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Abstract: Background: Pancreatic cysts in autosomal dominant polycystic kidney disease (ADPKD)
correlate with PKD2 mutations, which have a different phenotype than PKD1 mutations. How-
ever, pancreatic cysts are commonly overlooked by radiologists. Here, we automate the detection
of pancreatic cysts on abdominal MRI in ADPKD. Methods: Eight nnU-Net-based segmentation
models with 2D or 3D configuration and various loss functions were trained on positive-only or
positive-and-negative datasets, comprising axial and coronal T2-weighted MR images from 254 scans
on 146 ADPKD patients with pancreatic cysts labeled independently by two radiologists. Model
performance was evaluated on test subjects unseen in training, comprising 40 internal, 40 external,
and 23 test–retest reproducibility ADPKD patients. Results: Two radiologists agreed on 52% of cysts
labeled on training data, and 33%/25% on internal/external test datasets. The 2D model with a
loss of combined dice similarity coefficient and cross-entropy trained with the dataset with both
positive and negative cases produced an optimal dice score of 0.7 ± 0.5/0.8 ± 0.4 at the voxel level on
internal/external validation and was thus used as the best-performing model. In the test–retest, the
optimal model showed superior reproducibility (83% agreement between scan A and B) in segmenting
pancreatic cysts compared to six expert observers (77% agreement). In the internal/external valida-
tion, the optimal model showed high specificity of 94%/100% but limited sensitivity of 20%/24%.
Conclusions: Labeling pancreatic cysts on T2 images of the abdomen in patients with ADPKD is
challenging, deep learning can help the automated detection of pancreatic cysts, and further image
quality improvement is warranted.

Keywords: AI; ADPKD; pancreas; pancreatic cyst; imaging biomarker; MRI

1. Introduction

In abdominal imaging studies, pancreatic cysts are important to detect because of
their association with pancreatic cancers [1–3]. In autosomal dominant polycystic kidney
disease (ADPKD), pancreatic cysts are a marker of being 5.9 times more likely to have the
PKD2 instead of the PKD1 mutation [4]. PKD2 mutations cause a less aggressive form of
the disease, requiring renal replacement therapy later in life, if at all [5]. PKD2 mutations
usually do not have seminal megavesicles in males and do not have an established vascular
phenotype [6]. Accordingly, it is helpful to identify when pancreatic cysts are present in
ADPKD [7].
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Pancreatic cysts in ADPKD can be challenging to detect on MRI due to their small size,
commonly less than 5 mm. The overwhelming number of cysts in adjacent kidneys and
liver also makes pancreatic cysts like needles in a haystack, which requires radiologists to
perform a deliberate, meticulous inspection. As a result, pancreatic cysts are commonly
missed on abdominal MRI and CT. Deep learning has become promising for lesion segmen-
tation in abdominal imaging [8–15]. Deep learning has been used in segmenting pancreatic
cysts on endoscopic ultrasonography, abdominal CT, and MRI [8–12]. To the best of our
knowledge, deep learning has yet to be applied in segmenting pancreatic cysts on MRI
scans of ADPKD patients, and the presence or absence of pancreatic cysts is rarely included
in MRI radiology reports in spite of its importance.

In this paper, we evaluate the ability of an nnU-Net-based deep learning model to
automatically detect and segment pancreatic cysts in ADPKD subjects.

2. Materials and Methods

This HIPAA-compliant study of existing patient images and medical records was
approved by the local institutional review board. The requirement for informed consent
was waived. Data can be shared with a data sharing agreement, and the executable model
is available at our GitHub repository (https://github.com/Novestars/organ_volume_
measurement/tree/pancreatic_cyst) (accessed on 8 July 2024).

2.1. Subjects

All subjects met the Pei–Ravine criteria [16] for ADPKD diagnosis and had under-
gone abdominal–pelvic MRI including T2-weighted sequences with images stored in the
Weill Cornell Medicine (WCM) Picture Archiving and Communication System (PACS).
Training/validation was performed with T2-weighted images from 146 ADPKD patients,
including 76 with pancreatic cysts and 70 without pancreatic cysts. Testing was performed
using scans on patients not seen in the training data, including internal (n = 40) scanned at
WCM, external (n = 40) acquired at outside institutions but stored in the WCM PACS for
comparison purposes, and test–retest (n = 23) ADPKD patients who were scanned twice
within a short interval, less than 3 weeks, to assess reproducibility. The first and second
scans (scan A and scan B) utilized the same pulse sequences and imaging parameters but
not necessarily the same scanner or field strength.

2.2. Annotations

Each MRI scan included some combination of axial and coronal T2, axial T2 fat
saturation, axial and coronal 3D spoiled gradient echo T1, axial and coronal Steady-State
Free Precession, axial Diffusion Weighted Imaging, and, sometimes, gadolinium-enhanced
images. However, pancreatic cysts were best visualized on the T2-weighted images, so
only axial T2, coronal T2, and axial T2 fat saturation were utilized for model training. MRI
pulse sequence details for those sequences are shown in Supplemental Table S1. Pancreatic
cysts were labeled by a trained operator (S.J.W.) with knowledge of pancreatic anatomy,
and every case was subsequently reviewed by a board-certified radiologist (M.R.P.) with
30 years’ experience in body MRI of ADPKD. Another radiologist with 30 years’ experience
(Y.W.) independently labeled all training, internal validation, and external validation cases
for cysts. Labeling discrepancies were resolved by consensus. Composed labels for each
case summing both radiologists’ contours were generated. Whenever a patient had more
than one pulse sequence available, e.g., axial and coronal T2, a cyst identified on one
sequence was verified on the other sequence prior to labeling on either sequence. In this
way, very small cysts less than 2 mm visible only on a single sequence were excluded,
consistent with the original description of pancreatic cysts in ADPKD showing their more
frequent occurrence with PKD2 mutations [4].

https://github.com/Novestars/organ_volume_measurement/tree/pancreatic_cyst
https://github.com/Novestars/organ_volume_measurement/tree/pancreatic_cyst


Tomography 2024, 10 1150

2.3. Agreement Evaluation

In order to compare contours created by two expert radiologists for training, internal,
and external datasets, composed contours were first created by summing cysts labeled on
all contours. Then, each cyst was identified via connectivity, and percent overlap between
the composed contour and each observer were calculated. Agreement was defined when
the overlap was greater than 50%.

2.4. Model Development

Eight models utilizing the standard nnU-Net encoder–decoder architecture [17] were
compared for the task of annotating pancreatic cysts in T2-weighted images of ADPKD pa-
tients. The network comprised 5 layers with two convolutions per layer. Details regarding
patch size, convolution kernel size, stride size, and normalization scheme used for 2D and
3D models are listed in Table 1.

Table 1. Model architecture details.

Positive only Dataset

Model configuration 2D 3D

Stride size
1 × 1 (layer 1) 1 × 1 × 1 (layer 1)

2 × 2 (layers 2–5) 1 × 2 × 2 (layers 2–3)
2 × 2 × 2 (layers 3–5)

Convolution kernel size
3 × 3 1 × 3 × 3 (layers 1–2)

3 × 3 × 3 (layers 3–5)

Batch size 32 2

Normalization scheme Z Score Z Score

Patch size 320 × 320 48 × 192 × 192

Positive + negative dataset

Model configuration 2D 3D

Stride size
1 × 1 (layer 1) 1 × 1 × 1 (layer 1)

2 × 2 (layers 2–5) 1 × 2 × 2 (layers 2–3)
2 × 2 × 2 (layers 3–5)

Convolution kernel size
3 × 3 1 × 3 × 3 (layers 1–2)

3 × 3 × 3 (layers 3–5)

Batch size 26 2

Normalization scheme Z Score Z Score

Patch size 320 × 384 48 × 192 × 224

All images used for training and testing were anonymized and converted to NIfTI for-
mat. Since the background label dominated these images with few pancreatic cyst labeled
voxels, 50% foreground oversampling was used. Weight decay of 3 × 10−5, 1000 training
epochs, and Z Score normalization were used for all models. Patch size and batch size were
adjusted to fit the positive-only dataset or the positive + negative dataset (Table 1). Hyper-
parameters including loss function, initial learning rate, optimizer, and model configuration
(2D [8] or 3D [10–12]) were explored to optimize pancreatic cyst segmentation.

2.5. Performance Metrics
2.5.1. Internal and External Validation

Ground truth for the 40 internal and 40 external validation cases was determined by
consensus of two expert radiologists. The model output for these internal and external
cases was then compared to ground truth using the dice similarity coefficient (DSC) at the
voxel level and sensitivity and specificity at the scan level using the equations outlined in
the Supplementary Materials.
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2.5.2. Test–Retest Reproducibility

For 23 ADPKD subjects, scanned twice within a 3-week interval with no interven-
ing clinical events, 6 expert observers (Z.H., C.Z., U.S., Y.W., V.B., and H.Y.N.H.), with
experience annotating at least 50 cases each, labeled pancreatic cysts. The pancreatic cysts
visible on the T2-weighted images were expected to remain unchanged between the test
and retest. Therefore, the test–retest reproducibility of the pancreatic cyst annotation by
observer or model was assessed by calculating the percent agreement between scan A and
scan B. If both scan A and B classified the subject as positive or negative for the presence of
a cyst, agreement was recorded; otherwise, disagreement was recorded. Reproducibility
was measured by percent agreement calculated as (# of agreement/# of subjects) × 100.

2.6. Outside Radiologist Reports on External Cases

To determine how much value this algorithm could add to the average radiologist, we
compared the outside radiologist reports as well as the model output to the gold standard
of reference. Reports that did not mention pancreatic cysts were categorized as indicating
no pancreatic cyst for the purpose of assessing accuracy.

3. Results

Demographic data on the 249 subjects utilized for model training/validation and
testing are provided in Table 2. Examples of model output compared to ground truth are
shown in Figure 1.

Table 2. Demographic data on training/validation and test subjects.

Demographics Training/Validation
Testing

Total
Internal External Test–Retest

Patients 146 40 40 23 249

Scans 254 80 81 95 510

DICOM images 15,487 5691 3331 4088 28,597

Male/female (%male) 71:75 (49%) 19:21 (48%) 21:19 (52%) 10:13 (43%) 121:128 (49%)

Age 49 [39, 63] 44 [35, 59] 47 [37, 60] 53 [40, 74] 49 [38, 63]

eGFR I (mL/min/1.73 m2) 60 [38, 84] 63 [41, 88] 76 [51, 90] 62 [42, 132] 61 [39, 85]

BMI (kg/m2) 26 [23, 29] 26 [23, 29] 26 [22, 28] 25 [22, 47] 26 [23, 29]

Ht-TKV (mL/m) 766 [398, 1403] 931 [470, 1382] 590 [336, 1027] 595 [366, 2967] 763 [380, 1310]

# Number of patients (%)
with pancreatic cysts 63 (43%) 13 (25%) 9 (23%) 15 (61%) 100 (40%)

Total # of pancreatic cysts 404 56 39 46 545

Cyst diameter II (mm) 4.1 [3.3, 4.9] 4.2 [3.4, 6.3] 4.3 [3.7, 5.8] 5.1 [4.4, 6.4] 4.2 [3.4, 5.2]

Cyst volume II (mm3) 68 [38, 116] 76 [39, 245] 77 [53, 191] 135 [87, 264] 76 [40, 142]

Mayo imaging class 1A 15 2 10 5 32

Mayo imaging class 1B 33 9 10 7 59

Mayo imaging class 1C 36 14 9 5 64

Mayo imaging class 1D 20 9 7 3 39

Mayo imaging class 1E 16 4 2 3 25

Mayo imaging class NA III 26 2 2 0 30

Genotype PKD1 50 17 10 11 88

Genotype PKD2 11 9 4 2 26
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Table 2. Cont.

Demographics Training/Validation
Testing

Total
Internal External Test–Retest

Genotype other IV 4 1 1 1 7

Genotype inconclusive 8 3 5 2 15

Genotype unknown 74 11 20 8 113

I. Estimated glomerular filtration rate, excluding patients reaching end stage. II. Diameter and volume of an
individual cyst. III. Not applicable—excluding atypical ADPKD and patients receiving renal replacement therapies.
IV. IFT140, IFT144, and PKHD1.
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Figure 1. Example of Model output in a 31-year-old male with ADPKD showing (A) raw axial
T2 SSFSE image, (B) the model correctly labeling the pancreatic cyst (green dot), achieving a dice
similarity coefficient of 0.62 as compared to (C), the ground truth label (blue dot).

3.1. Inter-Observer Variability for Cyst Labeling

Agreement between radiologists for labeling all cysts was limited (52%, 33%, and 25%,
respectively, for all images in the training, internal, and external datasets, as shown in
Table 3). However, agreement was better for larger cysts, >5 mm, reaching 75% in training
data and 47% and 42% in the internal and external test set, respectively.

Table 3. Agreement (cyst level) between radiologist A and radiologist B on label training and
testing data.

Cysts Labeled
Training Internal Test External Test

Axial Coronal All Axial Coronal All Axial Coronal All

Total Number of Cysts # 290 148 438 32 28 60 13 19 32

# (%) by 1 radiologist 144 (50%) 65 (44%) 209 (48%) 22 (69%) 18 (64%) 32 (67%) 10 (77%) 14 (74%) 24 (75%)

# (%) by 2 radiologists 146 (50%) 83 (56%) 229 (52%) 10 (31%) 10 (36%) 28 (33%) 3 (23%) 5 (26%) 8 (25%)

3.2. Model Experiments Results: Internal and External Validation

There were 56 pancreatic cysts in 13 patients on the ground truth evaluation of
40 internal validation cases and 39 pancreatic cysts in 9 patients on the ground truth
evaluation of 40 external validation cases. Several combinations of model hyperparameters
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were explored to create the optimal model for pancreatic cyst segmentation based on in-
ternal and external validation with sensitivity and specificity calculated at the scan level
(Table 4).

Table 4. Comparison of performance in eight nnU-Net models for pancreatic cyst segmentation
using the same internal validation (n = 40) and external validation (n = 40) test sets for each model.
Sensitivity and specificity are calculated at the scan level defined in the Supplementary Materials.
DSC: dice similarity coefficient (mean ± standard deviation); CE: cross-entropy; TI: Tversky Index.

Loss Configuration Dataset *
Internal Validation (n = 40) External Validation (n = 40)

DSC Sensitivity Specificity DSC Sensitivity Specificity

L1

2D
pos only 0.6 ± 0.5 0.16 0.78 0.7 ± 0.5 0.1 0.86

pos + neg 0.7 ± 0.5 0.2 0.94 0.8 ± 0.4 0.24 1.00

3D
pos only 0.6 ± 0.5 0.36 0.87 0.8 ± 0.4 0.05 0.94

pos + neg 0.3 ± 0.5 0.56 0.43 0.6 ± 0.5 0.47 0.73

L2

2D
pos only 0.4 ± 0.5 0.64 0.52 0.5 ± 0.5 0.59 0.63

pos + neg 0.6 ± 0.5 0.2 0.85 0.7 ± 0.4 0.41 0.89

3D
pos only 0.6 ± 0.5 0.6 0.72 0.3 ± 0.4 0.84 0.35

pos + neg 0.3 ± 0.4 0.8 0.26 0.4 ± 0.5 0.71 0.44

* pos = positive (n = 63), neg = negative (n = 83), pos + neg = 146 patients. Bolded row highlights the best overall
performing model.

3.2.1. Optimizers

Both stochastic gradient descent (initial learning rate = 0.01) and Adam (initial learning
rate = 3 × 10−4) were explored. For pancreatic cyst segmentation, Adam consistently
converged faster than stochastic gradient descent during training and was therefore used
for training.

3.2.2. Loss Functions

The following compound loss (L1, Equation (1)) consisting of the dice similarity
coefficient and cross-entropy (CE) was used:

L1 =
TP

TP + 0.5FN + 0.5FP
+ wCECE (1)

Since this model tends to produce false negatives, cross-entropy weighting (wCE) was
set at 0.2. A higher cross-entropy weight was also attempted, yet the model performance
dropped significantly, and therefore, all models adopted a cross-entropy weighting of 0.2.

To further encourage the model to label cysts, the following second loss function
composed of the Tversky Index and cross-entropy (L2, Equation (2)) was also tested:

L2 =
TP

TP + αFN + βFP
+ wCECE (2)

where α = 0.1 and β = 0.9. Although models trained with L2 tend to have higher scan
sensitivity, the specificity dropped due to an increased number of false positives.

3.2.3. Datasets with Only Positive Cases and with Positive and Negative Cases

In addition to cases with pancreatic cysts labeled, cases without any pancreatic cysts
were included to simulate the clinical frequency of pancreatic cysts appearing in ADPKD
and to improve specificity. However, since these negative cases may have exacerbated the
class imbalance problem, models trained with positive cases only were also explored.

Models trained on the dataset with both negative and positive cases outperformed
models trained on the dataset with only positive cases.
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3.2.4. Two-Dimensional vs. Three-Dimensional Configurations

Although 3D segmentation models tend to grasp anatomy better in organ segmen-
tation, 2D models involving less memory may be more effectively trained. We trained
models of both 2D and 3D configurations to compare their performances. We found that
2D models performed better on segmenting pancreatic cysts which typically appeared on
one slice only.

Among the eight models trained, the optimal model was the one using a 2D configu-
ration, a compound DSC, and CE loss and was trained on both negative and positive data.
DSCs of 0.7 and 0.8 at the voxel level were achieved on internal and external validations,
respectively, indicating the accurate identification of pancreatic cysts. Out of 161 scans in
the internal and external test sets, only three false positives were found, hence the near-
100% specificity: one shown in Figure 2 was due to radiologists missing the pancreatic cyst;
the other two were tiny dots labeled on subject’s bowel (Figure 3) and pancreatic duct.
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Figure 3. The model mislabeled a bright signal in a 41-year-old male subject’s bowel (A: blue box) as
a pancreatic cyst (B: green box).

Figure 2 shows a case where expert radiologists failed to label a pancreatic cyst, which
was labeled by the model and agreed by both expert radiologists to be correct afterwards.
Figure 3 shows examples of model failures.

3.3. Test–Retest Reproducibility

Test–retest reproducibility data for 23 ADPKD subjects scanned twice within 3 weeks
are shown in Table 5. The optimum model (Table 4 second row) showed better test–retest
reproducibility (83%) compared to the mean of six observers (79% on all images—see row 3).
Interestingly, observers performed better on axial images compared to coronal images,
while the model was indifferent to the imaging plane.

Table 5. Test–retest reproducibility for detecting pancreatic cysts on successive MRI scans for the
model and 6 expert observers.

Reproducibility (%) Model
Expert Observer

Mean 1 2 3 4 * 5 * 6 *

Axial (n = 23) 87 80 91 70 87 87 74 70

Coronal (n = 21) 91 66 85 65 50 75 75 70

All (n = 23) 83 79 83 70 87 87 74 70

* Medical doctor.

3.4. Outside Radiologist Reports on External Cases

Outside radiologist reports were available for 38 of the 40 external validation cases.
In these 38 reports that could be examined, outside radiologists mentioned the pancreas
in 36 (95%) reports. However, the specific presence or absence of pancreatic cysts was
mentioned in only 12 (32%) of those 38 external case reports. Outside reports were also as-
sessed for the evaluation of kidney volume, liver volume, spleen volume, pleural effusions,
nerve root cysts, seminal megavesicles, prostate midline cysts, and other imaging features
associated with ADPKD (Table S2).
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4. Discussion

These data from 510 scans in 249 patients demonstrate a deep learning model can
detect pancreatic cysts in ADPKD with better reproducibility compared to six expert
observers. The model sensitivity was low, consistent with the low agreement between
two radiologists and reflecting the limitations of these T2-weighted images. The model
specificity was better, providing a promising tool for identifying true pancreatic cysts.

4.1. Segmentation Performance

As expected, the model performance was better on cysts with a diameter between
3 mm and 5 mm, which are the types of cysts dominating the training dataset. Most of the
errors were false negatives, where the model failed to detect a cyst that was present on
both axial and coronal T2-weighted images. It is not surprising that the tortuous pancreatic
duct produced false positives, since these structures can appear cyst-like on a single 2D
image. Generally, the model was effective at discriminating ducts (common bile duct
and pancreatic duct) from pancreatic cysts and made mistakes only with unusually large
common bile ducts or tortuous pancreatic ducts.

4.2. Comparison to Prior Studies

Early pancreatic cyst segmentation efforts by Zhou et al. in 2017 introduced the
two-step segmentation process of first segmenting the pancreas to serve as a mask for lim-
iting the pancreatic cyst search [8]. With 131 contrast-enhanced CT scans, Zhou achieved a
mean unsupervised cyst segmentation DSC of 60%. Abel et al. reported 79% sensitivity for
detecting pancreatic cysts on contrast-enhanced CT scans using 3D nnU-Net after cropping
to slices containing pancreas [10]. The median cyst size was 1.2 cm, and sensitivity dropped
to 40% for small cysts less than 50 mm3, similar to cysts in our study. Duh et al. reported
93% sensitivity and 80% specificity for detecting pancreatic cysts on contrast-enhanced
CT using U-net with skip connections and additive addition gates [11]. However, a true
gold standard for pancreatic cysts of cyst aspiration was available for only 6%. Oh et al.
evaluated several U-Net model variations applied to cropped endoscopic ultrasound im-
ages, finding 98% sensitivity and 99% specificity for the attention U-Net [9]. Endoscopic
ultrasonography, however, is invasive, and contrast-enhanced CT involves ionizing radi-
ation plus a contrast agent injection, neither or which are required for MRI. Mazor et al.
evaluated pancreatic cyst segmentation on a dataset of 158 MRI studies (not ADPKD) with
a training/validation/testing split of 118/17/23, achieving 75% precision and a mean dice
score of 0.8 for pancreatic cysts >5mm diameter [12]. This was promising but not suitable
for ADPKD subjects whose cysts are mostly 5mm or smaller. Our training data (256 scans
from 146 patients and testing data (40 internal, 40 external, and 23 test–retest subjects)) are
larger than any of the prior cohorts in the literature and unique in the application to ADPKD
subjects who have increased pancreatic cyst prevalence. Furthermore, we evaluated mostly
cysts less than 5mm, which were smaller than those in these prior studies. In addition
to internal and external validation, our work includes test–retest validation, which was
not used in prior studies and shows that our model performance reproducibility is better
than human observers. Pancreatic cyst segmentation is substantially more challenging
compared to our previous work segmenting liver cysts in ADPKD [15], which are larger
and more numerous. While in the pancreas, detecting even a single cyst determines the
probability of PKD1 versus PKD2 mutation, nearly all ADPKD subjects have liver cysts;
the critical information is total liver cyst volume and liver cyst fraction, which are not
substantially affected by missing small cysts.

4.3. Clinical Impact

CT and MRI studies on ADPKD patients are complicated to interpret because of the
large number of abdomen/pelvis organs affected by this disease, including the kidneys,
liver, spleen, pancreas, aorta, IVC, stomach, seminal vesicles, vas deferens, prostate, and
nerve roots. For kidneys, meticulous contouring to measure total kidney volume is required,
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and ideally for the liver as well. Accordingly, it is not surprising that the majority of external
radiologist reports have no mention of pancreatic cysts, indicating they were probably not
assessed. But with this deep learning model automatically identifying possible pancreatic
cysts, this feature is less likely to be missed. The benefits of detecting pancreatic cysts
are several. First, the presence of pancreatic cysts, 2 mm or larger, predicts the greater
likelihood of the PKD2 over the PKD1 mutation [4]. Second, it identifies cystic lesions that
could potentially, albeit rarely, progress to pancreatic malignancies. Third, it saves time for
the analysis of ADPKD images and allows the radiologist to focus on other aspects of the
case, which is likely happening anyway, since outside radiologists are not even mentioning
pancreas cysts in most reports.

4.4. Limitations and Future Work

Since our ground truth required cysts to be visible on both axial and coronal images,
better performance may be possible with a model that simultaneously trains on both
axial and coronal images. Another possibility is to include the pancreas and pancreatic
duct mask in the training, although this may not have substantial benefit since the model
only produced one false positive for labeling a cyst outside the pancreas and another for
labeling the pancreatic duct. Training with larger numbers of patients and prospective
validation in a larger cohort will be helpful. Labeling pancreatic cysts on other MRI pulse
sequences that allow better visualization of pancreatic ducts, such as magnetic resonance
cholangiopancreatography, may also improve model performance and promote agreement
between expert radiologists.

5. Conclusions

These data from a deep learning model trained/validated on 249 ADPKD subjects
show that deep learning can identify pancreatic cysts with high reproducibility and speci-
ficity. The currently limited sensitivity will likely improve with more and higher-quality
training data.
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