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Abstract: The concept of ‘brain age’, derived from neuroimaging data, serves as a crucial biomarker
reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning
(ML) and deep learning (DL) integration has transformed the field, providing advanced models
for brain age estimation. However, achieving precise brain age prediction across all ages remains a
significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and
DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses
various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies.
By comparing ML and DL, strengths in forecasting and methodological limitations are revealed.
Finally, key findings from the reviewed articles are summarized and a number of major issues related
to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the
synthesis of the current state of brain age prediction, emphasizing both advancements and persistent
challenges, guiding future research, technological advancements, and improving early intervention
strategies for neurodegenerative diseases.
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1. Introduction

Human development and aging have traditionally been assessed through various
physiological and physical changes over an individual’s lifespan [1,2]. These changes
encompass a wide range of biological processes, such as alterations in muscle mass, bone
density, and cognitive function. However, there is substantial individual variation in how
these processes unfold, influenced by a complex interplay of factors, including lifestyle,
living environment, and genotype [3,4]. Consequently, individuals with the same chrono-
logical age (CA) may exhibit different physiological functions and capabilities, with notable
differences even observed among twins [5,6]. Therefore, relying solely on traditional CA
often proves inadequate in accurately reflecting an individual’s true biological state. To
overcome this limitation, the concept of biological age (BA) has been introduced. BA aims
to provide a more precise reflection of an individual’s physiological condition and aging
process by integrating various biomarkers and health indicators, offering a more nuanced
understanding than CA alone [7]. Recent advances in neuroimaging and machine learning
(ML) have significantly enhanced our ability to assess biological age, particularly in the
context of brain aging. Neuroimaging techniques, when coupled with ML algorithms,
can analyze vast amounts of imaging data to identify patterns and biomarkers indicative
of an individual’s brain age. These data-driven approaches have enabled researchers to
accurately estimate individual brain age, providing deeper insights into the aging pro-
cess and enabling the detection of deviations from the expected aging trajectory [8–11].
Consequently, the concept of brain age gap (BAG) has emerged as a critical metric in this
domain. BAG represents the difference between an individual’s predicted brain age, as

Tomography 2024, 10, 1238–1262. https://doi.org/10.3390/tomography10080093 https://www.mdpi.com/journal/tomography

https://doi.org/10.3390/tomography10080093
https://doi.org/10.3390/tomography10080093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0009-0003-1433-8520
https://orcid.org/0000-0002-9902-893X
https://orcid.org/0009-0003-1403-9491
https://orcid.org/0000-0002-3431-2753
https://doi.org/10.3390/tomography10080093
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography10080093?type=check_update&version=1


Tomography 2024, 10 1239

determined by neuroimaging and ML models, and their CA. A positive BAG indicates that
the brain appears older than the individual’s CA, which may be associated with various
neurodegenerative conditions or accelerated aging processes. Conversely, a negative BAG
suggests that the brain is younger than expected, potentially reflecting better cognitive
health and resilience against age-related decline [12,13].

Predicting brain age across all age groups—from infants and young adults to middle-
aged and elderly individuals—holds substantial significance in both neuroscience and
clinical practice. For infants and young children, early brain age estimation is pivotal in
identifying developmental delays or neurological disorders, facilitating timely interventions
and support during crucial developmental periods [14]. In young adults, understanding
brain age can aid in recognizing early signs of mental health conditions or cognitive impair-
ments that may not yet manifest behaviorally, enabling preemptive strategies to maintain
cognitive health [15]. As individuals transition into middle age, brain age predictions
become essential for monitoring cognitive health, particularly considering lifestyle factors
and comorbidities that influence brain aging [16,17]. This age group can benefit from
tailored interventions aimed at mitigating cognitive decline and promoting neuroplasticity.
Furthermore, in elderly populations, brain age estimation is critical for the early detection
of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s [18,19]. It allows more
accurate prognostic evaluations and the implementation of therapeutic measures to slow
disease progression and improve quality of life. Understanding the brain age across the full
spectrum of life stages can contribute to the broader scientific understanding of the aging
process itself. It can help researchers identify patterns and anomalies in cognitive aging,
leading to the development of targeted therapies and lifestyle interventions that promote
brain health and resilience against age-related cognitive decline.

A series of review articles have elucidated methods for predicting brain age using
neuroimaging data. These reviews primarily discuss the application of ML methods in
brain age prediction, thereby enhancing our understanding of neuroimaging data-driven
tools for this purpose. For example, Jirsaraie et al. conducted a systematic review of multi-
modal brain age studies in 2023 to identify the most significant neuroimaging features [20].
Tanveer et al. provided an extensive discussion on research in the brain age prediction
field from 2017 to March 2022, offering a comprehensive evaluation of the deep learning
(DL) models that have substantially contributed to the existing body of knowledge [2].
Kumari et al. examined various techniques and potential therapeutic applications of brain
age prediction [21], while Seitz-Holland et al. systematically reviewed brain age findings
in neuropsychiatric disorders, highlighting the potential of brain age as a biomarker for
biological aging [22]. Predicting brain age across the entire age spectrum is a crucial yet
challenging endeavor in this field. Models that encompass the full range of human devel-
opment and aging offer superior comparability and robustness compared to those focused
on specific age groups. However, accurately predicting brain age throughout the entire
lifespan necessitates sophisticated model design to accommodate the complex and varied
changes occurring at different life stages. Despite the significance of this task, current re-
views in the field tend to provide broad overviews, lacking in-depth analysis of this critical
area. To address this gap, we conducted a thorough review of the advancements in ML
and DL for lifespan brain age prediction from 2020 to 2024, encompassing peer-reviewed
studies. This review aims to provide a more detailed and comprehensive understanding
of the latest developments and challenges in predicting brain age across the lifespan. By
comparing ML and DL methods, we reveal their predictive advantages and methodological
limitations. We not only elucidate these recent advancements and discoveries but also
carefully discuss the main issues in ML- and DL-based brain age prediction. Through this
study, we aim to clarify the current state of brain age prediction, highlight the progress and
ongoing challenges, and guide future research.



Tomography 2024, 10 1240

2. Literature Search Strategy

We conducted a comprehensive search of three commonly used literature databases
to identify relevant studies: PubMed, ScienceDirect, and Web of Science. The search was
confined to articles published between 2020 and 2024, using the following keywords:
(((machine learning) OR (deep learning) OR (CNN) OR (Transformer)) AND ((brain age)
OR (brain biological age)) AND ((prediction) OR (estimation))). Detailed inclusion and
exclusion criteria for selecting articles included in this study are provided in Figure 1.
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Initially, the search yielded 3231 relevant research papers. To ensure maximum rele-
vance, we performed an iterative selection process. Papers were first excluded if they were
deemed unrelated to the topic or had age range criteria that did not meet our thresholds
(minimum age above 20 or maximum age below 60). Additionally, conference records,
preprint manuscripts, theses, and studies that did not use neuroimaging were excluded
during this phase. Duplicate articles from the literature databases were subsequently
removed. Following a thorough and meticulous evaluation of all the remaining articles,
a total of 52 studies were included in the final review, as they clearly met the inclusion
criteria for this review.

3. Fundamental of Brain Age Predictions Tasks
3.1. Neuroimage Data and Preprocessing Process

In the task of brain age prediction, neuroimaging data play a fundamental role, pro-
viding valuable insights into the complex changes associated with age-related brain de-
velopment and aging processes. Different data modalities contribute to a comprehensive
understanding of the brain’s aging process. Commonly used modalities include T1 mag-
netic resonance imaging (MRI), T2 MRI, diffusion tensor imaging (DTI), and function MRI
(fMRI). It is noteworthy that T1 MRI and T2 MRI data offer structural insights into the
brain, serving as a valuable window for detecting irregularities in gray matter (GM) and
white matter (WM). These modalities excel in describing age-related developmental and
atrophic changes, as well as in identifying morphological alterations such as white matter
lesions. In contrast, DTI is an indispensable tool for studying age-related changes in white
matter connectivity. By examining the diffusion of water molecules within neural fibers,
DTI provides a detailed investigation of the microstructure of white matter. Additionally,
fMRI is crucial for uncovering functional changes in the brain, as it can detect blood flow
and neural activity. This makes it an important tool for exploring patterns of functional
connectivity and revealing the underlying dynamics of brain function.

When incorporating neuroimaging data, such as T1-weighted MRI, into DL or ML
workflows, rigorous preprocessing is an essential step. This process ensures that the
data are standardized and optimized for analysis, minimizing potential biases or errors.
Toolkits such as Statistical Parametric Mapping (SPM, https://www.fil.ion.ucl.ac.uk/spm/
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(accessed on 7 August 2024)), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/ (accessed
on 7 August 2024)), and FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/
docs/#/ (accessed on 7 August 2024)) facilitate this process. Typically, T1 MRI data are
segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
with these segments fed into DL models as 3D density maps or 2D slices. In ML studies,
detailed segmentation using brain atlases, such as the AAL atlas, allows the extraction of
features like cortical thickness and volume. The use of advanced methods, such as the
teacher–student model can further enhance data quality [23].

3.2. ML and DL Models

In the realm of brain age prediction, the employment of ML and DL models has revolu-
tionized the approach towards understanding the intricate processes of brain development
and aging.

ML, a subset of artificial intelligence, has undergone a significant evolution, presenting
a wide array of algorithms tailored for extracting insights from neuroimaging data and
continuously enhancing performance. Key to its application in neuroimaging studies is
the ability to discern intricate patterns that correlate brain images with age-related metrics.
These patterns are unveiled through a spectrum of supervised learning techniques, each
meticulously designed to extract knowledge from annotated datasets.

Figure 2 illustrates the types of ML models. ML models can be categorized into
parametric and non-parametric models based on their structure and learning approach [24].
Parametric models are those that can be defined by a finite set of parameters. The primary
advantage of these models is the significant simplification of the learning process, while
also constraining the scope of learning. Linear regression (LR) is a fundamental ML
method that fits a linear model by minimizing the sum of squared residuals between
observed values and the predictions. Extensions of LR, such as ridge regression (RR),
Lasso regression, and elastic net regression (EN), incorporate regularization techniques to
address potential overfitting through penalty terms on coefficient magnitudes. However,
due to the parametric models’ prior assumptions about data distribution, they struggle to
handle complex data patterns and tend to exhibit significant bias when the training data are
insufficient. Models that do not make extensive assumptions about the form of the target
function are called non-parametric models. These include decision trees (DTs), support
vector regression (SVR), neural networks, Gaussian process regression (GPR), and others.
Non-parametric models are more flexible and capable of capturing complex patterns and
structures in the data. SVR excels in both linear and nonlinear classification and regression
tasks by identifying optimal hyperplanes within high-dimensional spaces. In the realm
of neuroimaging, SVR excels in handling complex, multidimensional data and detecting
nuanced patterns associated with the aging brain. Relevance vector regression (RVR), a
sparse regression model based on Bayesian theory, utilizes Bayesian inference to determine
which training samples are relevance vectors, ultimately generating a sparse model [10].
Compared to SVR, RVR does not require explicit setting of regularization parameters and
epsilon. Instead, it automatically determines the relevance vectors through the Bayesian
inference process. GPR distinguishes itself through its probabilistic approach, offering
predictive distributions rather than singular estimates [25]. This capability strengthens
GPR’s capacity to quantify uncertainty in brain age predictions, which is crucial for making
informed clinical decisions. Random forests (RFs), composed of ensembles of DT, bolster
robustness by aggregating predictions from multiple weaker learners [26]. They effectively
mitigate the risks of overfitting and enhance model generalizability, establishing their
reliability in predicting brain age based on imaging features. Gradient boosting trees
(GBTs) methodically construct DT ensembles to iteratively minimize loss functions, adeptly
capturing the intricate data relationships essential for precise estimation [27]. Additionally,
extreme gradient boosting (XGBoost) stands out for its efficiency in handling vast datasets
and delivering precise predictions, leveraging its regularization properties to optimize
performance [28]. The suite of algorithms presented, spanning from traditional regression

https://surfer.nmr.mgh.harvard.edu/
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methodologies to sophisticated ensemble and tree-based models, represents a collaborative
effort aimed at advancing the frontier of brain age prediction capabilities.
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Figure 2. Types of ML algorithms.

DL, a specialized field within ML, involves algorithms inspired by the structure and
function of the brain’s neural networks. It operates through artificial neural networks
comprising layers of interconnected nodes, or neurons, that process information hierarchi-
cally. This architecture, particularly convolutional neural networks (CNNs), enables deep
learning models to automatically learn representations of data, often leading to superior
performance in image-based tasks [29]. CNNs are composed of several modules, each
serving distinct functions and effectively combined to achieve feature extraction from
neuroimages. The convolutional layers, aptly named, perform convolution operations
to extract image features. Pooling layers then perform parameterized subsampling on
feature maps to reduce image dimensions. Nonlinear activation functions map input data
to corresponding outputs, enabling neural networks to model complex relationships in
the data. Fully connected layers, commonly used as the final layer in CNN architectures,
utilize these extracted features for regression and classification tasks. The loss function
plays a crucial role in guiding weight adjustments within the CNN architecture. Significant
advancements have been made in developing efficient network architectures, exemplified
by VGGNet, ResNet, GoogleNet, DenseNet, EfficientNet, and others. Figure 3 illustrates
the types of DL models. These architectures have demonstrated outstanding performance
in brain age prediction tasks across the entire age spectrum, underscoring the importance
of thoughtful architectural design in leveraging CNNs for effective feature extraction and
modeling complex relationships in neuroimaging data.
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The transformative impact of DL is further amplified by advanced models such as
Transformers. Through self-attention mechanisms, Transformers can capture long-range
dependencies in the data, which is particularly relevant in understanding the progression
of brain aging. This concept is often extended to multi-head attention mechanisms, where
each head can learn different attention weights to capture various types of relationships
more effectively [30]. Originally designed for natural language processing (NLP) and
sequence-to-sequence tasks, Transformers have been adapted for brain age prediction tasks
across the entire age spectrum. By integrating Transformers with CNNs, researchers have
explored rich network architecture paradigms, further enhancing the performance and
applicability of DL in this domain.

3.3. The Evaluation Metric for Brain Age Prediction Tasks

The accuracy of brain age prediction models is typically assessed by calculating the
mean absolute error (MAE) across all subjects in the test set, which indicates the difference
between the predicted age and the CA. The formula for MAE is:

MAE =
1
n∑n

i=1|ŷi − yi|

where n represents the number of subjects in the test set, ŷi denotes the predicted brain
age for the i-th subject, and yi denotes the CA of the i-th subject. However, a single metric
may not provide a comprehensive evaluation of the model’s performance, as MAE can be
misleading, especially when the age range of the test set subjects is overrepresented in the
training set. The additional use of the correlation coefficient (R-values) as an evaluation
metric can help mitigate this issue. R-values reflect the goodness of fit of the predicted age
to the CA, thereby assessing the model’s performance. The formula for R-values is:

R-values =
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where Y represents the mean CA in the test set, and Ŷ denotes the mean predicted brain
age in the test set.

4. A Review of Brain Age Prediction Model
4.1. Brain Age Prediction Using ML Methods

Table 1 provides a summary of the datasets, age ranges, number of subjects, and
model performance metrics for brain age prediction tasks using ML algorithms across
the entire age spectrum. Researchers primarily focus on optimizing existing ML algo-
rithms and models, as well as on sophisticated feature engineering techniques to enhance
predictive accuracy.

Table 1. Summaries of brain age prediction tasks across the entire age spectrum using ML algorithms.

Reference Dataset Age
Range Age Span Subject Data Modality Models MAE

(years) R-Values

Beck et al.
[31] TOP, StrokeMRI 18–95 77 702 dMRI

DT model to
stack

XGBoost
6.99 0.85

Engemann
et al. [32] CamCAN 18–88 70 674

T1 MRI, fMRI,
Magnetoen-

cephalography
(MEG)

RF model to
stack RR 6.75 -

Tesli et al.*
[33] TOP, StrokeMRI 12–92 80 586 T1 MRI RF, XGBoost 6.6 0.68

Ballester
et al. [34]

COBRE, MCIC, UCLA,
TOPSY, CAN-BIND 16–65 49 471 fMRI XGBoost 5.61 0.8

Han et al.*
[1]

Simulated dataset, CoRR,
NKI 12–85 73 125 fMRI

SVR, RVR,
Lasso, EN,

RR, XGBoost
5.14 0.87

Xifra-Porxas
et al. [35] CamCAN 18–88 70 613 T1 MRI, MEG RF model to

stack GRP 4.88 0.94

More et al.*
[36]

CamCAN, IXI, eNKI,
1000 Brains, CoRR,

OASIS-3,
MyConnectcome, ADNI

18–88 70 2953 T1 MRI

RR, Lasso,
EN, and 5
other ML
methods

4.75 0.95

Ly et al. [37] ADNI, IXI, OASIS-3 20–85 65 1248 T1 MRI GPR 4.65 0.6

Han et al.*
[38] HCP, CamCAN, IXI 18–88 70 2281 T1 MRI

Lasso, RR,
EN, and 24
other ML
methods

2.75 0.43

Lee et al.*
[39]

HCP, CamCAN, ISMMS,
COBRE 18–87 69 1584 T1 MRI

RR, Lasso,
EN, and 3
other ML
methods

2.6 -

Kalc et al.
[40]

UKB, IXI, OASIS-3,
Cam-CAN, SALD, NKI,

ADNI, SZ samples
18–90 72 40,070 T1 MRI GRP 1.97 0.95

* indicates that only the performance of the optimal model in the article is shown in table. The absence of
R-values indicates that the performance metric R-values were not reported in this study. The full names of the
datasets are as follows: TOP: the Tematisk Område Psykoser; CamCAN: Cambridge Centre for Ageing and
Neuroscience; COBRE: the Center for Biomedical Research Excellence; MCIC: the schizophrenic and matched
control; UCLA: the UCLA Consortium for Phenomics; TOPSY: the Tracking Outcome in Psychosis; CAN-BIND:
the Canadian Biomarker Network for Depression; CoRR: Consortium for Reliability and Reproducibility; NKI:
Nathan Kline Institute; IXI: Information eXtraction from Images; OASIS: The Open Access Series of Imaging
Studies; ADNI: Alzheimer’s Disease Neuroimaging Initiative; HCP: Human Connectome Project; ISMMS: the
Icahn School of Medicine at Mount Sinai; UKB: UK Biobank; SALD: Southwest University Adult Lifespan; SZ:
schizophrenia patients.

4.1.1. Single-Modality Model

T1 MRI data are the most used modality for brain age prediction tasks spanning the
entire age spectrum. Researchers have explored various feature extraction methods and
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ML models to obtain more accurate predictions. For example, Tesli et al. used preprocessed
T1 MRI data and utilized FreeSurfer to extract 34 cortical thickness and area region of
interest (ROI) values, as well as the average thickness, total area, etc. They employed RF
and XGBoost methods for brain age prediction [33]. Similarly, Han et al. [38] and Lee
et al. [39] employed the same tools and atlases as Tesli et al. to generate measurements of
total intracranial volume, cortical thickness, surface area, and subcortical volumes as input
features for their models. Their studies indicated that different types of ML methods exhib-
ited similar predictive performances. Ballester et al. conducted a study using an XGBoost
model, utilizing volume, area, and thickness measures as model input features [34]. More
et al. designed a comprehensive comparative experiment involving 16 feature representa-
tions and 8 different ML methods to explore the optimal workflow. The results indicated
that the workflow ‘smoothed with a 4 mm FWHM kernel and resampled to 4 mm spatial
resolution + GPR’ performed the best [36]. Similarly, a study by Kalc et al. using the GPR
method trained and processed eight single-tissue-type models (GM/WM combinations)
with different spatial resolutions and FWHM Gaussian kernel smoothing parameters in
the same manner, and PCA was used for data regularization [40]. Additionally, Ly et al.
applied mean centering to whole-brain GM density data, followed by the calculation of the
dot product, to obtain a similarity matrix as input features for the GPR model [37].

fMRI data have also been applied to brain age prediction. Han et al. utilized the
temporal nature of fMRI data, extracting a time series of corresponding brain regions,
and they constructed brain functional networks as input features for the different ML
models [1].

4.1.2. Multimodality Model

Multimodal data provide ML algorithms with more comprehensive information, but
extracting and integrating features from various modalities is challenging. Beck et al. used
diffusion MRI (dMRI) data, estimating six modalities: DTI, diffusion kurtosis imaging
(DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum
imaging (RSI), spherical mean technique multi-compartment (SMT mc), and white matter
tract integrity (WMTI). They selected 20 scalar metrics and extracted the mean skeleton and
20 ROIs based on a probabilistic white matter atlas. These features were used for brain age
prediction with DTI showing the highest accuracy among the single XGBoost models, while
a multimodal DT-stacked XGBoost model performed best overall [31]. Similarly, Engemann
et al. combined MEG, fMRI, and T1 MRI data. They extracted several temporal and
source space features from MEG, ROI-based time series from fMRI, and cortical thickness,
surface area, and subcortical volumes from T1 MRI. Using a RR model and an RF general
function approximator, they integrated these modalities effectively [32]. Xifra-Porxas
et al. fused MEG and T1 MRI data using an RF-stacked GPR model. T1 MRI data were
segmented into GM, WM, and CSF, with GM images further subdivided into cortical and
subcortical regions. The resulting images were vectorized and then z-scored to obtain
feature vectors for each subject. MEG features included power spectral density, amplitude
envelope correlation, and cross-frequency coupling. Canonical correlation analysis (CCA)
was applied for dimensionality reduction before inputting features, achieving excellent
performance [35].

4.2. Brain Age Prediction Using DL Methods

Table 2 summarizes the datasets, age ranges, number of subjects, and model perfor-
mance for the brain age prediction tasks across the entire age spectrum using DL algorithms.
Compared to the ML models, DL models offer greater potential for optimization and im-
provement due to their modular architecture, which allows plug-and-play integration of
various components. Consequently, we classify carefully designed CNN models based on
their primary features into fundamental models, including VGGNet, ResNet, GoogleNet,
DenseNet, EfficientNet, and others. Improved models that use the same basic architecture
often share similar properties and design principles.
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Table 2. Summaries of brain age prediction tasks across the entire age spectrum using DL algorithms.

Reference Dataset Age Range Age Span Subject Data Modality Models MAE (years) R-Values

Wu et al. [41] CamCAN 18–88 70 600 fMRI Ensemble model (FNN,
KNN) 8.89 0.79

Popescu et al. [42]

ABIDE, Beijing Normal University,
Berlin School of Brain Mind,

CADDementia, Cleveland Clinic,
ICBM, IXI, MCIC, MIRIAD, NEO2012,
NKI, OASIS, WUS, TRAIN-39, BAHC,
DLBS, CamCAN, SALD, Wayne state,

OASIS-3, AIBL

18–97 79 3873 T1 MRI 3D U-Net 8.09 0.78

Borkar et al. [43] CamCAN 20–88 68 638 fMRI 2D ResNet 6.8 0.87

Xu et al. [44] CamCAN 18–88 70 600 fMRI 2D Siamese Network 6.2 0.9

Valdes-Hernandez
et al. [45] UF Health System 15–95 80 1559 T1 MRI, T2 MRI 2D GoogleNet 5.86 0.92

Ding et al. [46] SLIM 19–80 61 494 fMRI
3D Ensemble model

(SFCN, Siamese
network)

5.33 0.79

Pardakhti et al. [19] IXI, ADNI-I 20–86 66 609 T1 MRI 3D VGGNet 5.15 -

Besson et al. [47]
ABIDE II, Age-ility, CamCan, CoRR,
DLBS, BGSP, HCP, IXI, MPI-LMBB,

NKI, SALD
7–89 82 6410 T1 MRI GCN 4.58 0.93

Cheng et al. [48]
IXI, SALD, NKI, CoRR, UKB, PNC, 973,

HCP, Organ Transplantation Center,
Tianjin First Central Hospital

8–80 72 3743 T1 MRI 3D VGGNet 4.45 0.96

Ballester et al. [49] PAC2019 17–90 73 3298 T1 MRI 2D ResNet 4.44 -

Kuchcinski et al. [50] IXI, HCP, OBRE, MCIC, NMorphCH,
NKI-RS, PPMI, ADNI 18–70 52 1503 T1 MRI 3D VGGNet 4.4 -

Gopinath et al. [51] Mindboggle-101, ADNI-I 20–61 41 101 T1 MRI GCN 4.35 -

Gautherot et al. [52] IXI, HCP, COBRE, MCIC, NMorphCH,
NKI-RS 18–85 67 2065 T1 MRI 3D VGGNet 4.34 0.92
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Table 2. Cont.

Reference Dataset Age Range Age Span Subject Data Modality Models MAE (years) R-Values

Hwang et al. [53] Seoul National University Hospital, IXI 19–88 69 2360 T2 MRI 2D VGGNet 4.22 0.86

Chen et al. [54] - 18–80 62 712

T1 MRI,
Quantitative
susceptibility

mapping (QSM)

3D U-Net with
Transformer 4.12 0.97

Feng et al. [55]
ADNI, AIBL, NIFD, IXI, BGSP,

OASIS-1, OASIS-2, SALD, SLIM, PPMI,
SchizConnect, DLBS, CoRR, CamCAN

18–97 69 6794 T1 MRI 3D VGGNet 4.06 0.97

Bashyam et al. [56] ADC, AIBL, BLSA, CARDIA, GAP,
PAC, PING, PNC, PennPMC, SHIP 3–95 92 14,468 T1 MRI 2D GoogleNet 3.7 -

Hofmann et al. [57] The LIFE Adult study 18–82 64 2016

T1 MRI,
susceptibility-

weighted
magnitude images

(SWI),
Fluid-attenuated

inversion recovery
images (FLAIR)

3D VGGNet 3.37 -

Duchesne et al. [58] PAC2019 17–90 73 2640 T1 MRI

3D Ensemble model
(Best Linear Unbiased

Predictor, SVR,
VGGNet, ResNet, and

GoogleNet)

3.33 -

Poloni et al. [59] IXI, ADNI min = 20,
max > 70 - 1189 T1 MRI 3D EfficientNet 3.31 0.95

Kianian et al. [60] IBID, IXI 19–77 58 869 T1 MRI 2D XceptionNet 3.25 -

Hepp et al. [61] GNC 20–72 52 10,691 T1 MRI 3D ResNet 3.21 -

Zhang et al. [62] PAC2019 16–90 74 2641 T1 MRI
3D Ensemble model
(VGGNet, ResNet,
GoogleNet, SVR)

3.19 0.95
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Table 2. Cont.

Reference Dataset Age Range Age Span Subject Data Modality Models MAE (years) R-Values

Joo et al. [63] FCP1000, INDI, IXI OASIS-3,
OpenNeuro, CamCAN 18–86 68 3004 T1 MRI

3D Ensemble model
(VGGNet, Multi-layer

Perception)
3.18 0.97

He et al. [64]
MGHBCH, NIH-PD, ABIDE-I, BGSP,

BeijingEN, IXI, DLBS, OASIS-3, ABCD,
HBN, CoRR

0–97 97 16,705 T1 MRI 3D ResNet with
Transformer 3 0.98

Wood et al. [65] KCH, GSTT, IXI 18–95 77 23,865

T1 MRI, T2 MRI,
diffusion-

weighted images
(DWI)

3D DenseNet 2.97 0.97

Dular et al. [66,67] ABIDE, ADNI, CamCAN. CC-359,
FCP1000, IXI, OASIS-2, UKB, OASIS-1 18–95 77 4313 T1 MRI 3D VGGNet 2.96 0.98

Lim et al. [68] OpenNeuro, COBRE, OpenfMRI, INDI,
IXI, FCP1000, XNAT 20–70 50 2788 T1 MRI 3D ResNet with

Transformer 2.82 0.97

Kuo et al. [69] PAC2019 17–90 73 3143 T1 MRI, T2 MRI 3D ResNet 2.81 0.97

Wang et al. [70] COBRE, Beijing-Enhanced, CamCAN,
HCP, SLIM, PPMI 17–60 43 2406 DTI 3D GoogleNet 2.79 0.93

He et al. [71] BGSP, OASIS-3, NIH-PD, ABIDE-I, IXI,
DLBS, HBN, CoRR 0–97 97 8379 T1 MRI 2D VGGNet with

Transformer 2.7 0.99

Cheng et al. [72] OASIS, ADNI-1, PAC2019 17–98 81 6586 T1 MRI 3D DenseNet 2.43 0.99

Leonardsen et al. [73]

HBN, ADHD200, PING, ABIDE, SLIM,
ABIDE-2, Beijing, AOMIC, CoRR,

MPI-LMBB, HCP, FCP1000, NKI, IXI,
Oslo, ADNI, AIBL Roc-land, SALD,

DLBS, CamCAN, UKB, OASIS-3,
OpenNeuro

3–96 93 56,095 T1 MRI 3D SFCN 2.23 -

Zhang et al. [74] FCP1000, ADNI, DLBS, IXI, NRTC,
OASIS, PPMI, SALD 20–80 60 2382 T1 MRI 3D VGGNet with

Transformer 2.2 -

Bellantuono et al. [75] ABIDE 7–64 57 1016 T1 MRI FNN 2.19 0.89
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Table 2. Cont.

Reference Dataset Age Range Age Span Subject Data Modality Models MAE (years) R-Values

Peng et al. [76] UKB, PAC2019 17–90 73 17,801 T1 MRI 3D SFCN 2.14 -

Armanious et al. [77] IXI 20–86 66 562 T1 MRI 3D GoogleNet 1.96 0.98

Fu et al. [78]
ABIDE I, ABIDE II, ADNI, BGSP,

CoRR, DLBS, ICBM, IXI, NKI, OASIS-3,
OpenfMRI, SALD

3–97 94 12,909 T1 MRI 3D OTFPF 1.85 0.99

The absence of R-values indicates that the performance metric R-values were not reported in this study. The full names of the datasets are as follows: ABIDE: the Autism Brain Imaging
Data Exchange; CADDementia: Computer-Aided Diagnosis of Dementia; ICBM: International Consortium for Brain Mapping; MIRIAD: Minimal Interval Resonance Imaging in
Alzheimer’s Disease; BAHC: Brain-Age Healthy Controls; DLBS: Dallas Lifespan Brain Study; AIBL: Australian Imaging Biomarkers and Lifestyle Study of Aging; SLIM: Southwest
University Longitudinal Imaging Multimodal; BGSP: Brain Genomics Superstruct Project; MPI-LMBB: MPI-Leipzig Mind-Brain-Body; PNC: Philadelphia Neurodevelopmental Cohort;
OBRE: Center of Biomedical Research Excellence; NMorphCH: Neuromorphometry by Computer Algorithm Chicago; PPMI: Parkinson’s Progression Markers Initiative; BLSA: Baltimore
Longitudinal Study of Aging; CARDIA: Coronary Artery Risk Development in Young Adults; GNC: the German National Cohort Study; MGHBCH: Massachusetts General and Boston
Children’s Hospitals; NIH-PD: NIH-Pediatric Data; ABCD: The Adolescent Brain Cognitive Development; HBN: Healthy Brain Network; KCH: King’s College Hospital NHS Foundation
Trust; GSTT: Guy’s and St Thomas’ NHS Foundation Trust; CC-359: Calgary-Campinas-359; FCP1000: 1000 Functional Connectomes Project; INDI: International Neuroimaging
Data-sharing Initiative; ADHD200: Attention Deficit Hyperactivity Disorder; PING: Pediatric Imaging, Neurocognition, and Genetics; AOMIC: The Amsterdam Open MRI Collection.
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4.2.1. CNNs

VGGNet, proposed by the Visual Geometry Group at Oxford University in 2014, is
widely adopted in brain age prediction studies spanning all age groups (N = 16). Initially
applied to 2D image tasks [79], its adaptation to brain age prediction demonstrates its prac-
ticality. For instance, Hwang et al. utilized a 2D VGGNet model to validate the feasibility
of predicting brain age across the entire age spectrum using slices of routine clinical T2
MRI slices [53]. Expanding VGGNet to 3D enhances its capability to process complex neu-
roimaging data, though researchers often use simpler, shallow architectures [19,48,50,52,55]
to manage the increased data complexity. One notable adaptation is the simple fully convo-
lutional network (SFCN), which integrates VGGNet principles with fully convolutional
methods, achieving impressive results with a mean absolute error (MAE) of 2.14 years on
the UKB dataset. Building on this, Leonardsen et al. introduced variants like SFCN-sm and
SFCN-reg, demonstrating advancements in discrete and continuous age prediction [73].
Integrating multiple modalities further improves accuracy. Hofmann et al. proposed
a multi-level ensembles approach [57], where the initial phase trains several VGGNets
on various modalities and a linear head model on the validation set. The subsequent
phase integrates the linear head models from different modalities to obtain the final pre-
diction. Despite VGGNet’s effectiveness alone, ensemble models combining it with other
architectures, like Siamese networks [46] and MLP models [63], highlight its role in ad-
vancing brain age prediction. Duchesne et al. used linear regression to integrate DL and
ML algorithms at the decision level, including the best linear unbiased predictor, SVR,
VGGNet, ResNet, and GoogleNet [58]. Similarly, Zhang et al. introduced the weighted
ensemble, assigning weights to different models for different age groups, integrating VG-
GNet, ResNet, GoogleNet, and SVR [62]. These approaches provide valuable insights for
high-performance brain age prediction across the entire age spectrum.

ResNet, introduced by He et al. in 2015 [80], addresses gradient issues and degradation
with its residual structure, linking features across convolutional layers. In brain age
prediction tasks spanning all ages, ResNet models are prevalent (N = 8). For instance,
Hepp et al. utilized a 3D-extended ResNet with Grad-CAM to highlight brain subregions,
like the ventricles, insular lobe, and basal ganglia, and the internal capsule relevance [61].
Ensembling multiple ResNet models enhances robustness. Kuo et al. fused predictions
from five ResNet models using input-level fusion and decision-level fusion techniques,
achieving high predictive performance [69]. Similarly, Ballester et al. employed ResNet18
with input-level fusion using dual-channel GM and WM slices and decision-level fusion
across axial, coronal, and sagittal plane slices [49]. These ensemble strategies underscore
the importance of carefully selecting derived phenotypes from single-modality data.

Introduced by Google in 2014, GoogleNet excelled in the 2014 ImageNet Large-Scale
Visual Recognition Challenge with remarkable efficiency, using significantly fewer param-
eters than VGGNet16 [81]. Its standout feature, the inception module, employs diverse
convolution kernel sizes to capture multi-scale perceptions. In brain age prediction tasks
spanning all ages, GoogleNet or its design principles are widely adopted (N = 7). For in-
stance, Bashyam et al. used GoogleNet (Inception-ResNet-v2) pre-trained on ImageNet for
their DeepBrainNet approach [56], demonstrating its utility in linking brain age differences
and cognitive function [20]. Kianian et al. utilized a variant of the inception architecture,
Xception [60], which enhances computational efficiency for smaller images by restructuring
the convolutional process [82]. This design makes Xception highly efficient for processing
small-scale images. Their 2D CNN model, the greedy dual-stream, integrated both local
and global image pathways. Extending GoogleNet to 3D poses computational and memory
challenges. Wang et al. integrated atrous spatial pyramid pooling layers into a shallow
architecture to balance computational demands with effective multi-scale information ex-
traction [70]. Armanious et al. enhanced predictive performance by combining GoogleNet
and SqueezeNet [77], leveraging SqueezeNet’s parameter efficiency alongside GoogleNet’s
capabilities, achieving competitive results with an MAE of 1.955 years.
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DenseNet, proposed by Huang et al. in 2017, builds on ResNet concepts with dense
connectivity, ensuring direct links between all layers to enhance feature reuse and extrac-
tion [83] It has gained traction in brain age prediction studies across all ages. Wood et al.
used a 3D DenseNet121 model [65], while Cheng et al. incorporated DenseNet’s dense
connections into a two-stage network for brain age estimates [72].

EfficientNet, known for optimizing model size, depth, and resolution via compound
scaling, achieves efficient performance and higher accuracy in image classification tasks [84].
Poloni et al. extended the EfficientNet to a 3D model for brain age prediction, using
hippocampal region image blocks and employing a systematic two-stage transfer learning
approach across different age groups [59]. The initial stage involved pre-training the model
using image blocks from subjects aged 20–70 years. In the subsequent stage, they refined
the pre-trained model by including image blocks from subjects over 70 years old.

Feedforward neural networks (FNNs) are characterized by their unidirectional flow
of information, which progresses from the input layer, through any intermediate hidden
layers, and culminates at the output layer. In the context of DL, the term is applied to FNNs
that possess a substantial depth, consisting of multiple interconnected layers. Wu et al.
employed an FNN to map data from a high-dimensional feature space to a low-dimensional
embedding, subsequently using KNN regression to perform brain age prediction across
the full age spectrum [41]. In contrast, Bellantuono et al. adopted a different methodology,
extracting patches from preprocessed T1 MRI data. These patches were then vectorized
and used to construct correlation matrices. The node strength, derived from these matrices,
was utilized as a feature set for brain age prediction using an FNN [75].

The U-Net architecture, was specifically designed for the purpose of biomedical image
segmentation [85]. This model has garnered significant attention due to its proficiency in
capturing and maintaining finer-grained scale information, a feature that is particularly
advantageous for tasks that require high-resolution analysis. In the realm of brain age
prediction, Popescu et al. have showcased an innovative application of the U-Net model in
their research [42].

Graph convolutional networks (GCNs), as a specialized category of CNNs, represent
a pioneering paradigm in the field of deep learning [86]. The unique attribute of GCNs
lies in their ability to seamlessly integrate with non-Euclidean data structures, which are
prevalent in complex domains such as brain connectivity graphs [87]. Besson et al. have
exemplified the application of GCNs by designing a model that is based on the ResNet
architecture, achieving commendable model performance [47]. Additionally, Gopinath
et al. proposed a novel graph pooling technique that is adept at effectively aggregating
multiple surface-valued data [51].The core of this innovation is the method’s ability to
synthesize graph nodes via a learned spectral graph embedding process. This process not
only enriches the representational power of the model but also significantly enhances its
predictive capabilities.

Two specialized networks are also reported in this review. Xu et al. utilized a Siamese
network with node convolution (SNNC), a novel approach that deviates from the conven-
tional single-sample input paradigm. By employing sample pairs as the input, the SNNC is
adept at mitigating the challenge of insufficient sample sizes [44]. The results of their study
demonstrated that SNNC is capable of delivering robust predictions even with a modest
number of samples. Fu et al. proposed an optimal transport-based feature pyramid fusion
(OTFPF) network, which has set a new benchmark in the accuracy of brain age prediction
across the full age spectrum [78].

4.2.2. CNNs with Transformers

In the quest for enhanced predictive models in the domain of brain age prediction,
researchers have ingeniously merged the distinct capabilities of CNNs and Transformers.
This strategic integration has culminated in a robust architecture framework that is adept at
capturing both local and global information in complex datasets. A direct approach involves
using a CNN-based model for feature extraction, which is then followed by a Transformer
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model for features fusion. He et al. exemplified this approach with a dual-pathway model,
where VGGNet serves as the backbone architecture. Ingeniously designed global–local
transformers are employed to integrate global contextual information and fine-grained local
information [71]. Similarly, Chen et al. further advanced this concept with the development
of the Segmentation-Transformer-Age-Network, a two-stage model aimed at improving
brain age prediction accuracy. Initially, a U-Net-inspired segmentation model delineates
brain structures. Subsequently, a segmentation Transformer amalgamates global and local
features to enhance prediction accuracy [54]. Parallel to these developments, an alternative
strategy involves the modular integration of the self-attention mechanism, inherent to
Transformer models, into CNN architectures. This innovative approach represents a subtle
yet powerful fusion of transformative elements. For instance, the FiA-Net model by
He et al., with ResNet as its backbone, incorporates hierarchical fusion modules with
attention mechanisms, significantly boosting model performance [64]. Likewise, Lim
et al. introduced a multi-hop graph attention (MGA) module that constructs local and
global connections using image features extracted by CNNs [68]. Additionally, Zhang
et al. effectively integrated anatomical features extracted from DL modal models with
imaging-based feature sets through an anatomy feature attention (AFA) module [74].

5. Discussion

With the growing interest of researchers in the field of brain age prediction across
the entire age spectrum, a wide range of ML and DL models have been adopted and
optimized, yielding commendable results. However, it must be acknowledged that brain
age prediction based on neuroimaging data across the full age spectrum still faces ongoing
and complex challenges. In the following discussion, we analyze and elucidate several key
aspects, including model architectures and dataset construction, among other significant
dimensions. These aspects collectively highlight the complexity of the brain age predic-
tion task across the entire age spectrum, underscoring the necessity for innovation and
continuous research to overcome the persistent challenges in this field.

5.1. ML vs. DL

Neuroimaging data are renowned for their inherent richness of information. Tradi-
tional ML methods typically require manual feature extraction, a process fraught with
complexity and variability in predictive efficacy based on the engineered features [36]. This
complexity has driven the exploration of various ML approaches to better harness the
potential of neuroimaging data. For ML methods, although parametric ML models are
simple to construct and can significantly simplify the learning process, they assume prior
knowledge about the data distribution [36,38,39]. This assumption makes them less capable
of handling complex data models and prone to large biases when the training data are in-
sufficient. Therefore, researchers tend to prefer non-parametric ML models for the complex
task of brain age prediction across the entire age spectrum. However, this flexibility comes
at the cost of higher computational complexity and the necessity for large datasets to fully
exploit their advantages. For example, Kalc et al. used a GPR model and achieved very high
predictive performance on the UKB database [40]. The substantial size of the UKB dataset
allowed the GPR model to effectively learn and generalize from the data, demonstrating
its potential in handling complex neuroimaging information. In contrast, Ly et al., who
also used a GPR model for brain age prediction, encountered relatively poor predictive
performance due to the smaller dataset they employed [37]. This disparity underscores
the importance of dataset size in the efficacy of non-parametric models. Furthermore, Han
et al. [38] and Lee et al. [39] conducted performance comparison experiments of various
ML methods, providing additional insights into the dynamics between parametric and
non-parametric models. Their studies revealed that when the dataset is relatively small,
parametric and non-parametric ML models exhibit similar predictive performances. This
finding suggests that the advantages of non-parametric models become more pronounced
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with larger datasets, highlighting the critical role of data volume in achieving superior
predictive accuracy.

The emergence of DL, particularly CNNs, has revolutionized this landscape by au-
tomating feature extraction. This technological leap empowers researchers to process and
analyze neuroimaging data more efficiently. However, despite the tremendous potential
demonstrated by DL methods, the decision on whether to choose ML or DL approaches in
practical applications remains inconclusive.

Figure 4 illustrates marked performance disparities between ML and DL methods in
this review. The performance comparison included the performance results of 29 different
models reported in 11 studies that utilized ML models (with multiple models used in the
studies by Tesli et al. [33], Han et al. [1], More et al. [36] and Lee et al. [39]), as well as
the performance results of 38 different models from 38 studies that employed DL models.
Each data point in the figure represents the performance of a model on the test set. To
assess the significance of the differences between groups, the Mann–Whitney U test was
performed for pairwise comparisons among the four subgroups: parametric ML models,
non-parametric ML models, DL models, and ensemble DL models. Additionally, the Mann–
Whitney U test was also conducted between the ML model performances (parametric ML
models and non-parametric ML models) and the DL model performances (DL models and
ensemble DL models). In terms of MAE, DL methods exhibit significantly superior results
compared to those of the ML methods (p = 0.003). Similarly, for R-values, the DL methods
also outperform the ML methods (p < 0.001). These findings underscore DL’s efficacy
in accurately predicting brain age across the entire age spectrum. However, it must be
acknowledged that DL models, especially CNNs, typically require more computational
power compared to ML models due to their complex architecture and large number of
parameters [88].
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Figure 4. Model performance differences between DL and ML methods. The white line represents
the median, and the white square indicates the mean. Each data point in the figure represents
the performance of a model on the test set. SPSS Mann–Whitney U test was used to analyze the
differences between each group; * represents p < 0.05, ** represents p < 0.01; *** represents p < 0.001.
(a) exhibits MAE for different types of models, (b) exhibits R-values for different types of models.

For DL models, different model architectures exhibit varying levels of performance.
Figure 5 illustrates a comparison of several commonly used DL models for brain age predic-
tion tasks across the entire age spectrum (N = 38). Each data point in the figure represents
the performance of a model on the test set. The architecture of a DL model significantly
impacts its performance, as evidenced by the results. Simple architectures like VGGNet
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demonstrate superior performance compared to more advanced architectures like ResNet.
One reason VGGNet performs better is due to its relatively straightforward architecture.
This structure allows VGGNet to capture hierarchical features effectively without being
overly complex. Additionally, the simplicity of VGGNet facilitates more efficient training
and better generalization to unseen data. GoogleNet outperforms other individual models,
including VGGNet. GoogleNet’s success can be attributed to its inception modules. These
modules allow the model to perform convolutions with multiple filter sizes simultaneously,
capturing a variety of feature scales and leading to a richer representation of the data. While
ensemble models generally aim to leverage the strengths of multiple models, the basic
ensemble model does not outperform individual models like VGGNet and GoogleNet. This
finding suggests that the manner in which the models are combined plays a critical role in
the success of ensemble approaches. A basic ensemble might not sufficiently integrate the
complementary strengths of its constituent models, leading to suboptimal performance. In
contrast, the superior performance of models integrated with Transformers highlights their
capability to handle complex patterns in data more effectively. Their attention mechanisms
enable them to focus on relevant parts of the input data, capturing long-range dependencies
and intricate patterns that other models might miss. This makes Transformer-integrated
models particularly suitable for tasks involving high-dimensional data like neuroimaging.

Tomography 2024, 10, FOR PEER REVIEW 16 
 

 

might miss. This makes Transformer-integrated models particularly suitable for tasks in-

volving high-dimensional data like neuroimaging. 

 

Figure 5. The performance differences among various DL models. The white line represents the 

median, and the white square indicates the mean. Each data point in the figure represents the per-

formance of a model on the test set. (a) exhibits MAE for different types of DL models, (b) exhibits 

R-values for different types of DL models. Due to the limited reporting of R-values for ResNet, the 

boxplot does not include ResNet. 

Post hoc interpretability of inference processes in brain age prediction models across 

the full age spectrum aids researchers in understanding the key factors influencing model 

decisions and the trajectories of brain development and aging. Compared to DL models, 

ML models generally offer greater transparency. For highly interpretable models like RF 

or DT, the importance of features can be assessed by estimating each feature’s impact on 

prediction performance, as demonstrated by Engemann et al. [32]. For more complex ML 

models, post hoc interpretability methods such as SHapley Additive exPlanations (SHAP) 

provide valuable insights. For instance, Ballester et al. explored the interactions between 

SHAP scores for each feature and group as a function of brain age gap, identifying total 

gray matter volume as the most significant feature in predicting brain age for patients 

with schizophrenia [34]. Similarly, Han et al. found that in predicting brain age in healthy 

subjects, the most important features included total intracranial volume, cortical thickness 

in frontal regions (superior frontal gyrus, caudal middle frontal gyrus, and pars triangu-

laris), parietal regions (precuneus and supramarginal gyrus), and the surface area of re-

gions in the superior frontal gyrus, lateral orbitofrontal gyrus, and middle temporal gyrus 

[38]. Due to the larger number of parameters in DL models, post hoc interpretability is 

more challenging compared to ML models. Class activation mapping (CAM) and its de-

rivatives are among the most commonly used techniques for interpreting DL models in 

brain age prediction tasks across the full age spectrum, as demonstrated in the studies by 

Besson et al. [47], Feng et al. [55], Zhang et al. [74], Gautherot et al. [52], and Hepp et al. 

[61]. Additionally, Hofmann et al. applied the layer-wise relevance propagation (LRP) al-

gorithm and identified pronounced contributions from voxels surrounding the ventricles 

and at the borders [57]. Wood et al. [65] and Lee et al. [39] employed occlusion sensitivity 

analysis to interpret their models. It is worth noting that some novel visualization tech-

niques differ from traditional methods. For instance, He et al. designed a global–local at-

tention mechanism model that uses patches with optimal MAE performance to construct 

heatmaps, capturing subtle neuroanatomical changes associated with different age 
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Post hoc interpretability of inference processes in brain age prediction models across
the full age spectrum aids researchers in understanding the key factors influencing model
decisions and the trajectories of brain development and aging. Compared to DL models,
ML models generally offer greater transparency. For highly interpretable models like RF
or DT, the importance of features can be assessed by estimating each feature’s impact on
prediction performance, as demonstrated by Engemann et al. [32]. For more complex ML
models, post hoc interpretability methods such as SHapley Additive exPlanations (SHAP)
provide valuable insights. For instance, Ballester et al. explored the interactions between
SHAP scores for each feature and group as a function of brain age gap, identifying total
gray matter volume as the most significant feature in predicting brain age for patients with
schizophrenia [34]. Similarly, Han et al. found that in predicting brain age in healthy sub-
jects, the most important features included total intracranial volume, cortical thickness in
frontal regions (superior frontal gyrus, caudal middle frontal gyrus, and pars triangularis),
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parietal regions (precuneus and supramarginal gyrus), and the surface area of regions in
the superior frontal gyrus, lateral orbitofrontal gyrus, and middle temporal gyrus [38].
Due to the larger number of parameters in DL models, post hoc interpretability is more
challenging compared to ML models. Class activation mapping (CAM) and its derivatives
are among the most commonly used techniques for interpreting DL models in brain age
prediction tasks across the full age spectrum, as demonstrated in the studies by Besson
et al. [47], Feng et al. [55], Zhang et al. [74], Gautherot et al. [52], and Hepp et al. [61].
Additionally, Hofmann et al. applied the layer-wise relevance propagation (LRP) algorithm
and identified pronounced contributions from voxels surrounding the ventricles and at the
borders [57]. Wood et al. [65] and Lee et al. [39] employed occlusion sensitivity analysis
to interpret their models. It is worth noting that some novel visualization techniques
differ from traditional methods. For instance, He et al. designed a global–local attention
mechanism model that uses patches with optimal MAE performance to construct heatmaps,
capturing subtle neuroanatomical changes associated with different age groups [71]. He
et al. discovered that in children aged 0–5 years, the model focused more on the frontal
lobe, transitioned to the deep gray matter regions in children aged 5–20 years, gradually
shifted its focus to the parietal lobe between ages 30–35, then returned to the frontal lobe at
ages 35–40, and then shifted back at 35–40 years until 65–70 years [71].

5.2. Construction of a Neuroimaging Dataset Spanning the Entire Age Spectrum

Creating a comprehensive dataset that spans the entire age spectrum is a challenging
endeavor due to the inherent difficulty in obtaining a large volume of neuroimaging
data across all age groups. Typically, such datasets are constructed by amalgamating
several neuroimaging datasets, each focusing on different age segments. This approach
helps to cover the full range from early childhood to old age, enabling researchers to
study the brain’s development and aging processes comprehensively. Pediatric datasets
provide crucial information on brain development during early years, capturing rapid
growth and significant changes in brain structure and function. These datasets are vital for
understanding the foundational stages of neural development. Adolescent datasets, on the
other hand, offer insights into the significant changes occurring during puberty, a critical
period characterized by brain maturation and reorganization. Understanding these changes
is essential for studying the impact of puberty on cognitive and emotional development.
Adult datasets are essential for understanding the stable phase of brain function, where
major developmental changes have subsided, and the brain’s structure and function are
relatively stable. These datasets help researchers explore the neural basis of cognitive
abilities, mental health, and the effects of various environmental factors on the brain. Elderly
datasets are critical for studying age-related cognitive decline and neurodegenerative
diseases. They provide invaluable data for investigating the progression of conditions
such as Alzheimer’s disease (AD) and other dementias, as well as understanding the
normal aging process. By integrating these diverse datasets, researchers can create a more
holistic view of brain aging across the entire human lifespan. However, this method also
introduces challenges related to data harmonization, variability in imaging protocols, and
demographic differences, which must be carefully managed to ensure the reliability and
validity of the combined dataset.

Extensive publicly available neuroimaging databases facilitate brain age prediction
tasks across the entire age spectrum. One of the most commonly used databases is the IXI
dataset (N = 24), which contains multimodal neuroimaging data, including T1 MRI, T2 MRI,
MRA, and dMRI, from approximately 600 healthy subjects aged 19 to 87. This database
is particularly notable for its ease of access and broad age range, making it a valuable
resource for researchers. Another significant resource is the Cam-CAN (N = 16) database,
a large-scale collaborative research project by the University of Cambridge, which aims
to use epidemiological, cognitive, and neuroimaging data to understand how individuals
can best retain cognitive abilities into old age. It includes MRI, fMRI, MEG, and various
cognitive experiment data from nearly 700 healthy subjects aged 18 to 88, providing a
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comprehensive view of brain function across different age groups. The ADNI database
is also widely used in brain age prediction tasks across the full age spectrum (N = 13).
This database aims to explore the progression of AD and includes MRI and PET images,
genetic data, and cognitive test results from AD subjects, individuals with mild cognitive
impairment (MCI), and healthy controls, aged 50 to 97.

Thanks to these publicly available neuroimaging datasets, researchers have con-
structed personalized study cohorts by integrating multiple datasets, resulting in cohorts
spanning ages 41 to 97. Figure 6a shows the distribution of studies across various age ranges,
with the majority of studies focusing on an age span between 60 and 80. Figure 6b displays
the model prediction performance across different age spans. In regression tasks, model
performance generally decreases with broader age spans. We calculated the Spearman
correlation coefficient between age span and model performance, revealing no significant
correlation between subject age span and prediction accuracy. This suggests that while
models across all age groups exhibit some variability in age spans, their performances
remain comparable.
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Due to the varying collection protocols and equipment used across different publicly
available neuroimaging datasets, the study cohorts constructed from multiple datasets ex-
hibit heterogeneity. This heterogeneity can potentially enhance model generalization [73,78],
but it might also make it more challenging for models to learn patterns [48]. The incon-
sistency in neuroimages can make it more difficult for ML or DL algorithms to identify
and learn the underlying relationships and patterns. Figure 7 shows the performances of
models when using different numbers of datasets. The results indicate that for ML models,
the MAE significantly decreases as the number of datasets used increases (Spearman cor-
relation: p = 0.0423, R-values = −0.6190), although there is no significant improvement in
R-values. Conversely, this trend is not observed in DL models. This suggests that utilizing a
greater diversity of heterogeneous data presents greater challenges for brain age prediction
models, particularly those based on ML. However, DL models, owing to their superior
feature learning capabilities, are better equipped to address these challenges to some extent.
To enhance model generalization performance, it is advisable to integrate a broader array
of datasets when constructing the dataset.
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Leonardsen et al. assembled a study cohort from 23 publicly available neuroimaging
datasets, including T1 MRI data from 56,095 subjects aged 3 to 96. This represents the
largest to date for brain age prediction tasks across the entire age spectrum, encompassing
nearly all commonly used public neuroimaging datasets, such as IXI, ADNI, Cam-CAN,
UKB, and ABIDE. The models trained on this cohort demonstrated highly competitive pre-
dictive performance [73]. In contrast, Popescu et al. complied a study cohort from 21 public
neuroimaging datasets, establishing it as the second most heterogeneous dataset for brain
age prediction tasks across the entire age spectrum. However, this cohort included only
T1 MRI data from 3873 subjects aged 18 to 97. Due to the high heterogeneity and smaller
dataset size, the models exhibited suboptimal performance [42]. This underscores the im-
portance of careful consideration when constructing heterogeneous datasets. Additionally,
Feng et al. collected over 30,000 T1 MRI datasets from multiple open neuroimaging sources,
spanning ages 18 to 97. They applied a balanced sampling approach incorporating both
“oversampling” and “under-sampling” techniques, providing insights into the addressal of
potential dataset imbalance issues [55]. Few public datasets cover the entire age spectrum,
while there are more datasets focusing on adolescent brain development and elderly brain
aging. This often results in study cohorts with a higher proportion of adolescent and elderly
subjects and a relative scarcity of middle-aged subjects, leading to imbalances [64,71,73]. To
address potential issues arising from age imbalance, the sampling approach used by Feng
et al. is a commonly employed method [55]. However, it is worth noting that repeated data
might introduce new potential problems. It is also noteworthy that different racial groups
often exhibit variations in brain structure. Existing public neuroimaging datasets make it
challenging to construct racially balanced datasets. For instance, the IXI dataset primarily
consists of white individuals, and the ADNI dataset has limited representation of non-white
individuals [89]. Similar racial biases are also present in the UKB dataset [90]. Models
trained on such datasets for the entire age spectrum raise concerns about generalizability.
Addressing this challenge requires close international collaboration to develop models that
generalize robustly across different cultural and genetic backgrounds [91]. It is noteworthy
that external validation across diverse populations and geographic regions can help ensure
the broad applicability of models. Furthermore, the trajectories of brain development and
aging differ between sexes. Therefore, differences in sex distribution within training data
may reduce the generalizability of models. To mitigate potential sex distribution bias in
brain age prediction across the entire age spectrum, researchers often thoughtfully include
sex as a feature in model inputs [63].
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5.3. Challenges and Future Directions

Multimodal Data Integration: Due to the requirement for large datasets that span the
full age spectrum, most existing studies have predominantly relied on single-modality
T1-weighted MRI data. To achieve a more comprehensive and accurate estimation of
brain age, it is crucial to integrate multiple imaging modalities. This approach would
likely offer deeper insights into the biomarkers associated with brain development and
aging trajectories, ultimately leading to a more holistic understanding of brain aging across
different life stages.

Exploration of DL Model Architectures: As highlighted in our literature review, DL
models have become a focal point in this field due to their superior performance compared
to ML models. Although the introduction of Transformer models has invigorated the
development and exploration of DL models, research on DL architectures in this domain
is still in its early stages. Improved Transformer models, such as Retentive Network,
Reformer, and Linformer, have yet to be thoroughly explored. Additionally, there is a lack
of comprehensive studies that benchmark the performance of various DL architectures
using unified datasets and evaluation metrics.

Model Interpretability: ML models, especially DL models, inherently possess “black
box” characteristics, meaning the reasoning and decision-making processes of these models
are often opaque. Moreover, in the complex task of brain age prediction across the full
age spectrum, models with transparent algorithms tend to underperform compared to DL
models. Research on the interpretability of DL models is limited. Therefore, future studies
should incorporate post hoc interpretability techniques. This approach could not only help
uncover novel biomarkers related to brain development and aging but could also inform
decisions that may impact patient outcomes.

6. Conclusions

Research indicates that DL methods significantly outperform ML methods. Among DL
methods, the strategic integration of Transformer models within DL frameworks demon-
strates the highest overall model performance. Constructing comprehensive age-spectrum
study cohorts is a critical step in brain age prediction tasks. The results suggest that the age
span does not significantly impact model performance, while including a larger number of
subjects subtly enhances model performance. While increasing data heterogeneity increases
the difficulty of model learning, it also improves model generalization. When constructing
age-spectrum study cohorts, it is essential to consider the balance of age, race, and gender.
Future efforts should prioritize establishing balanced and heterogeneous study cohorts,
designing more advanced DL model architectures and collectively focusing on enhancing
predictive insights into the complex processes of brain development and aging.
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5. Hautasaari, P.; Savić, A.M.; Loberg, O.; Niskanen, E.; Kaprio, J.; Kujala, U.M.; Tarkka, I.M. Somatosensory Brain Function and
Gray Matter Regional Volumes Differ According to Exercise History: Evidence from Monozygotic Twins. Brain Topogr. 2017, 30,
77–86. [CrossRef] [PubMed]

6. de Manzano, Ö.; Ullén, F. Same Genes, Different Brains: Neuroanatomical Differences Between Monozygotic Twins Discordant
for Musical Training. Cereb. Cortex 2018, 28, 387–394. [CrossRef] [PubMed]

7. Levine, M.E. Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronolog-
ical Age? J. Gerontol. Ser. A 2013, 68, 667–674. [CrossRef] [PubMed]

8. Singh, N.M.; Harrod, J.B.; Subramanian, S.; Robinson, M.; Chang, K.; Cetin-Karayumak, S.; Dalca, A.V.; Eickhoff, S.; Fox, M.;
Franke, L.; et al. How Machine Learning Is Powering Neuroimaging to Improve Brain Health. Neuroinformatics 2022, 20, 943–964.
[CrossRef] [PubMed]

9. Cole, J.H. Multimodality Neuroimaging Brain-Age in UK Biobank: Relationship to Biomedical, Lifestyle, and Cognitive Factors.
Neurobiol. Aging 2020, 92, 34–42. [CrossRef]

10. Franke, K.; Ziegler, G.; Klöppel, S.; Gaser, C. Estimating the Age of Healthy Subjects from T1-Weighted MRI Scans Using Kernel
Methods: Exploring the Influence of Various Parameters. NeuroImage 2010, 50, 883–892. [CrossRef]

11. Xiong, M.; Lin, L.; Jin, Y.; Kang, W.; Wu, S.; Sun, S. Comparison of Machine Learning Models for Brain Age Prediction Using Six
Imaging Modalities on Middle-Aged and Older Adults. Sensors 2023, 23, 3622. [CrossRef] [PubMed]

12. Elliott, M.L.; Belsky, D.W.; Knodt, A.R.; Ireland, D.; Melzer, T.R.; Poulton, R.; Ramrakha, S.; Caspi, A.; Moffitt, T.E.; Hariri, A.R.
Brain-Age in Midlife Is Associated with Accelerated Biological Aging and Cognitive Decline in a Longitudinal Birth Cohort. Mol.
Psychiatry 2021, 26, 3829–3838. [CrossRef] [PubMed]

13. Jawinski, P.; Markett, S.; Drewelies, J.; Düzel, S.; Demuth, I.; Steinhagen-Thiessen, E.; Wagner, G.G.; Gerstorf, D.; Lindenberger, U.;
Gaser, C.; et al. Linking Brain Age Gap to Mental and Physical Health in the Berlin Aging Study II. Front. Aging Neurosci. 2022,
14, 791222. [CrossRef] [PubMed]

14. Berger, I.; Slobodin, O.; Aboud, M.; Melamed, J.; Cassuto, H. Maturational Delay in ADHD: Evidence from CPT. Front. Hum.
Neurosci. 2013, 7, 67013. [CrossRef] [PubMed]

15. Silva, C.C.V.; El Marroun, H.; Sammallahti, S.; Vernooij, M.W.; Muetzel, R.L.; Santos, S.; Jaddoe, V.W.V. Patterns of Fetal and
Infant Growth and Brain Morphology at Age 10 Years. JAMA Netw. Open 2021, 4, e2138214. [CrossRef] [PubMed]

16. Lin, L.; Zhang, G.; Wang, J.; Tian, M.; Wu, S. Utilizing Transfer Learning of Pre-Trained AlexNet and Relevance Vector Machine
for Regression for Predicting Healthy Older Adult’s Brain Age from Structural MRI. Multimed. Tools Appl. 2021, 80, 24719–24735.
[CrossRef]

17. Lin, L.; Jin, C.; Fu, Z.; Zhang, B.; Bin, G.; Wu, S. Predicting Healthy Older Adult’s Brain Age Based on Structural Connectivity
Networks Using Artificial Neural Networks. Comput. Methods Programs Biomed. 2016, 125, 8–17. [CrossRef]

18. Varzandian, A.; Razo, M.A.S.; Sanders, M.R.; Atmakuru, A.; Di Fatta, G. Classification-Biased Apparent Brain Age for the
Prediction of Alzheimer’s Disease. Front. Neurosci. 2021, 15, 673120. [CrossRef] [PubMed]

19. Pardakhti, N.; Sajedi, H. Brain Age Estimation Based on 3D MRI Images Using 3D Convolutional Neural Network. Multimed.
Tools Appl. 2020, 79, 25051–25065. [CrossRef]

20. Jirsaraie, R.J.; Kaufmann, T.; Bashyam, V.; Erus, G.; Luby, J.L.; Westlye, L.T.; Davatzikos, C.; Barch, D.M.; Sotiras, A. Benchmarking
the Generalizability of Brain Age Models: Challenges Posed by Scanner Variance and Prediction Bias. Hum. Brain Mapp. 2023, 44,
1118–1128. [CrossRef]

21. Soumya Kumari, L.K.; Sundarrajan, R. A Review on Brain Age Prediction Models. Brain Res. 2024, 1823, 148668. [CrossRef]
[PubMed]

22. Seitz-Holland, J.; Haas, S.S.; Penzel, N.; Reichenberg, A.; Pasternak, O. BrainAGE, Brain Health, and Mental Disorders: A
Systematic Review. Neurosci. Biobehav. Rev. 2024, 159, 105581. [CrossRef] [PubMed]

23. Muksimova, S.; Umirzakova, S.; Mardieva, S.; Cho, Y.-I. Enhancing Medical Image Denoising with Innovative Teacher–Student
Model-Based Approaches for Precision Diagnostics. Sensors 2023, 23, 9502. [CrossRef] [PubMed]

24. Khadse, V.M.; Mahalle, P.N.; Shinde, G.R. Statistical Study of Machine Learning Algorithms Using Parametric and Non-Parametric
Tests: A Comparative Analysis and Recommendations. Int. J. Ambient Comput. Intell. IJACI 2020, 11, 80–105. [CrossRef]

25. Cole, J.H.; Ritchie, S.J.; Bastin, M.E.; Valdés Hernández, M.C.; Muñoz Maniega, S.; Royle, N.; Corley, J.; Pattie, A.; Harris, S.E.;
Zhang, Q.; et al. Brain Age Predicts Mortality. Mol. Psychiatry 2018, 23, 1385–1392. [CrossRef] [PubMed]

26. Valizadeh, S.A.; Hänggi, J.; Mérillat, S.; Jäncke, L. Age Prediction on the Basis of Brain Anatomical Measures. Hum. Brain Mapp.
2017, 38, 997–1008. [CrossRef] [PubMed]

27. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
28. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

https://doi.org/10.1016/j.bpsgos.2023.09.006
https://www.ncbi.nlm.nih.gov/pubmed/38130847
https://doi.org/10.1038/s41467-022-28735-5
https://doi.org/10.1007/s10548-016-0531-1
https://www.ncbi.nlm.nih.gov/pubmed/27761665
https://doi.org/10.1093/cercor/bhx299
https://www.ncbi.nlm.nih.gov/pubmed/29136105
https://doi.org/10.1093/gerona/gls233
https://www.ncbi.nlm.nih.gov/pubmed/23213031
https://doi.org/10.1007/s12021-022-09572-9
https://www.ncbi.nlm.nih.gov/pubmed/35347570
https://doi.org/10.1016/j.neurobiolaging.2020.03.014
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.3390/s23073622
https://www.ncbi.nlm.nih.gov/pubmed/37050682
https://doi.org/10.1038/s41380-019-0626-7
https://www.ncbi.nlm.nih.gov/pubmed/31822815
https://doi.org/10.3389/fnagi.2022.791222
https://www.ncbi.nlm.nih.gov/pubmed/35936763
https://doi.org/10.3389/fnhum.2013.00691
https://www.ncbi.nlm.nih.gov/pubmed/24298243
https://doi.org/10.1001/jamanetworkopen.2021.38214
https://www.ncbi.nlm.nih.gov/pubmed/34882181
https://doi.org/10.1007/s11042-020-10377-8
https://doi.org/10.1016/j.cmpb.2015.11.012
https://doi.org/10.3389/fnins.2021.673120
https://www.ncbi.nlm.nih.gov/pubmed/34121998
https://doi.org/10.1007/s11042-020-09121-z
https://doi.org/10.1002/hbm.26144
https://doi.org/10.1016/j.brainres.2023.148668
https://www.ncbi.nlm.nih.gov/pubmed/37951563
https://doi.org/10.1016/j.neubiorev.2024.105581
https://www.ncbi.nlm.nih.gov/pubmed/38354871
https://doi.org/10.3390/s23239502
https://www.ncbi.nlm.nih.gov/pubmed/38067873
https://doi.org/10.4018/IJACI.2020070105
https://doi.org/10.1038/mp.2017.62
https://www.ncbi.nlm.nih.gov/pubmed/28439103
https://doi.org/10.1002/hbm.23434
https://www.ncbi.nlm.nih.gov/pubmed/27807912
https://doi.org/10.1214/aos/1013203451


Tomography 2024, 10 1260

29. Xu, X.; Lin, L.; Sun, S.; Wu, S. A Review of the Application of Three-Dimensional Convolutional Neural Networks for the
Diagnosis of Alzheimer’s Disease Using Neuroimaging. Rev. Neurosci. 2023, 34, 649–670. [CrossRef] [PubMed]

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30.

31. Beck, D.; de Lange, A.-M.G.; Maximov, I.I.; Richard, G.; Andreassen, O.A.; Nordvik, J.E.; Westlye, L.T. White Matter Microstructure
across the Adult Lifespan: A Mixed Longitudinal and Cross-Sectional Study Using Advanced Diffusion Models and Brain-Age
Prediction. NeuroImage 2021, 224, 117441. [CrossRef]

32. Engemann, D.A.; Kozynets, O.; Sabbagh, D.; Lemaître, G.; Varoquaux, G.; Liem, F.; Gramfort, A. Combining Magnetoencephalog-
raphy with Magnetic Resonance Imaging Enhances Learning of Surrogate-Biomarkers. eLife 2020, 9, e54055. [CrossRef]

33. Tesli, N.; Bell, C.; Hjell, G.; Fischer-Vieler, T.; I Maximov, I.; Richard, G.; Tesli, M.; Melle, I.; Andreassen, O.A.; Agartz, I.; et al. The
Age of Violence: Mapping Brain Age in Psychosis and Psychopathy. NeuroImage Clin. 2022, 36, 103181. [CrossRef]

34. Ballester, P.L.; Suh, J.S.; Ho, N.C.W.; Liang, L.; Hassel, S.; Strother, S.C.; Arnott, S.R.; Minuzzi, L.; Sassi, R.B.; Lam, R.W.; et al. Gray
Matter Volume Drives the Brain Age Gap in Schizophrenia: A SHAP Study. Schizophrenia 2023, 9, 1–8. [CrossRef]

35. Xifra-Porxas, A.; Ghosh, A.; Mitsis, G.D.; Boudrias, M.-H. Estimating Brain Age from Structural MRI and MEG Data: Insights
from Dimensionality Reduction Techniques. NeuroImage 2021, 231, 117822. [CrossRef]

36. More, S.; Antonopoulos, G.; Hoffstaedter, F.; Caspers, J.; Eickhoff, S.B.; Patil, K.R. Brain-Age Prediction: A Systematic Comparison
of Machine Learning Workflows. NeuroImage 2023, 270, 119947. [CrossRef]

37. Ly, M.; Yu, G.Z.; Karim, H.T.; Muppidi, N.R.; Mizuno, A.; Klunk, W.E.; Aizenstein, H.J. Improving Brain Age Prediction Models:
Incorporation of Amyloid Status in Alzheimer’s Disease. Neurobiol. Aging 2020, 87, 44–48. [CrossRef]

38. Han, J.; Kim, S.Y.; Lee, J.; Lee, W.H. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain
Morphometric Data. Sensors 2022, 22, 8077. [CrossRef]

39. Lee, W.H.; Antoniades, M.; Schnack, H.G.; Kahn, R.S.; Frangou, S. Brain Age Prediction in Schizophrenia: Does the Choice of
Machine Learning Algorithm Matter? Psychiatry Res. Neuroimaging 2021, 310, 111270. [CrossRef]

40. Kalc, P.; Dahnke, R.; Hoffstaedter, F.; Gaser, C.; Initiative, A.D.N. BrainAGE: Revisited and Reframed Machine Learning Workflow.
Hum. Brain Mapp. 2024, 45, e26632. [CrossRef]

41. Wu, F.; Ma, H.; Guan, Y.; Tian, L. Manifold-Based Unsupervised Metric Learning, with Applications in Individualized Predictions
Based on Functional Connectivity. Biomed. Signal Process. Control 2023, 79, 104081. [CrossRef]

42. Popescu, S.G.; Glocker, B.; Sharp, D.J.; Cole, J.H. Local Brain-Age: A U-Net Model. Front. Aging Neurosci. 2021, 13, 761954.
[CrossRef]

43. Borkar, K.; Chaturvedi, A.; Vinod, P.K.; Bapi, R.S. Ayu-Characterization of Healthy Aging from Neuroimaging Data with Deep
Learning and rsfMRI. Front. Comput. Neurosci. 2022, 16, 940922. [CrossRef] [PubMed]

44. Xu, L.; Ma, H.; Guan, Y.; Liu, J.; Huang, H.; Zhang, Y.; Tian, L. A Siamese Network With Node Convolution for Individualized
Predictions Based on Connectivity Maps Extracted From Resting-State fMRI Data. IEEE J. Biomed. Health Inform. 2023, 27,
5418–5429. [CrossRef] [PubMed]

45. Valdes-Hernandez, P.A.; Laffitte Nodarse, C.; Peraza, J.A.; Cole, J.H.; Cruz-Almeida, Y. Toward MR Protocol-Agnostic, Unbiased
Brain Age Predicted from Clinical-Grade MRIs. Sci. Rep. 2023, 13, 19570. [CrossRef] [PubMed]

46. Ding, W.; Shen, X.; Huang, J.; Ju, H.; Chen, Y.; Yin, T. Brain Age Prediction Based on Resting-State Functional MRI Using Similarity
Metric Convolutional Neural Network. IEEE Access 2023, 11, 57071–57082. [CrossRef]

47. Besson, P.; Parrish, T.; Katsaggelos, A.K.; Bandt, S.K. Geometric Deep Learning on Brain Shape Predicts Sex and Age. Comput.
Med. Imaging Graph. 2021, 91, 101939. [CrossRef] [PubMed]

48. Cheng, Y.; Zhang, X.-D.; Chen, C.; He, L.-F.; Li, F.-F.; Lu, Z.-N.; Man, W.-Q.; Zhao, Y.-J.; Chang, Z.-X.; Wu, Y.; et al. Dynamic
Evolution of Brain Structural Patterns in Liver Transplantation Recipients: A Longitudinal Study Based on 3D Convolutional
Neuronal Network Model. Eur. Radiol. 2023, 33, 6134–6144. [CrossRef] [PubMed]

49. Ballester, P.L.; da Silva, L.T.; Marcon, M.; Esper, N.B.; Frey, B.N.; Buchweitz, A.; Meneguzzi, F. Predicting Brain Age at Slice Level:
Convolutional Neural Networks and Consequences for Interpretability. Front. Psychiatry 2021, 12, 598518. [CrossRef] [PubMed]

50. Kuchcinski, G.; Rumetshofer, T.; Zervides, K.A.; Lopes, R.; Gautherot, M.; Pruvo, J.-P.; Bengtsson, A.A.; Hansson, O.; Jönsen, A.;
Sundgren, P.C.M. MRI BrainAGE Demonstrates Increased Brain Aging in Systemic Lupus Erythematosus Patients. Front. Aging
Neurosci. 2023, 15, 1274061. [CrossRef] [PubMed]

51. Gopinath, K.; Desrosiers, C.; Lombaert, H. Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 2022, 44, 864–876. [CrossRef]

52. Gautherot, M.; Kuchcinski, G.; Bordier, C.; Sillaire, A.R.; Delbeuck, X.; Leroy, M.; Leclerc, X.; Pruvo, J.-P.; Pasquier, F.; Lopes, R.
Longitudinal Analysis of Brain-Predicted Age in Amnestic and Non-Amnestic Sporadic Early-Onset Alzheimer’s Disease. Front.
Aging Neurosci. 2021, 13, 729635. [CrossRef]

53. Hwang, I.; Yeon, E.K.; Lee, J.Y.; Yoo, R.-E.; Kang, K.M.; Yun, T.J.; Choi, S.H.; Sohn, C.-H.; Kim, H.; Kim, J. Prediction of Brain Age
from Routine T2-Weighted Spin-Echo Brain Magnetic Resonance Images with a Deep Convolutional Neural Network. Neurobiol.
Aging 2021, 105, 78–85. [CrossRef] [PubMed]

54. Chen, M.; Wang, Y.; Shi, Y.; Feng, J.; Feng, R.; Guan, X.; Xu, X.; Zhang, Y.; Jin, C.; Wei, H. Brain Age Prediction Based on
Quantitative Susceptibility Mapping Using the Segmentation Transformer. IEEE J. Biomed. Health Inform. 2024, 28, 1012–1021.
[CrossRef]

https://doi.org/10.1515/revneuro-2022-0122
https://www.ncbi.nlm.nih.gov/pubmed/36729918
https://doi.org/10.1016/j.neuroimage.2020.117441
https://doi.org/10.7554/eLife.54055
https://doi.org/10.1016/j.nicl.2022.103181
https://doi.org/10.1038/s41537-022-00330-z
https://doi.org/10.1016/j.neuroimage.2021.117822
https://doi.org/10.1016/j.neuroimage.2023.119947
https://doi.org/10.1016/j.neurobiolaging.2019.11.005
https://doi.org/10.3390/s22208077
https://doi.org/10.1016/j.pscychresns.2021.111270
https://doi.org/10.1002/hbm.26632
https://doi.org/10.1016/j.bspc.2022.104081
https://doi.org/10.3389/fnagi.2021.761954
https://doi.org/10.3389/fncom.2022.940922
https://www.ncbi.nlm.nih.gov/pubmed/36172055
https://doi.org/10.1109/JBHI.2023.3304974
https://www.ncbi.nlm.nih.gov/pubmed/37578917
https://doi.org/10.1038/s41598-023-47021-y
https://www.ncbi.nlm.nih.gov/pubmed/37950024
https://doi.org/10.1109/ACCESS.2023.3283148
https://doi.org/10.1016/j.compmedimag.2021.101939
https://www.ncbi.nlm.nih.gov/pubmed/34082280
https://doi.org/10.1007/s00330-023-09604-1
https://www.ncbi.nlm.nih.gov/pubmed/37014408
https://doi.org/10.3389/fpsyt.2021.598518
https://www.ncbi.nlm.nih.gov/pubmed/33716814
https://doi.org/10.3389/fnagi.2023.1274061
https://www.ncbi.nlm.nih.gov/pubmed/37927336
https://doi.org/10.1109/TPAMI.2020.3028391
https://doi.org/10.3389/fnagi.2021.729635
https://doi.org/10.1016/j.neurobiolaging.2021.04.015
https://www.ncbi.nlm.nih.gov/pubmed/34049061
https://doi.org/10.1109/JBHI.2023.3341629


Tomography 2024, 10 1261

55. Feng, X.; Lipton, Z.C.; Yang, J.; Small, S.A.; Provenzano, F.A. Estimating Brain Age Based on a Uniform Healthy Population with
Deep Learning and Structural Magnetic Resonance Imaging. Neurobiol. Aging 2020, 91, 15–25. [CrossRef] [PubMed]

56. Bashyam, V.M.; Erus, G.; Doshi, J.; Habes, M.; Nasrallah, I.M.; Truelove-Hill, M.; Srinivasan, D.; Mamourian, L.; Pomponio, R.;
Fan, Y.; et al. MRI Signatures of Brain Age and Disease over the Lifespan Based on a Deep Brain Network and 14 468 Individuals
Worldwide. Brain 2020, 143, 2312–2324. [CrossRef] [PubMed]

57. Hofmann, S.M.; Beyer, F.; Lapuschkin, S.; Goltermann, O.; Loeffler, M.; Müller, K.-R.; Villringer, A.; Samek, W.; Witte, A.V.
Towards the Interpretability of Deep Learning Models for Multi-Modal Neuroimaging: Finding Structural Changes of the Ageing
Brain. NeuroImage 2022, 261, 119504. [CrossRef]

58. Couvy-Duchesne, B.; Faouzi, J.; Martin, B.; Thibeau–Sutre, E.; Wild, A.; Ansart, M.; Durrleman, S.; Dormont, D.; Burgos, N.;
Colliot, O. Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor
for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge. Front. Psychiatry 2020,
11, 593336. [CrossRef]

59. Poloni, K.M.; Ferrari, R.J. A Deep Ensemble Hippocampal CNN Model for Brain Age Estimation Applied to Alzheimer’s
Diagnosis. Expert Syst. Appl. 2022, 195, 116622. [CrossRef]

60. Kianian, I.; Sajedi, H. Brain Age Estimation with a Greedy Dual-Stream Model for Limited Datasets. Neurocomputing 2024,
596, 127974. [CrossRef]

61. Hepp, T.; Blum, D.; Armanious, K.; Schölkopf, B.; Stern, D.; Yang, B.; Gatidis, S. Uncertainty Estimation and Explainability in
Deep Learning-Based Age Estimation of the Human Brain: Results from the German National Cohort MRI Study. Comput. Med.
Imaging Graph. 2021, 92, 101967. [CrossRef]

62. Zhang, Z.; Jiang, R.; Zhang, C.; Williams, B.; Jiang, Z.; Li, C.-T.; Chazot, P.; Pavese, N.; Bouridane, A.; Beghdadi, A. Robust Brain
Age Estimation Based on sMRI via Nonlinear Age-Adaptive Ensemble Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30,
2146–2156. [CrossRef]

63. Joo, Y.; Namgung, E.; Jeong, H.; Kang, I.; Kim, J.; Oh, S.; Lyoo, I.K.; Yoon, S.; Hwang, J. Brain Age Prediction Using Combined
Deep Convolutional Neural Network and Multi-Layer Perceptron Algorithms. Sci. Rep. 2023, 13, 22388. [CrossRef]

64. He, S.; Pereira, D.; David Perez, J.; Gollub, R.L.; Murphy, S.N.; Prabhu, S.; Pienaar, R.; Robertson, R.L.; Ellen Grant, P.; Ou, Y.
Multi-Channel Attention-Fusion Neural Network for Brain Age Estimation: Accuracy, Generality, and Interpretation with 16,705
Healthy MRIs across Lifespan. Med. Image Anal. 2021, 72, 102091. [CrossRef]

65. Wood, D.A.; Kafiabadi, S.; Busaidi, A.A.; Guilhem, E.; Montvila, A.; Lynch, J.; Townend, M.; Agarwal, S.; Mazumder, A.; Barker,
G.J.; et al. Accurate Brain-age Models for Routine Clinical MRI Examinations. NeuroImage 2022, 249, 118871. [CrossRef] [PubMed]

66. Dular, L.; Pernuš, F.; Špiclin, Ž. Extensive T1-Weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction
Models. Comput. Biol. Med. 2024, 173, 108320. [CrossRef] [PubMed]

67. Dular, L.; Špiclin, Ž. BASE: Brain Age Standardized Evaluation. NeuroImage 2024, 285, 120469. [CrossRef] [PubMed]
68. Lim, H.; Joo, Y.; Ha, E.; Song, Y.; Yoon, S.; Shin, T. Brain Age Prediction Using Multi-Hop Graph Attention Combined with

Convolutional Neural Network. Bioengineering 2024, 11, 265. [CrossRef]
69. Kuo, C.-Y.; Tai, T.-M.; Lee, P.-L.; Tseng, C.-W.; Chen, C.-Y.; Chen, L.-K.; Lee, C.-K.; Chou, K.-H.; See, S.; Lin, C.-P. Improving

Individual Brain Age Prediction Using an Ensemble Deep Learning Framework. Front. Psychiatry 2021, 12, 626677. [CrossRef]
70. Wang, Y.; Wen, J.; Xin, J.; Zhang, Y.; Xie, H.; Tang, Y. 3DCNN Predicting Brain Age Using Diffusion Tensor Imaging. Med. Biol.

Eng. Comput. 2023, 61, 3335–3344. [CrossRef]
71. He, S.; Grant, P.E.; Ou, Y. Global-Local Transformer for Brain Age Estimation. IEEE Trans. Med. Imaging 2022, 41, 213–224.

[CrossRef]
72. Cheng, J.; Liu, Z.; Guan, H.; Wu, Z.; Zhu, H.; Jiang, J.; Wen, W.; Tao, D.; Liu, T. Brain Age Estimation From MRI Using Cascade

Networks With Ranking Loss. IEEE Trans. Med. Imaging 2021, 40, 3400–3412. [CrossRef]
73. Leonardsen, E.H.; Peng, H.; Kaufmann, T.; Agartz, I.; Andreassen, O.A.; Celius, E.G.; Espeseth, T.; Harbo, H.F.; Høgestøl,

E.A.; Lange, A.-M.d.; et al. Deep Neural Networks Learn General and Clinically Relevant Representations of the Ageing Brain.
NeuroImage 2022, 256, 119210. [CrossRef] [PubMed]

74. Zhang, Y.; Xie, R.; Beheshti, I.; Liu, X.; Zheng, G.; Wang, Y.; Zhang, Z.; Zheng, W.; Yao, Z.; Hu, B. Improving Brain Age Prediction
with Anatomical Feature Attention-Enhanced 3D-CNN. Comput. Biol. Med. 2024, 169, 107873. [CrossRef] [PubMed]

75. Bellantuono, L.; Marzano, L.; La Rocca, M.; Duncan, D.; Lombardi, A.; Maggipinto, T.; Monaco, A.; Tangaro, S.; Amoroso, N.;
Bellotti, R. Predicting Brain Age with Complex Networks: From Adolescence to Adulthood. NeuroImage 2021, 225, 117458.
[CrossRef] [PubMed]

76. Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate Brain Age Prediction with Lightweight Deep Neural
Networks. Med. Image Anal. 2021, 68, 101871. [CrossRef] [PubMed]

77. Armanious, K.; Abdulatif, S.; Shi, W.; Salian, S.; Küstner, T.; Weiskopf, D.; Hepp, T.; Gatidis, S.; Yang, B. Age-Net: An MRI-Based
Iterative Framework for Brain Biological Age Estimation. IEEE Trans. Med. Imaging 2021, 40, 1778–1791. [CrossRef] [PubMed]

78. Fu, Y.; Huang, Y.; Zhang, Z.; Dong, S.; Xue, L.; Niu, M.; Li, Y.; Shi, Z.; Wang, Y.; Zhang, H.; et al. OTFPF: Optimal Transport Based
Feature Pyramid Fusion Network for Brain Age Estimation. Inf. Fusion 2023, 100, 101931. [CrossRef]

79. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Available online: https:
//arxiv.org/abs/1409.1556v6 (accessed on 7 July 2024).

https://doi.org/10.1016/j.neurobiolaging.2020.02.009
https://www.ncbi.nlm.nih.gov/pubmed/32305781
https://doi.org/10.1093/brain/awaa160
https://www.ncbi.nlm.nih.gov/pubmed/32591831
https://doi.org/10.1016/j.neuroimage.2022.119504
https://doi.org/10.3389/fpsyt.2020.593336
https://doi.org/10.1016/j.eswa.2022.116622
https://doi.org/10.1016/j.neucom.2024.127974
https://doi.org/10.1016/j.compmedimag.2021.101967
https://doi.org/10.1109/TNSRE.2022.3190467
https://doi.org/10.1038/s41598-023-49514-2
https://doi.org/10.1016/j.media.2021.102091
https://doi.org/10.1016/j.neuroimage.2022.118871
https://www.ncbi.nlm.nih.gov/pubmed/34995797
https://doi.org/10.1016/j.compbiomed.2024.108320
https://www.ncbi.nlm.nih.gov/pubmed/38531250
https://doi.org/10.1016/j.neuroimage.2023.120469
https://www.ncbi.nlm.nih.gov/pubmed/38065279
https://doi.org/10.3390/bioengineering11030265
https://doi.org/10.3389/fpsyt.2021.626677
https://doi.org/10.1007/s11517-023-02915-x
https://doi.org/10.1109/TMI.2021.3108910
https://doi.org/10.1109/TMI.2021.3085948
https://doi.org/10.1016/j.neuroimage.2022.119210
https://www.ncbi.nlm.nih.gov/pubmed/35462035
https://doi.org/10.1016/j.compbiomed.2023.107873
https://www.ncbi.nlm.nih.gov/pubmed/38181606
https://doi.org/10.1016/j.neuroimage.2020.117458
https://www.ncbi.nlm.nih.gov/pubmed/33099008
https://doi.org/10.1016/j.media.2020.101871
https://www.ncbi.nlm.nih.gov/pubmed/33197716
https://doi.org/10.1109/TMI.2021.3066857
https://www.ncbi.nlm.nih.gov/pubmed/33729932
https://doi.org/10.1016/j.inffus.2023.101931
https://arxiv.org/abs/1409.1556v6
https://arxiv.org/abs/1409.1556v6


Tomography 2024, 10 1262

80. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: https://arxiv.org/abs/1512.0
3385v1 (accessed on 7 July 2024).

81. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. Available online: https://arxiv.org/abs/1409.4842v1 (accessed on 7 July 2024).

82. Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

83. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. Available online:
https://arxiv.org/abs/1608.06993v5 (accessed on 8 July 2024).

84. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Available online: https://arxiv.
org/abs/1905.11946v5 (accessed on 8 July 2024).

85. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Available online:
https://arxiv.org/abs/1505.04597v1 (accessed on 10 July 2024).

86. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.
2009, 20, 61–80. [CrossRef]

87. Lin, L.; Xiong, M.; Zhang, G.; Kang, W.; Sun, S.; Wu, S. Initiative Alzheimer’s Disease Neuroimaging A Convolutional Neural
Network and Graph Convolutional Network Based Framework for AD Classification. Sensors 2023, 23, 1914. [CrossRef]

88. Minar, M.R.; Naher, J. Recent Advances in Deep Learning: An Overview. Available online: https://arxiv.org/abs/1807.08169v1
(accessed on 15 July 2024).

89. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Available online: https://www.neurology.org/doi/10.1212/WNL.0b013
e3181cb3e25 (accessed on 16 July 2024).

90. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank:
An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med.
2015, 12, e1001779. [CrossRef]

91. Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolín, S.; Bralten, J.;
Bruin, W.B.; et al. ENIGMA and Global Neuroscience: A Decade of Large-Scale Studies of the Brain in Health and Disease across
More than 40 Countries. Transl. Psychiatry 2020, 10, 1–28. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/1512.03385v1
https://arxiv.org/abs/1512.03385v1
https://arxiv.org/abs/1409.4842v1
https://arxiv.org/abs/1608.06993v5
https://arxiv.org/abs/1905.11946v5
https://arxiv.org/abs/1905.11946v5
https://arxiv.org/abs/1505.04597v1
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.3390/s23041914
https://arxiv.org/abs/1807.08169v1
https://www.neurology.org/doi/10.1212/WNL.0b013e3181cb3e25
https://www.neurology.org/doi/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/s41398-020-0705-1

	Introduction 
	Literature Search Strategy 
	Fundamental of Brain Age Predictions Tasks 
	Neuroimage Data and Preprocessing Process 
	ML and DL Models 
	The Evaluation Metric for Brain Age Prediction Tasks 

	A Review of Brain Age Prediction Model 
	Brain Age Prediction Using ML Methods 
	Single-Modality Model 
	Multimodality Model 

	Brain Age Prediction Using DL Methods 
	CNNs 
	CNNs with Transformers 


	Discussion 
	ML vs. DL 
	Construction of a Neuroimaging Dataset Spanning the Entire Age Spectrum 
	Challenges and Future Directions 

	Conclusions 
	References

