignant pGGNs in the training set revealed significant differences
in mean CT value, sex, margin, tumor–lung interface, pleural retraction, internal vascular
change (all p < 0.05), while age, mean diameter, location, shape, external vascular change,
and vacuole sign showed no statistically significant differences (all p > 0.05) (Table 1,
Figure 3).
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Table 1. Clinical and morphological features of benign and malignant pure ground-glass nodules in
the training set.

Variables Total (n = 276) Benign (n = 89) Malignant (n = 187) Statistic p

Age, mean ± SD 52.42 ± 11.88 51.54 ± 12.30 52.83 ± 11.68 t = −0.85 0.398
Mean diameter, M (Q1, Q3) 10.03 (7.68, 13.34) 9.31 (7.67, 12.59) 10.36 (7.72, 14.07) Z = −1.53 0.127

Mean CT value, M (Q1, Q3) −477.30 (−599.59,
−356.35)

−541.56 (−647.60,
−403.13)

−452.90 (−585.46,
−337.68) Z = −2.85 0.004

Sex, n (%) χ2 = 15.62 <0.001
female 176 (63.77) 42 (47.19) 134 (71.66)
male 100 (36.23) 47 (52.81) 53 (28.34)

Location, n (%) χ2 = 5.50 0.24
RUL 96 (34.78) 34 (38.20) 62 (33.16)
RML 23 (8.33) 3 (3.37) 20 (10.70)
RLL 43 (15.58) 17 (19.10) 26 (13.90)
LUL 71 (25.72) 22 (24.72) 49 (26.20)
LLL 43 (15.58) 13 (14.61) 30 (16.04)

Shape, n (%) χ2 = 0.50 0.481
round or oval 197 (71.38) 66 (74.16) 131 (70.05)
irregular 79 (28.62) 23 (25.84) 56 (29.95)

Margin, n (%) χ2 = 4.63 0.031
not spiculated 180 (65.22) 66 (74.16) 114 (60.96)
spiculated 96 (34.78) 23 (25.84) 73 (39.04)

Tumor−lung interface, n (%) χ2 = 14.82 <0.001
clear smooth 130 (47.10) 48 (53.93) 82 (43.85)
clear rough 78 (28.26) 12 (13.48) 66 (35.29)
blurry 68 (24.64) 29 (32.58) 39 (20.86)

Pleural, n (%) χ2 = 11.54 <0.001
no retraction 199 (72.10) 76 (85.39) 123 (65.78)
retraction 77 (27.90) 13 (14.61) 64 (34.22)

External vascular change, n (%) χ2 = 2.66 0.103
absence 102 (36.96) 39 (43.82) 63 (33.69)
presence 174 (63.04) 50 (56.18) 124 (66.31)

Internal vascular change, n (%) χ2 = 14.10 <0.001
absence 144 (52.17) 61 (68.54) 83 (44.39)
presence 132 (47.83) 28 (31.46) 104 (55.61)

Vacuole sign, n (%) χ2 = 1.90 0.168
absence 226 (81.88) 77 (86.52) 149 (79.68)
presence 50 (18.12) 12 (13.48) 38 (20.32)

t: t-test, Z: Mann–Whitney test, χ2: chi-square test, SD: standard deviation, M: median, Q1: first quartile, Q3: third
quartile, RUL: right upper lobe, RML: right middle lobe, RLL: right lower lobe, LUL: left upper lobe, LLL: left
lower lobe.
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3.2. Radiomics Feature Analysis

A total of 304 radiomics features were extracted for each pGGN, including
histogram features, absolute gradient features, co-occurrence matrix features, and run-
length matrix features [22]. Following LASSO selection, 14 radiomics features associ-
ated with the discrimination of benign and malignant lesions were identified, including
Skewness, S(2,0)SumOfSqs, S(2,0)DifVarnc, S(2,2)Correlat, S(2,2)InvDfMom, S(2,2)DifVarnc,
S(3,3)Correlat, S(3,3)DifVarnc, S(4,4)SumOfSqs, S(4,4)DifVarnc, S(4,−4)Correlat,
S(4, −4)SumVarnc, S(5,−5)DifVarnc, Vertl_ShrtREmp. Among these, Skewness represented
histogram features, Vertl_ShrtREmp represented gray-level run-length matrix features, and
the rest were gray-level co-occurrence matrix features (Figure 4).
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3.3. Construction and Diagnostic Performance of Predictive Models

Clinical and radiographic features of patients in the training set were analyzed us-
ing the chi-square test and Mann–Whitney U test. A model of the mean CT value was
developed, along with a predictive model of morphological features (multivariate logistic
regression was performed by fitting statistically significant characteristics, except the mean
CT value). The area under the curve (AUC) of the mean CT value model in the training
set was 0.606 [95% confidence interval (CI) 0.534–0.678], and that of the morphological
prediction model was 0.718 (95% CI 0.656–0.781). In the validation set, the AUC of the
mean CT value model was 0.601 (95% CI 0.486–0.717), and that of the morphological model
was 0.692 (95% CI 0.589–0.795).

A radiomics predictive model was constructed based on the 14 features selected by
LASSO. The AUC was 0.756 (95% CI 0.696–0.815) in the training set and 0.696 (95% CI
0.590–0.802) in the validation set. The mean CT value, selected morphological features,
and radiomics features were fitted by logistic regression, and a combined model was
constructed in an AUC of 0.808 (95% CI 0.755–0.861) in the training set and 0.738 (95% CI
0.641–0.835) in the validation set (Table 2, Figure 5). The mean CT value model had a lower
predictive performance, the radiomics model outperformed the morphological features
model, and the combined model had the highest predictive performance (Delong test:
p < 0.05) (Table 3). Figure 6 illustrates examples of the combined model successfully
or unsuccessfully classifying the studied nodules. Meanwhile, the DCA showed that the
clinical net benefit of the combined model was greater than that of the other three predictive
models (Figure 7).
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Table 2. Predictive performance of the four models in the training and validation sets.

Models Area 95% CI Specificity Sensitivity NPV PPV FDR FPR

Training set Mean CT value 0.606 0.534–0.678 0.618 0.567 0.404 0.757 0.243 0.382
Morphological features 0.718 0.656–0.781 0.742 0.583 0.458 0.826 0.174 0.258

Radiomics features 0.756 0.696–0.815 0.640 0.775 0.576 0.819 0.181 0.360
Combined 0.808 0.755–0.861 0.865 0.652 0.542 0.910 0.090 0.135

Validation set Mean CT value 0.601 0.486–0.717 0.641 0.613 0.446 0.778 0.222 0.359
Morphological features 0.692 0.589–0.795 0.410 0.900 0.667 0.758 0.242 0.590

Radiomics features 0.696 0.590–0.802 0.821 0.550 0.471 0.863 0.137 0.179
Combined 0.738 0.641–0.835 0.615 0.788 0.585 0.808 0.192 0.385

CI: confidence interval, PPV: positive predictive value, NPV: negative predictive value, FDR: false discovery rate,
FPR: false position rate.
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Table 3. The Delong test between the prediction models in the training set.

Models Statistic p 95% Confidence Interval

Combined vs. Radiomics 2.509 0.012 0.011 to 0.093
Combined vs. Morphological 3.500 <0.001 0.039 to 0.139
Combined vs. Mean CT value 5.016 <0.001 0.123 to 0.281
Radiomics vs. Morphological 0.881 0.378 −0.046 to 0.119
Radiomics vs. Mean CT value 3.561 <0.001 0.067 to 0.232

Morphological vs. Mean CT value 2.548 0.011 0.026 to 0.199
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Figure 6. Examples of the combined predictive model successfully and unsuccessfully classifying
the studied nodules. (a,b) A 60-year-old male with a pure ground-glass nodule (pGGN) in the
right lower lobe. The nodule is round-shaped with a clear-smooth tumor–lung interface and no
spiculation. Postoperative pathology revealed fibrous tissue hyperplasia with inflammatory cell
infiltration. The predictive model classified the nodule as benign. (c,d) A 52-year-old male with
a pGGN in the right upper lobe. The nodule is irregularly shaped with a clear-rough tumor–lung
interface, spiculation, pleural retraction, vacuole sign, and vessel convergence sign. Postoperative
pathology revealed chronic inflammation with stromal fibrous tissue hyperplasia and glandular
hyperplasia. The predictive model classified the nodule as malignant. (e,f) A 67-year-old female
with a pGGN in the left lower lobe. The nodule is irregularly shaped with spiculation and internal
vascular distortion. Postoperative pathology revealed adenocarcinoma (acinar + lepidic subtypes).
The predictive model classified the nodule as malignant. (g,h) A 59-year-old male with a pGGN in
the right lower lobe. The nodule is round-shaped with a vacuole sign and a normal vascular course
within the lesion. Postoperative pathology revealed adenocarcinoma (lepidic + acinar subtypes). The
predictive model classified the nodule as benign.
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4. Discussion

Globally, approximately 1.8 million people die from lung cancer each year, making
it the leading cause of cancer-related deaths [23]. Furthermore, lung cancer accounts
for the highest number of disability-adjusted life years across all age groups of cancer
patients, irrespective of gender [24], indicating that lung cancer results in the greatest loss
of healthy life years. About 75% of patients are already in advanced stages at the time of
diagnosis, and the overall 5-year survival rate for patients with advanced lung cancer is
only about 20% [25]. In contrast, patients with adenocarcinoma in situ and microinvasive
adenocarcinoma who undergo early-stage, complete surgical resection have a 10-year
disease-specific survival rate of 100% [26]. This significant disparity indicates that the
key to improving lung cancer survival rates lies in early detection, diagnosis, and timely
surgical intervention.

Previous studies have shown that the CT value of GGNs can be used to distinguish
between benign and malignant lesions and to differentiate the invasiveness of lung ade-
nocarcinoma [3,27,28]. Yang et al. [3] suggested that a higher mean CT value in pGGNs
may be advantageous for diagnosing malignant tumors, with values of −550 ± 141 HU for
malignant lesions compared to −645 ± 90 HU for benign ones (p < 0.05). Wang et al. [27] con-
ducted an analysis of thin-section CT images of 154 cases with sub-solid nodules and found
that pre-invasive and micro-invasive lesions had lower CT value (−396.81 ± 235.20 HU)
than invasive lesions (−191.64 ± 206.23 HU, p < 0.001). In this study, a statistically signifi-
cant difference was observed in the mean CT value between benign and malignant pGGNs
(−541.56 HU vs. −452.9 HU, p = 0.004). Then, constructing an ROC curve using mean CT
value, the AUC for the training set was 0.606 (95% CI 0.534–0.678), and for the validation
set, it was 0.601 (95% CI 0.486–0.717). This suggests that although there is a difference in
mean CT value between benign and malignant pGGNs, and the diagnostic performance
assessed by CT values alone is limited.

Traditional CT imaging feature analysis can also be used to diagnose the benignity
or malignancy of lung nodules [3,10,29]. Yang et al. [3] performed a multivariate analysis
in the pGGNs subgroup, and discovered that a well-defined border was a significant pre-
dictor favoring the diagnosis of malignancy; the AUC for this predictor was 0.705 (95% CI
0.583–0.828). In this study, there are four significant differences observed in HRCT imaging
manifestations of pGGNs, including margin, pleural retraction, tumor–lung interface, and
internal vascular change, between benign and malignant cases (all p < 0.05). It indicates
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that certain morphological features like margin spiculation, pleural retraction, and vascular
changes within the lesions were more common in the malignant pGGNs compared to the
benign ones. These may attributed to the rapid growth of adenocarcinoma and the irregular
rate of internal growth of the lesion, resulting in uneven infiltration of the surrounding
structures [10,30,31]. Using logistic regression, a morphological feature model was estab-
lished, with an AUC of 0.718 (95% CI 0.656–0.781) in the training set and an AUC of 0.692
(95% CI 0.589–0.795) in the validation set, demonstrating moderate diagnostic performance.
Although morphological analysis and interpretation of CT images contribute to disease
diagnosis, these rely on the expertise and understanding of imaging manifestations by
diagnostic physicians. Moreover, when lesions present as pGGNs, the specificity of imaging
features is insufficient, which can affect the accuracy of image interpretation.

Radiomics, by extracting and analyzing a large number of quantitative imaging fea-
tures from medical images, can capture subtle differences in tissue characteristics that may
not be discernible by the naked eye alone. While benign and malignant lesions may both
manifest as pure ground-glass opacities on HRCT scans, the inherent pathophysiological
characteristics and high degree of histological heterogeneity of lung cancer significantly
distinguish it from benign lesions. Radiomics analysis can extract and quantify these in-
trinsic variations within tissue structures, and offer a nuanced perspective that transcends
conventional imaging assessments [32,33]. Gong et al. [33] employed radiomics analysis
to diagnose ground-glass opacities in four datasets, achieving AUC values of 0.75, 0.55,
0.77, and 0.93. The accuracy was higher than that of two radiologists (53.1%, 56.3%, re-
spectively). In this study, a total of 14 radiomics features with high diagnostic value were
selected to establish the predictive model, with an AUC of 0.756 (95% CI 0.696–0.815) in the
training set and an AUC of 0.696 (95% CI 0.590–0.802) in the validation set. The predictive
value of the radiomics model was higher than the mean CT value and the morphological
features model.

The radiomics model demonstrates strong performance in capturing microstructural
variations in lesions, while clinical and radiographic features primarily reflect macroscopic
manifestations and patients’ background information. The integration of both approaches
(e.g., the combined model) theoretically allows for a more comprehensive assessment of the
pGGNs. In the study, we constructed the combined model and compared it to the radiomics,
the mean CT value, and the morphological model. The combined model exhibited the
highest predictive value in both the training set (AUC = 0.808, 95% CI 0.755–0.861) and
the validation set (AUC = 0.738, 95% CI 0.641–0.835) (Delong test, p < 0.05). Compared
to individual models, the combined model demonstrated superior diagnostic efficacy,
highlighting the potential of radiomics in enhancing diagnostic precision.

This study also has some limitations. Firstly, this is a single-center retrospective
study, which raises the possibility of data bias. Secondly, there is inconsistency among the
CT scanners used for the cases included in this study, potentially impacting the results
despite image normalization efforts. To address these limitations and provide more robust
validation of our findings, future studies will involve collaborative multicenter efforts,
which would help reduce data bias by incorporating a more diverse patient population and
a wider range of imaging equipment. Additionally, multiparameter studies that incorporate
various imaging modalities and clinical parameters could offer a more comprehensive
assessment and strengthen the reliability of the predictive models.

5. Conclusions

In conclusion, we analyzed the clinical data, morphological features, and radiomics
features of pGGNs, and developed a combined model that can non-invasively predict the
benign or malignant nature of pGGNs. This model has the potential to significantly aid in
clinical diagnosis and decision-making processes.
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