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Abstract: Background: Studying causality relationships between different brain regions using the
fMRI method has attracted great attention. To investigate causality relationships between different
brain regions, we need to identify both the brain network structure and the influence magnitude.
Most current methods concentrate on magnitude estimation, but not on identifying the connection or
structure of the network. To address this problem, we proposed a nonlinear system identification
method, in which a polynomial kernel was adopted to approximate the relation between the system
inputs and outputs. However, this method has an overfitting problem for modelling the input-
output relation if we apply the method to model the brain network directly. Methods: To overcome
this limitation, this study applied the least absolute shrinkage and selection operator (LASSO)
model selection method to identify both brain region networks and the connection strength (system
coefficients). From these coefficients, the causality influence is derived from the identified structure.
The method was verified based on the human visual cortex with phase-encoded designs. The
functional data were pre-processed with motion correction. The visual cortex brain regions were
defined based on a retinotopic mapping method. An eight-connection visual system network was
adopted to validate the method. The proposed method was able to identify both the connected
visual networks and associated coefficients from the LASSO model selection. Results: The result
showed that this method can be applied to identify both network structures and associated causalities
between different brain regions. Conclusions: System identification with LASSO model selection
algorithm is a powerful approach for fMRI effective connectivity study.

Keywords: fMRI; model selection; system identification; brain imaging; visual cortex; effective
connectivity; least absolute shrinkage and selection operator (LASSO)

1. Introduction

Since the discovery of blood oxygenation level-dependent (BOLD) functional MRI
(fMRI) in 1990 [1], it has been extensively applied for studying brain functions. Both
linear and nonlinear dynamic system modelling methods have been implemented for fMRI
data analysis [2,3]. Dealing with the nonlinearity of the response of fMRI using dynamic
system theory is a challenge due to the current limited availability of mathematical tools.
In addition, because many biological systems and systems involving interactions between
brain regions are available only as a black box, the relation between the system input
(e.g., stimuli) and output (e.g., fMRI response) is not so derivable [4]. Wiener’s theory of
nonlinear systems has been developed to address the brain system with fMRI methods [5].
Other methods such as the Granger causality (GC) [6] and the multivariate vector auto-
regression (MVAR) model [7] have also been designed to study the causal relation between
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different brain regions from neuroimage, and there is increasing interest in applying MVAR
for fMRI effective connectivity studies [8-10]. MVAR can be regarded as a special case of
a nonlinear system identification method as the basis of a function using polynomials to
model the system inputs and outputs. But this method does not consider the nonlinear
dynamics in the fMRI response.

The brain neural population response is nonlinear; therefore, nonlinear modelling meth-
ods for modelling the response are better as it is close to reality. Different methods and
models have been proposed to address this problem. For example, a phase portrait and fuzzy
recurrence plot method [11] has been explored to model the fMRI response. Additionally, the
Hopf model has been invented to study the link between the brain structure and dynamics
in the whole brain [12]. A dynamical flexible inference for nonlinear embeddings has been
created to model nonlinear brain dynamics [13]. However, it is difficult to infer the causality
relationship between different brain regions using these methods.

System identification is one of the methods used to build mathematical models of
dynamic systems using measurements of the input and output signals of the system [14].
This method includes finding the structure of the network and the associated parameters,
although most current methods concentrate on identifying system parameters only, not on
the structure of the network for fMRI effective connectivity studies. The main purpose of
this paper was to improve the system identification method by using a statistical model
selection algorithm to determine the structure of the network for brain region causality studies.
Particularly, the least absolute shrinkage and selection operator (LASSO) model selection
method [15,16] was applied to decide the effective connectivity for fMRI studies. Using a
nonlinear system identification method with non-linear basis functions, such as polynomial
or radial basis functions, a regularization step is required to reduce the number of predictors
and smooth the estimation results. For fMRI studies, the current model selection is based on
either L1 (sparsity) [17-20] or L2 norm (ridge regression) [21,22] and these methods have been
mainly applied to functional connectivity studies [23-25]. Although the LASSO method has
been adopted for causality studies using the electroencephalogram (EEG) method [26], the
applicability of this method for nonlinear fMRI responses has not been studied.

Moreover, for fMRI effective connectivity studies with the MVAR method [27], this
method does not include nonlinear terms and/or system inputs [28]. To overcome this limi-
tation, the purpose of this study was to suggest a LASSO model selection algorithm [15,16]
for effective connectivity based on the nonlinear system identification method. Specifically,
a nonlinear system identification method with a model selection algorithm was applied to
investigate the cause—effect relationship from different brain regions.

2. Materials and Methods
2.1. Subjects, Experimental Design, MRI Collection, and fMRI Image Pre-Processing

This is a retrospective study of a previous study [29], in which brain responses to
external stimuli between healthy controls and amblyopic patients were compared. Subjects,
experimental design, data collection, and fMRI image pre-processing can be found in the
previous study [29]. Briefly, visual eccentricity and polar angle stimuli were adopted for
the experimental design, and subjects viewed the stimuli monocularly. A 1.5-T (Magnetom;
Siemens, Madison, WI, USA) scanner was adopted to collect structural and functional
image data. The repetition time (TR) was 3 s for the fMRI data collection. The fMRI image
resolution was 4 mm x 4 mm X 4 mm, and the data were obtained from the visual cortex.
The fMRI was pre-processed with motion correction and the visual cortex boundaries
were defined based on the responses. A Z-score method was employed to normalise the
time series temporally. For each visual cortex region, a single voxel response was selected
randomly to represent the fMRI response from the region. There were 128 image frames
for the fMRI time series. The first 8 images were excluded from the analysis due to the
instability of the magnetic fields at the beginning of the fMRI scan; therefore, only 120 fMRI
time series were used. fMRI scans from one subject viewing the eccentricity and polar
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angle stimuli with the right eye were included, and only first-level (within each run) fMRI
analysis was involved in this study.

2.2. Theory
Briefly, the discrete nonlinear dynamic brain can be described using a differential
equation as follows [30]:
{x(t +1) = f(x(t),

u(

y(t) = 8(x(t),0)

where x(t) is the state variable, 6 is the parameter, y(t) is the system output (fMRI response

in this study), f and g are nonlinear functions, and u(t) is the system input (stimuli for task

fMRI). For resting-state fMRI, u(t) = 0. For the effective connectivity study, we need to
identify the system connection structure and parameters in Equation (1).

Taking a 3-connection network (Figure 1A) as an example, it has a 3-connection
network structure with responses from 3 brain regions. In the network, each region is
connected to other regions mutually with an additional input. The inputs are used to
represent the fMRI response due to the stimuli from the experimental design. Figure 1B
shows another example with a larger network, which has an eight-connection network. For
this network, Yi(t), Ya(t), Y3(¢), Ya(t), Y5(t), Ys(t), Y7(t), and Yg(t) denote the fMRI time
series from visual cortex regions of V1, V2, V3, Vp, V3a, V4v, V3b, and V5, respectively. For
illustration purposes, we will only use these two network structures as shown in Figure 1,
but this method can be applied to other network structures in the same way for brain
effective connectivity studies.

To model the input-output relation of this nonlinear brain system as shown in
Figure 1A, a polynomial kernel is adopted to approximate the nonlinear brain system.
Using the first order auto-regression (AR) model, without taking into account nonlinear
terms and neglecting the system inputs, for this 3-connection network (Figure 1A), we can
write the first level fMRI causality analysis model as:

) <1>

Yl(i’) = alYl(t -1+ 02Y2(t — 1) +asYs(t — 1) + 81(1’) 2)
Yo(t) =b1Yi(t —1) +bYo(t — 1) + b3Y3(f -1)+ Sz(f) 3)
Y5(t) = Y1(t— 1)+ Ya(t — 1) +c3Y3(t — 1) + €3(¢) 4)

In Equations (2)—(4), Y1(f), Y2(t), and Y3(t) are the fMRI response from the brain
regions at time point f. 4, b, and c are the model coefficients, and ¢ is the model residual.
For instance, from Equation (2), we can test the coefficient a; to study the influence from
Y,(t—1) on Yq(t). This can be achieved by the F/T test. We adopted the F test to test
whether a5 is significantly larger than 0 or not. To achieve this, from Equation (2), we have
a null hypothesis:

HQ tdp = 0 (5)

The reduced model of Equation (2) can be written as:
Yl(t) :a1Y1(t—1)—|—a3Y3<t—1)—|-€4(t) (6)
The Granger causality from Y,(#) to Yi(t) is quantified by the F test as:

(RRSS — URSS)/q
(URSS)/(N —k)

Fi_o(q, N —k) = (7)

where the RRSS denotes the Restricted Residual Sum of Squares (RRSS) as the residual
sum of squares obtained from estimating the restricted model (i.e., from Equation (6),
RRSS = e4(t)e4(t)"). URSS represents the unrestricted residual sum of squares (URSS) as
the residual sum of squares obtained from estimating the unrestricted model (i.e., from
Equation (2), RRSS = &1 (t)¢e; (H)7). ais the level of significance. g is the degrees of freedom
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of the numerator, as we only test one parameter, i.e,, g = 1 in this example. N —k is
the denominator degree of freedom. In our case, the T test square is the F test, and the

corresponding T test is:
Tk =F@,N-k) ®)

with the denominator degree of freedom N — k. N is the sample size (length of fMRI time
series), and k is the number of predictors in the reduced model, i.e., k = 2 in this example.
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Figure 1. (A) An example of a three-connection network structure. (B) An example of an eight-
connection network structure. Line arrow indicates the direction of information flow (causality).

2.3. Visual System

In this study, an eight-connection human visual system was used, and the connection
network is displayed in Figure 1B. In the system, we adopted the polynomial basis function
to approximate the nonlinear dynamic system. If we neglect these nonlinear interacting
terms and high-order autoregression terms (using a 3-order autoregression term or below),
the system output Y; (t) (fMRI response from V1 region) can be modelled as:

Yi(t) = a0+ m Y1<t—1)+{12Y2(t—1)+"'+lZng(t—1)+b1Y1(t—2)
-H?zYz(t —2) 4+ bgYs(t—2)+ 1 Y1(t —3) + Yo (t — 3)
++egYs(t—3) Hdiug(t—1) +daup(t—1) + -
+d8ug(t—1)+€1u1(t—2)+62u2(t—2)+"'+€gug(t—2)
+frua (t = )+f2”2(f— 3)+ -+ foug(t —3) + g1 Y7 (t— 1)
+gaYF(t = 1) + -+ ggY3(t — 1) + Y7 (t —2) ©)
+h2Y22(t*2)+"'+h8Y§(t*2)+i1Y12(t73)+i2Y22(t*3)

4 igY3(t — )+j1u1(t—1)+j2u§(t—1)+---
+]8u8(t—1)+k1ul(t— 2) +koud(t—2) + - -
+kgu3(t —2) + hu?(t — 3) + bud(t —3) + - - - + lsud(t — 3)
+e(t)
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There are 97 parameters that need to be estimated in Equation (9), i.e., 24 items from the
AR of the fMRI response, 24 items from the system inputs, 24 nonlinear (square) responses,
24 nonlinear system input items, and 4y is the intercept. The reason for excluding nonlinear
interaction terms such as Y, (t — 1)Y3(t — 2) is because the effect is the combination of
two different regions, which is not easy to interpret from the brain science viewpoint.
Equation (9) can be written in matrix form as:

Y=/30+xl-Tﬁ+s (10)

where Y is the (n — AR) x 1 vector to represent the fMRI response Y; (), 1 is the number of
fMRI time frames, and AR is the maximum order of AR. x; is the (n — AR) X 1 vector value at
observation i, i.e., the data vector. x; = Y1 (t —1),xp = Ya(t — 1), - -, x96 = u3(t — 3). B is the
coefficient vector of each term in Equation (9), B9 = a9 is the intercept, and ¢ is the residuals.

For the causality within the seed region Y7 (for the other regions, the same method
can be applied), the least square solution of the equation is to minimise the mean square
error objective function:

(1 N 2
min (5T (= fo—x7B) +AXL 161 an
where N = n — AR and p is the number of coefficients, i.e., p = 97 in this study (including
the intercept). A is a positive regularisation parameter corresponding to one value of Lambda.

MATLAB (version 2022b) was employed for modelling the visual system using
Equation (10) while minimising Equation (11). Function lassoglm.m from MATLAB was
adopted to implement the LASSO model selection.

3. Results

The brain response to the eccentricity stimulus was adopted to validate the method in
this example. Based on the boundaries from the region of the visual cortex, one fMRI time
series from each visual cortex region was selected randomly. For the eight-connection brain
visual system (Figure 1B), the fMRI response or system output time series is displayed as
the dotted asterisk curves in Figure 2. The red curve is the input for the time series, i.e., it
assumes that the system input contributes to generate an fMRI response. The red curve is
the fundamental frequency of the fMRI response, which was obtained from the fast Fourier
transform (FFT) to model the system input.
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Figure 2. The fMRI time series from the eight-connection visual system in response to an eccentricity
stimulus for the effective connectivity study. (A) (V1), (B) (V2), (C) (V3), (D) (Vp), (E) (V3a), (F) (V4v),
(G) (V3b), and (H) (V5/MT) were included in the brain network. The dotted curve shows the fMRI
response, while the red curve indicates the input from the experimental design. The x-axis is the
normalised fMRI signal, while the y-axis is time (in terms of TR = 3 s).
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Based on the response as shown in Figure 2, we can generate the polynomials matrix
(Equations (9) and (10)) as shown in Figure 3 for the connectivity study. As the AR is
three-order (AR = 3), the matrix has the dimension of (120-3) x 96 (excluding the intercept).

AR Input ArNon iNonlin

Figure 3. Predictors matrix, e.g., xlT in Equation (10).

From Figure 2, we can generate a predictor matrix as shown in Figure 3. In the Figure,
the first 24 columns of the matrix (denoted as AR on the top) are derived from an auto-regression
term from different regions, e.g., Y1(t — 1), Ya(t —1),-- -, Yg(t — 3). The second 24 columns
(“Input” on the top) are the inputs for different regions, e.g., u1(t — 1), up(t —1),-- -, ug(t — 3).
The third 24 columns (“ArNon” on the top) are nonlinear terms of the responses, e.g.,
ud(t—1),u3(t—1), -+ ,u3(t — 3). The last 24 columns (denoted by “iNonlin”) are the non-
linear terms of inputs from eight-connected regions, e.g., Y2(t — 1), Y3(t — 1),- - - , Y3 (t — 3).

Resolving Equation (10) by minimizing Equation (11), we obtained the L1 regular-
ization parameter Lambda for model selection. The selection process with the 10-fold
cross-validation method is illustrated in Figure 4.

In Figure 4, there are two vertical dashed lines. The vertical dashed line on the
right (green) corresponds to the Lambda for the minimum mean cross-validated error.
The vertical dotted dashed line on the left (blue) locates the point with a minimum cross-
validation error plus one standard deviation (Lambda = 0.1643). Lambda with one standard
error (1SE) is the value that gives the most regularised model such that the cross-validated
error is within one standard error of the minimum. In this study, the Lambda value
corresponding to the minimum deviance was adopted for LASSO model selection.
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Figure 4. LASSO selection results. The blue circle and (left) dotted line locate the point with the minimum
cross-validation error plus one standard deviation (Lambda 1SE = 0.1643). The green circle and (right)
dotted line locate the Lambda with minimum cross-validation error (LambdaMinDeviance = 0.0648).

For the model as described in Equation (9), and the responses shown in Figure 2,
applying the LASSO method, the selected model y1 () for the response is:

y1(t) = —0.0735 — 0.0121y3(t — 3) + 6.4472u3(t — 2) + 3.9456u3(t — 3)+ (12)
0.019y3(t — 1) 4+ 0.3069u3(t — 2) + ¢

Five items have been selected in Equation (12), and the associated coefficients are
displayed. Applying Equations (7) and (8), we obtained the t-test value (the degree of
freedomis N — k=117 — 6 =111) as 1.6383 (intercept), 0.9175 (y3(f — 3)), 12.7305 (us(t — 2)),
8.2911 (us(t — 3)), 1.4245 y3(t — 1), and 2.1506 u3(t — 2). From the t table, the influence
from us(t — 2), uz(t — 3), and u3(t — 2) to y (t) was significant (p < 0.05).

Based on Equation (12), we can plot the final prediction result as shown in Figure 5. The
dotted blue curve is the response from V1, while the red curve is the fitted results with the
LASSO model response from Equation (12). Another validation study example of an effective
connectivity study in the visual cortex with polar angle stimuli is presented in the Appendix A.

e RESpONSe
—— Fitted response

Normalized BOLD signal

0 20 40 60 80 100 120
No. of TR

Figure 5. A visual cortex (V1 region) response to the stimuli and final prediction results from the identified
model structure and its parameters. The red curve shows the prediction result from the V1 region.
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4. Discussion

Nonlinear system identification methods [5] and MAR methods [7] have been exten-
sively suggested for modelling dynamic brain systems. Technically, the main difference
between these two methods is that for the MAR method, system inputs and nonlinear
terms are not considered for modelling the dynamic system. For the nonlinear system
identification method, both nonlinear terms and system inputs can be included in the
model. For the nonlinear system identification method, other kernels such as radial basis
functions can also be applied to model the system [31]. While the MAR method is a special
case for nonlinear system identification methods, if the identification kernel is polynomial
and without system input, and there are nonlinear terms in the model for selection, the
MAR method is the same as the identification method [2].

Stimuli from experimental design can be regarded as a system input as it is something
put into the brain system or expended in its operation to achieve output. Statistical model
selection was employed to decide whether the response was caused by system inputs
(stimuli) or the connected regions. In a block design with periodic stimuli, including the
phase-encoding block design as shown in this study, the input is a travelling square wave,
which has delays, and the shape has been distorted. Therefore, the fundamental frequency
of the response was adopted for a representative system input [3]. For resting-state f{MRI
studies, it can be regarded as a special case, i.e., a system without input or the input is 0.

In addition to the LASSO method, the last-angle regression (LARS) method for model
selection has been applied for selecting models to study effective connectivity [20]. The
LARS algorithm is a greedy method that does not yield a provably consistent estimator. The
LASSO method has been applied to functional and effective connectivity studies [10,27],
while these methods are based on MAR models. Stepwise regression, backwards selection
such as recursive feature elimination (RFE), and elastic net regularisation methods [16] can
be applied to identify the structure of the brain connection networks.

Individual regional effective connectivity variability is bigger when applying the
model selection method for causality inference (comparing the selected model in the
Section 3 and Appendix A). This is because the model selection is sensitive to the fMRI
response. The fMRI image spatial resolution in this study is 4 mm x 4 mm x 4 mm. A
single voxel in fMRI measures the response of a neural population, which includes the
response from millions of single neurons. The response at each voxel is different, so the
causality inference based on each voxel is different accordingly. A small change in an
fMRI response will lead to a bigger change in effective connectivity. Furthermore, when
applying the LASSO method for model selection, a ten-fold cross-validation method was
used, which also has randomness.

The limitation of this study is that the method has not been validated on an event-
related fMRI response. In this study, phase-encoded experiments were adopted. This
experimental design can be regarded as a travelling wave, and it is similar to a block
design. The advantage of this type of experimental design is that the Fourier transform
can be applied to approximate the system input. This makes the analysis simpler but
more powerful. For the other types of experimental design, system inputs are much more
difficult to model, and the system input needs to be adjusted to fit the study.

Compared with other studies [10,27], the advantage of this study is that this method
takes nonlinear and system inputs into account for modelling the effective connectivities.
In addition, this study applied LASSO methods for identifying the system structure and
associated parameters automatically. This study combined the results from model selection
with causality inference and was tested in a real human visual system.

One of the future directions for applying the results of this study is to overcome
the limitations of the randomness for the causality study. Statistical methods need to be
developed to address this problem. At the subject level, there are individual variabilities
for measuring causality. Methods need to be developed to deal with individual variabilities
and combine different causality results with statistical measurements for group analysis.
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To reduce the model randomness, robust statistical methods need to be applied to detect
the outliers from the estimation.

Furthermore, a deep learning method has been proposed to model the nonlinear
system [32]. In the framework for system identification, an autoencoder structure of the
neuron network was introduced, in which an encoder was employed to estimate the deep
features (latent variables) of the model. Then a decoder was applied to restore the system
output estimation. Using deep features, the causality relationship between different deep
features could be inferred.

Finally, this study used the fMRI from the visual cortex. Other cortexes and other
stimuli have not been verified. For example, it is possible to apply this method to study the
motor cortex system causality relationship. Additionally, it may be of interest to apply this
method to study the human brain under disease conditions. Lastly, similar to a dynamic
functional connectivity study that adopted sliding windows [33], this method can be
extended to use the sliding windows method to study dynamic casualty.
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Appendix A

In this appendix, effective connectivity at the same voxel in response to polar angle
stimuli viewing with the right eye from the same subject was employed in the analysis.
The fMRI response in V1 (A), V2 (B), V3 (C), Vp (D), V3a (E)), V4v (F), V3b (G), and V5/MT
(H) is displayed in Figure Al. Compared with Figure 2, the fMRI response is very different,
particularly in the V5/MT region.

Similar to Figure 3, Figure A2 shows the predictor matrix obtained from fMRI re-
sponses (Figure Al). In the figure, the first 24 columns of the matrix (denoted as AR on
the top) are derived from auto-regression terms from different visual cortex regions. The
second 24 columns (“Input” on the top) are the inputs for different regions. The third
24 columns (“ArNon” on the top) are nonlinear terms of the responses, and the last 24
columns (denoted by “iNonlin”) are the nonlinear terms of inputs from the eight-connected
visual cortical regions.

Resolving Equation (10) by minimising Equation (11), we obtained Lambda from the
LASSO method. The selection process is illustrated as shown in Figure A3.

In Figure A3, there are two vertical dashed lines. The vertical dashed line on the left
(blue) corresponds to the lambda with minimum cross-validation error plus one standard
deviation (Lambda 1SE = 0.1045). The vertical dashed line on the right (green) locates
the Lambda with minimum cross-validation error (Lambda = 0.0497). The Lambda with
minimum deviance value was adopted for model selection in this study.
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Figure A1l. Time series from the eight-connection visual system in response to polar angle stimulus
for effective connectivity study. The fMRI response was obtained from (A) (V1), (B) (V2), (C) (V3),
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Figure A2. Predictor matrix, i.e., x;‘r in Equation (10).

For the model as described in Equation (9), and the responses as shown in Figure A1,
applying the LASSO method, the selected model v (t) for response is:

y1(t) = 0.0376 + 0.1819y1 (t — 1) + 0.0904y, (t — 1) + 0.0618y5(t — 1)+

0.2021y3(t — 2) 4+ 0.0219ys(t — 3) + 0.0581ys(t — 2) + 0.1512u3(t — 1)+

0.4077us(t — 2) + 0.0560y3( — 1) -+ 0.0343y3 (¢ — 2) + 0.0237y3(t — 3)—
0.0069y3(t — 2) 4+ 0.0816y3 (t — 2) + 0.0962u3(t — 1) — 1.6881u3(t — 3) +&.
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Sixteen items have been selected in the above equation, and the associated coefficients
were also included. Applying Equations (7) and (8), we obtained the T test value (degree of
freedom is N — k =117 — 6 = 111) for each coefficient as 0.7835 (intercept), 4.7356, 2.7119,
2.0795, 5.1189, 1.0681,1.9739, 2.0008, 3.4942, 2.5979, 1.8091, 1.4014, 0.6195, 3.2746, 0.7606,
and 6.6170, respectively. From the t statistic table, the influence from y,(f — 1) and y3(t — 1)
to y1 is significant (p < 0.05). Based on the selected model, the prediction of the response
(red curve) is displayed in Figure A4.
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Figure A3. LASSO selection results and Lambda values. Lambda 1SE = 0.1045 is the regularisation
corresponding to the minimum cross-validation error plus one standard deviation. The vertical dotted
line on the right indicates the minimum cross-validation error value (Lambda MinDeviance = 0.0497).
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Figure A4. The final prediction result based on the identified structure and its parameters. The dotted
curve shows the fMRI response, while the red curve indicates the predicted response for the LASSO

selected model. The x-axis is the magnitude of the normalized fMRI response, while the y-axis is time
in terms of TR.
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