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Abstract: Background: Both lung lobe segmentation and lung fissure segmentation are useful in
the clinical diagnosis and evaluation of lung disease. It is often of clinical interest to quantify each
lobe separately because many diseases are associated with specific lobes. Fissure segmentation is
important for a significant proportion of lung lobe segmentation methods, as well as for assessing
fissure completeness, since there is an increasing requirement for the quantification of fissure integrity.
Methods: We propose a method for the fully automatic segmentation of pulmonary fissures on lung
computed tomography (CT) based on U-Net and PAN models using a Derivative of Stick (DoS) filter
for data preprocessing. Model ensembling is also used to improve prediction accuracy. Results: Our
method achieved an F1 score of 0.916 for right-lung fissures and 0.933 for left-lung fissures, which are
significantly higher than the standalone DoS results (0.724 and 0.666, respectively). We also performed
lung lobe segmentation using fissure segmentation. The lobe segmentation algorithm shows results
close to those of state-of-the-art methods, with an average Dice score of 0.989. Conclusions: The
proposed method segments pulmonary fissures efficiently and have low memory requirements,
which makes it suitable for further research in this field involving rapid experimentation.

Keywords: lung; fissure; segmentation; computed tomography; machine learning; CNN; stick
derivative

1. Introduction

The human lungs are divided by fissures into anatomically independent lobes. In
clinical practice, the segmentation of lung lobes is useful for the diagnosis and evaluation of
lung diseases [1]. It is often of clinical interest to quantify each lobe separately because many
diseases are associated with specific lobes. For example, pulmonary lobe segmentation
methods can be used to assess the infection severity of COVID-19 by individual lobe [2].
In addition, the segmentation of lobes is extremely important in the surgical treatment of
lung diseases [3,4]. For example, the surgical treatment of non-small cell lung cancer often
includes lobectomy [5], which is the removal of the diseased lobe.

Therefore, analyzing an affected lung region at the individual lobe level can pro-
vide valuable insights for the purpose of the diagnosis and evaluation of a variety of
medical conditions.

One of the most popular approaches to lobe segmentation estimates lobar boundaries
based on information from fissures, airways, and vessels [6–8]. In addition, there is an
increasing requirement for fissure integrity or completeness quantification, which is highly
relevant to lung disease characterization [9]. Some studies have proposed methods for the
automated analysis of pulmonary fissure integrity [10,11].

Fissure segmentation is important for a significant proportion of lung lobe segmenta-
tion methods as well as for assessing fissure integrity. However, there are a lot of challenges
that make automatic fissure segmentation a difficult task, namely, imperfections in com-
puted tomography (CT) technology, the presence of image noise, inhomogeneous image
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intensity, natural variability in lung anatomy, and variability in lobe shape due to the
influence of lung diseases.

A fissure is a double layer of connective tissue formed by invagination of the outer
pleural membrane of the lung [12]. The left lung consists of two lobes separated by a left
oblique fissure. The right lung consists of three lobes separated by a right oblique fissure
and a right horizontal fissure.

The lobe boundaries formed by pulmonary fissures are often either partially invisible
on CT images or difficult to distinguish from the adjacent vessels, bronchi, and pathological
structures. On cross-sectional CT images, fissures show up as thin curve-like structures
(less than 1 mm thick), slightly denser than the surrounding lung parenchyma. Often,
fissures are only partially visible or even absent on one or more cross-sections. Moreover,
due to lung diseases, serious deformations of the shape of individual lobes can happen.
Pathologies such as fibrosis or emphysema may locally resemble fissures or obstruct their
shape and appearance [13].

Even CT scans of healthy patients show high anatomical variability, which in itself
poses a great challenge in the task of segmenting pulmonary fissures and/or lobes and
requires consideration of the larger context surrounding the object of interest. Another
factor to consider is the quality of the image. Fissures can be indistinguishable on low-
resolution CT scans (with slice thickness greater than 1 mm) so that even a human cannot
recognize them clearly. In this case, even creating a dataset to train or validate the algorithm
can be difficult, because the worse the image quality, the more disagreement between the
experts. The presence of noise has similar issues to low resolution.

The accurate segmentation of lobes requires both local and global information to be
taken into account. Local information here means the intensity of voxels located in the
vicinity of the fissure within a radius of at least one order of magnitude less than the
image size. The presence of vessels, bronchi, airways, and ribs of the thorax is an example
of global information, which helps in narrowing down the fissure detection area. This
information is especially useful when a fissure in the image does not have enough contrast,
is missing, or looks sparse. Because of these issues, local information is not sufficient to
identify fissures and/or lung lobes with enough confidence.

Convolutional neural networks (CNNs), as a class of deep learning (DL) models,
are effective in many computer vision tasks. They can extract complex and non-obvious
correlations from data without relying on models invented for the specific problem. Instead,
each model architecture typically solves a broad class of problems, and for a particular
problem, it is trained on domain-specific data in a process known as machine learning (ML).
Deep learning is a type of machine learning that involves training neural networks with
hidden layers, such as convolutional neural networks. Since we do not use any other type
of ML in this paper, hereafter, the terms ML and DL will be used interchangeably.

ML is applied for tasks like fissure and lung lobe segmentation as well. Depending
on the particular kind of neural network architecture applied in the machine learning
model, either individual CT slices or 3D segments may be used as its input. Based on the
input type, fissure and lobe segmentation methods can be divided into volumetric and
non-volumetric. The advantages of non-volumetric segmentation neural networks are low
memory consumption and lower dataset size requirements. The advantage of volumetric
neural networks is that such models do not lose relationships between slices, as the input
is a 3D image rather than separate slices. This allows for performing fissure and/or lobe
segmentation even when the fissure cannot be recognized on some cross-sections.

Before the widespread adoption of neural networks, non-ML fissure and lobe segmen-
tation algorithms served as the basic approach to the task. Their advantage is that they
require much less data for the parameter search and validation.

Early attempts to segment pulmonary fissures and lobes were based on various meth-
ods, such as the watershed transform [14,15], Voronoi division [16], adaptive sweeping [17],
and minimal path [18]. Many of them were based on the Derivative of Stick (DoS) filter
proposed by Xiao et al. [6]. The DoS filter enhances fissures in the scan by processing
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individual slices of a certain cross-section. Filtering is performed in three cross-sections or-
thogonal to each other, and then the results are combined. Next, thresholding is performed
using multiple thresholds, and these results are also combined. To eliminate false positives,
a postprocessing pipeline based on a 3D connected component analysis is used. Based on
this work, Peng et al. [7] introduced a new framework based on lung anatomy knowledge
and airway and pulmonary fissure segmentation using ODoS [19], an improved version
of the DoS method, to segment lobes. Zhao et al. [20] proposed an anisotropic differential
operator called the directional derivative of plate (DDoP) filter, which is a 3D version
of the DoS filter. Chen et al. [21] segmented pulmonary lobes by applying a multistage
spline surface fitting method to the masks obtained with the DDoP filter. Ross et al. [22]
also used a thin-plate spline [23] surface fitting method to segment pulmonary lobes with
lobar fissure masks as input data, although they employed a particle system rather than a
DoS-based algorithm to segment fissures.

Non-ML algorithms are less efficient in taking global information into account and are
more sensitive to changes in data sampling. It is an extremely difficult task to devise an
algorithm that utilizes enough global information to produce reliable results. The reason is
that the fissure position and shape depend on global information in a non-obvious way due
to natural anatomic variability. Because of this, many modern approaches to this problem
make use of CNNs.

For example, Gerard et al. [24] used a model called FissureNet that is composed of two
Seg3DNet networks. One Seg3DNet model finds the region of interest around pulmonary
fissures, and another model of the same type refines the prediction of the previous network.
FissureNet is trained separately for each lung, with CT scans split into 3D chunks of
64 × 200 × 200 voxels. Gerard and Reinhardt [25] proposed the LobeNet model, which is a
FissureNet extension for lobe segmentation. LobeNet consists of four Seg3DNet networks.
The first two networks correspond to the two Seg3DNet networks of FissureNet and
segment pulmonary fissures. The third Seg3DNet network uses CT scan data and lung
fissure segmentation masks to coarsely estimate lobe boundaries. The fourth network
refines the results of the previous one. Later, Gerard, Herrmann, et al. [26] used LobeNet to
develop a segmentation algorithm that predicts left and right lung regions in humans with
diffuse opacification and consolidation.

As ML methods have evolved, an increasing number of authors have proposed ap-
proaches that segment lung lobes using grayscale information directly, avoiding the fissure
segmentation step. Park et al. [27] used 3D U-Net to segment pulmonary lobes on CT
scans. Wang et al. [28] used V-Net for the same segmentation task with 3D chunks of CT
scans as input. To better account for global and positional information, Wang et al. [28]
added a CoordConv layer to the network. CoordConv is a simple extension of a regular
convolutional layer to incorporate positional information by including additional channels
for voxel coordinates.

Some researchers have chosen non-volumetric CNNs for pulmonary fissure and
lobe segmentation tasks. Chen et al. [29] proposed a scheme called LLASN (Lung Lobes
Adversarial based Segmentation Network) in which U-Net is used to generate segmentation
results, and a discriminator network is used to discriminate the generated segmentation
results from ground-truth labels. Dadras et al. [30] employed multiple ML techniques
(self-supervision, attention, and augmentation) to train a lung lobe segmentation model
based on 2D U-Net.

We propose a method for the fully automatic segmentation of pulmonary fissures on
lung CT based on a DoS filter and non-volumetric CNNs. The advantage of our method
over ordinary segmentation networks working with individual slices is better performance
due to adding a DoS filter as a preprocessing step to account for the volumetric information
of the input image. Model ensembling is also used to improve prediction accuracy.

The advantage of the proposed method over methods based on volumetric CNNs such
as 3D U-Net and V-Net is that it requires less memory. This can be easily demonstrated
by the fact that a single slice of a 3D image is an edge case of a 3D chunk, and while non-
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volumetric CNNs can be trained on batches as small as a singular slice, volumetric CNNs
should use wider chunks to have a measurable advantage over non-volumetric CNNs.

The main contributions of this paper are the following:

• This paper proposes a novel method for pulmonary fissure segmentation on lung CT
using 2D CNNs and the DoS filter.

• We suggest a pulmonary lobe segmentation method using a fissure detection algorithm
and an interpolation technique known as thin-plate splines.

• We draw more attention to the problem of the automatic segmentation of objects such
as parenchyma, fissures, lobes, vessels, and airways, which can be helpful in diagnosis
and surgical planning.

This paper is structured as follows. Section 2 describes the segmentation pipeline,
including model training, training loss design, and the DoS filter used to preprocess data
for model training and validation, as well as for inference. This section also provides a
classification of the segmentation errors used in this paper and describes the data used for
the experiments. Section 3 shows the experimental results, including a comparison of the
proposed method with the DoS method, cross-validation results, and lobe segmentation
experiment results. In Section 4, we evaluate the performance of the proposed method,
discuss its advantages as well as limitations and weaknesses, and suggest how the proposed
approach can be improved and/or be utilized in the future.

2. Materials and Methods
2.1. Derivative-of-Stick Filter

The key idea of the DoS filter is to use stick filters of L × L size, where L is the length
of the stick. The image is filtered with 2(L − 1) versions of the filter, one for each possible
filter orientation. The lung parenchyma tissue has the lowest density in areas immediately
adjacent to the fissures. To take advantage of that, Xiao et al. [6] use three parallel sticks
spaced S pixels apart from each other instead of a single stick.

Two nonlinear derivatives for fissure enhancement are introduced, ℓmax and ℓmin:

ℓS,θ
max(x) = max(µM − µL, µM − µR)− κ ·

√
E
[

I2
j

]
−

(
E
[
Ij
])2, (1)

ℓS,θ
min(x) = min(µM − µL, µM − µR)− κ ·

√
E
[

I2
j

]
−

(
E
[
Ij
])2. (2)

Here, θ is the orientation angle of the stick, x is the spatial position, and κ is a posi-
tive coefficient.

µM, µL, and µR are the mean intensity values along the middle, left, and right sticks,
respectively:

µ =
1
L

L

∑
j=1

Ij. (3)

Here, E is the expected value operator, and Ij is the intensity of the j-th pixel. The sec-
ond term is introduced to suppress blob-like structures.

The stick responses of different orientations can be integrated as follows:

Fmax(x) = max
(

max
1≤i≤2(L−1)

(
ℓS,θi

max

)
, 0

)
(4)

Fmin(x) = max
(

max
1≤i≤2(L−1)

(
ℓS,θi

min

)
, 0

)
(5)

Here, θi denotes the discrete angle of the i-th stick. Since we are looking for bright
objects, only non-negative response values are considered.
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A fissure with a step-like appearance or a thickened fissure can be converted into a
standard thin curvilinear structure using the Fmax operation. Normal thin fissures are not
affected by Fmax. When Fmin is applied to the result of Fmax, both normal and pathological
fissures will be enhanced equally. The combined filter can be described as follows:

F◦ = Fmax ◦ Fmin. (6)

Because a fissure can be barely visible or interrupted on slices in one cross-section and
clearly visible in another, Xiao et al. [6] integrate responses from all three perpendicular
cross-sections:

F3D(x) =
(

FA
◦ + FS

◦ + FC
◦

)
·

median
(

FA
◦ , FS

◦ , FC
◦
)

max(FA◦ , FS◦ , FC◦ )
. (7)

Here, FA
◦ , FS

◦ , and FC
◦ denote the response of the DoS F◦ filter in the axial, sagittal,

and coronal cross-sections, respectively.

2.2. The Proposed Method

We introduce two new segmentation methods in addition to the baseline method,
in which a neural network is applied without preprocessing data with a DoS filter. By
comparing different methods, we tried to answer two questions: which cross-section
gives the best result and whether preprocessing a CT scan with a DoS filter improves the
result. To answer these questions, three image preprocessing approaches were chosen.
The first performs histogram equalization and intensity normalization to the 0. . . 255 range.
The second also involves histogram equalization and normalization, but the image is first
processed by a DoS filter. The third approach combines the outputs of the previous two
methods by creating an additional data dimension.

The pipeline of the image segmentation application is shown in Figure 1. First, a lung
mask is applied to the image in such a way that everything outside the mask is filled
with zeros. The image is also cropped to a region of interest that is equal to the bounding
box of the lung mask. Then, the image is filtered and/or normalized depending on the
preprocessing approach of choice. The 3D scan is then sliced. As the previous step produces
images of variable size due to the natural variability in lung anatomy and differences in CT
scan resolutions, slices are resized to 512 × 512 pixels. This step is performed because the
model deals with images of the same size.

Figure 1. The segmentation pipeline overview. First, the image is masked with the lung mask and
then cropped to the mask’s bounding box. Next, the image is normalized and optionally filtered by
a DoS filter. Then, individual slices are fed as input to the neural network. Finally, several inverse
operations are performed to transform the output and retrieve the fissure segmentation. Green and
red colors indicate voxel values that depend on the object class, and black is the background.
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The segmentation model expects individual slices as input. The neural network
outputs a mask with integer values from 0 to 2, where 0 is the background, 1 is an oblique
fissure, and 2 is a horizontal fissure. All of the preprocessing steps, except for DoS filtering,
have an inverse postprocessing step. The mask then gets scaled back to the cropped image
resolution. The individual slices are merged into a 3D image, which is then padded to the
size of the original CT image.

Figure 2 depicts a pipeline of the combined preprocessing approach. Firstly, the image
is processed with the DoS filter, and then histogram equalization and normalization to
0. . . 255 are applied. The output image has three channels of the same size as the input.
All channels except for the second contain the same image processed by the DoS filter.
The second channel contains the image prepared in a similar way except for the DoS
filtration. The result is then sliced and saved into separate images for further use in model
training and testing.

Figure 2. The combined preprocessing approach pipeline. Only one image channel contains the
normalized image not processed by the filter.

Six models were trained for each lung, one for each combination of preprocessing
approach and cross-section (either sagittal or coronal). There are twelve models in total,
not including the standalone DoS method, ensembles, and the models trained for the
cross-validation. For two of them, PAN architecture and the Focal loss were used, and for
the rest, U-Net and the Dice loss were used, which is explained in Section 3. The axial
cross-section is not used because the horizontal fissure of the right lung appears only on a
few slices due to its orientation (hence its name). Therefore, a training dataset composed
only of axial slices would be very unbalanced. Though usually an issue like that is solved
by applying augmentations, there is no clear way to solve this issue in this particular case.

To further improve the performance of the models, we apply model ensembling. The
pipeline is shown in Figure 3. The one-hot function is applied to each of the segmentation
masks generated by the models that make up the ensemble, and then the argmax function is
applied to the sum of the results. To ensure the reliability of the results, we also performed
10-fold cross-validation.
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Figure 3. Model ensembling pipeline. One-hot is applied to the output of each model, and then
argmax is applied to the sum of the results. Here, black-and-white images represent the standard
coding of classes, where for each class a particular value is used. Here, black and white images
represent standard class encoding, where a specific value is used for each class. Color images
represent one-hot class encoding, each color refers to one of the channels (blue—background, red and
green—fissures).

2.3. Error Types

Fissure segmentation errors can be divided into the following categories: false nega-
tives (type II errors), misclassification, oversegmentation, and false fissure segmentation (or
simply false segmentation). The last two are examples of false positives (or type I errors).
Examples are shown in Figure 4. Oversegmentation (see a) occurs when the predicted mask
overlaps with the true mask along the entire fissure cross-section, but the Jaccard measure
(the overlap area divided by the union area) is less than 70%. False segmentation (see c) is
the incorrect classification of structures’ voxels as fissures. Misclassification (see d) happens
when the model attributes a voxel to the wrong fissure type.

Figure 4. Error types shown in the right lung segmentation example: (a) oversegmentation; (b) false
negatives; (c) false segmentation; (d) misclassification. Green indicates the oblique fissure and yellow
indicates the horizontal fissure.

There are methods to mitigate errors of each type. The postprocessing stage of the
DoS method is an example of a false positive reduction algorithm. In this paper, we use
model ensembling to eliminate false segmentation and to increase the overall accuracy of
the segmentation as well.

To reduce the misclassification error rate, we propose an algorithm based on the k-
nearest neighbor (KNN) approach. The idea is to keep the two largest components, one for
each of the two classes (for the right lung), and train the KNN method on the coordinates of
these voxels. This allows falsely classified voxels to be assigned to a more appropriate class
based on their proximity to a particular fissure. For this purpose, all voxel coordinates of
the original mask are passed to the trained model, resulting in a new class being assigned
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to them. Although an ensemble model is capable of reducing a large proportion of such
errors by itself, curvilinear approximation algorithms that derive the lobe segmentation
are very sensitive to misclassification. Therefore, the proposed algorithm can be used as a
precautionary measure.

Oversegmentation errors are usually not critical, because in both the predicted segmen-
tation and the true segmentation, the fissure masks are wider than real fissures, which look
like very thin lines in sagittal and coronal sections. Since we consider fissure segmentation
as an intermediate step in the lobe segmentation task, usually followed by curvilinear
approximation (e.g., using the thin-plate spline method [23]) or an additional lobe segmen-
tation model [25], the mask width does not play a major role as long as it does not interfere
with the approximation step.

Moreover, oversegmentation is preferable to type II errors or false segmentation
because people usually highlight not the fissure itself but the approximate area around
it, and the width varies not only in annotations made by different people but also in
annotations made by the same person. But, since standard measures such as F1, the Jaccard
coefficient, and the Dice coefficient do not take this into account, they encourage accuracy
instead of completeness.

The simplest solution would be to use the measures that allow for configuring the
importance of false positives over false negatives, such as Fbeta. However, such measures
would equally encourage oversegmentation and false segmentation. It is possible to
modify a measure so that oversegmentation will have less effect on its value than false
segmentation. In this paper, we use the measures proposed by Xiao et al. [6], which satisfy
this requirement.

The changed Precision, Recall, and F1 measures are based on counting true positives
as well as type I and type II errors. Xiao et al. [6] use a 3 mm margin to define true
positive values: i.e., voxels that are no more than 3 mm away from the ground-truth
mask are considered true positive values for TP1, and all other voxels of the predicted
mask contribute to type I errors or false positives FP [6]. In a similar way, the voxels of
the ground-truth mask are divided into TP2 and type II errors FN, for which the same
intersection criterion is used. In general, TP1 and TP2 are not equal. Then, Precision and
Recall measures are defined as TP1/(TP1 + FP) and TP2/(TP2 + FN). The F1 measure is
defined by the same equation: F1 = 2 · Precision · Recall/(Precision + Recall).

2.4. Loss Function

In this paper, we use both the Dice loss function [31] and the Focal loss function.
Both the Dice loss and Focal loss perform well in tasks with high class imbalance, like
fissure segmentation. The Dice loss is based on the Dice score, while the Focal loss is an
improved version of the Cross-Entropy loss. The Focal loss has been described in detail
in [32]. The Dice loss function is defined as follows:

D = ∑
c

Dc = ∑
c

(
− 2 ∑i pc(i)gc(i)

∑i pc(i) + ∑i gc(i) + γ

)
(8)

where pc(i) and gc(i) represent the predicted value and ground truth at position i, respec-
tively; c denotes the class number; and γ is a very small positive value (e.g., 1 × 10−5) to
avoid division by 0.

2.5. Data

Ninety-nine chest CT scans were collected from the Novgorod Regional Clinical
Hospital. The patients who had undergone the scans had been diagnosed with lung
cancer or had symptoms of lung cancer. The scans were picked according to the following
criterion: the pulmonary fissures are clearly visible to a physician over most of the area of
the respective lung.

Scans were produced by different scanners, namely, Aquilion manufactured by Toshiba
in Shimoishigami, Otawara-shi, Tochigi, Japan, Ingenuity manufactured by Philips Health-
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care in Cleveland, Ohio, USA, Optima CT660 manufactured by GE BE Private in Whitefield,
Bangalore, India, BrightSpeed manufactured by GE Hangwei Medical Systems in Beijing,
China, as well as SOMATOM Definition AS, Sensation, Perspective, and Emotion all man-
ufactured by Siemens in Erlangen, Germany. The slice thickness ranged from 0.3 mm to
2 mm, with 86 out of 99 scans (87%) having a slice thickness of 1 mm or less.

Our access to the data was facilitated through the Cooperation Agreement between the
Ministry of Health of the Novgorod Region and the Novgorod State University (Agreement
number 20230609, signed on 9 June 2023). The study was conducted in accordance with the
Declaration of Helsinki, and protocol #5 was approved by the Novgorod State University
Ethics Board (approval date: 22 January 2024).

Nine scans were randomly selected for the test set, and the remaining ninety scans
were used as training data. Pulmonary fissures on the scans were manually annotated by a
physician using 3D Slicer [33]. Lung masks were obtained automatically using the Chest
Imaging Platform software (version 5.2.2) based on 3D Slicer (version 5.5.0-2023-11-24) [34].

3. Results
3.1. Fissure Segmentation

The segmentation models were trained using Pytorch version 2.1.0 on an NVIDIA
Quadro RTX 8000 graphics card with 48 GB of memory. The following parameters were
used for the DoS filter: L = 11, gap = 3, and k = 0.5. The values of L and gap were taken
from [6], and the value k = 0.5 was chosen experimentally. The rotate, translate, scale,
and shear augmentations from the Albumentations package [35] were used in training.
The U-Net and Pyramid Attention Network (PAN) architectures, along with the Focal and
Dice loss functions, were used. The specific implementations of these architectures and loss
functions were taken from the Segmentation Models Pytorch Python package [36].

There are two models per data preprocessing method, one trained on the slices ob-
tained in the sagittal cross-section and one trained on the coronal slices, which gives us six
models for each lung and twelve models in total. For brevity, the models were given the
following designations. Models trained on sagittal slices have the prefix sag, and models
trained on coronal slices have the prefix cor. Models trained on data preprocessed by the
DoS filter have the suffix dos. Models trained on data not processed by the filter have the
suffix raw. Models working on hybrid-type data (as shown in Figure 2) have the prefix
cat (short for concatenation, since it concatenates the results of the other two approaches).
The names of the models included in the ensemble are abbreviated to the first letters of the
prefix and suffix (e.g., cd is the same as cordos, i.e., the model trained on coronal slices using
the DoS filter). The abbreviation reference can be found in Table 1.

Table 1. Abbreviation reference.

Model Name Description In-Ensemble Alias

cordos A model trained on the slices retrieved in the
coronal cross-section processed by the DoS filter. cd

corcat Coronal cross-section, combined processing. cc
corraw Coronal cross-section, without the DoS filter. cr
sagdos Sagittal cross-section, with the DoS filter. sd
sagcat Sagittal, combined. sc
sagraw Sagittal, without the DoS filter. sr

cd + cr + sc + sd An ensemble of the cordos, corraw, sagcat,
and sagdos models. -

The combination of the U-Net architecture, the ResNet 34 encoder, and the Dice loss
function was used as the baseline method. The PAN and DeepLabV3+ models with the
ResNet 101, ResNet 152, EfficientNet B3, and EfficientNet B4 encoders were also tested.
With the exception of the sagcat models (hybrid processing, sagittal cross-section), no
significant improvement over the baseline was observed during the validation phase.
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For all other models, the baseline was chosen. The sagcat models are PANs with the ResNet
34 encoder and were trained using the Focal loss function.

For the right lung, the models were trained on slices of 90 volumetric CT images,
and test data consisting of slices of 9 CT images were used for evaluation. The resulting
comparison of the models with one of the ensembles is shown in Table 2. The ensemble
schematic can be seen in Figure 3. In addition to the Precision, Recall, and F1 scores, their
alternative versions, described earlier in this paper and named PDoS, RDoS, and FDoS, were
also used. These scores are less sensitive to oversegmentation than the standard Precision,
Recall, and F1 scores. With the exception of Recall and RDoS, the ensemble consistently
performs better in all other measures, since ensembles tend to sacrifice Recall for Precision.

Table 2. Testing models on the right lung.

Method F1 Precision Recall FDoS PDoS RDoS

Ensemble (all models) 0.683 0.571 0.878 0.914 0.898 0.943
sagcat 0.652 0.522 0.897 0.890 0.850 0.948
sagraw 0.620 0.482 0.907 0.876 0.828 0.945
cordos 0.653 0.542 0.855 0.875 0.833 0.939
sagdos 0.636 0.508 0.884 0.873 0.831 0.934
corcat 0.642 0.531 0.846 0.872 0.825 0.944
corraw 0.623 0.497 0.873 0.872 0.817 0.952

The comparison of the six-model ensemble with the original DoS algorithm of [6],
which includes the 3D connected component analysis pipeline, is shown in Table 3. The vi-
sual comparison of the masks obtained using the ensemble and using DoS is shown in
Figure 5. Since DoS does not distinguish between oblique and horizontal fissures of the
right lung, all fissures had the same class in the comparison. We can conclude that the DoS
algorithm is much less effective than neural network-based methods.

Figure 5. A comparison of the ensemble of neural network models and the DoS method using one
of the test images. The mask obtained with DoS is highlighted in purple. FDoS = 0.908 for the DoS
result, and FDoS = 0.967 for the ensemble result (measured on this scan alone). (a) A 3D model. (b) A
sagittal slice.
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Table 3. DoS and ensemble comparison using the right lung.

Method F1 Precision Recall FDoS PDoS RDoS

Ensemble (all models) 0.687 0.572 0.884 0.916 0.898 0.946
Standalone DoS 0.305 0.733 0.201 0.724 0.763 0.708

For both the right and left lungs, we combined the 6 models to create 57 ensembles.
The top five models for the right lung based on the FDoS score are shown in Table 4.

Table 4. The five best ensembles for the right-lung fissure segmentation.

Method F1 Precision Recall FDoS PDoS RDoS

All 6 models 0.683 0.571 0.878 0.914 0.898 0.943
cd + cr + sc + sd 0.686 0.581 0.867 0.914 0.901 0.938
cc + cr + sc + sd 0.684 0.578 0.867 0.913 0.900 0.938
cd + cr + sc + sr 0.680 0.570 0.873 0.913 0.899 0.939
cc + cd + sc + sr 0.689 0.587 0.860 0.913 0.903 0.934

The F1 and FDoS scores for each of the right-lung fissures are presented in Table 5.
For the left-lung fissure segmentation, the same approach was used as for the right-

lung fissure segmentation. Specifically, models were trained on slices obtained in two cross-
sections with different preprocessing techniques (L-models), and then model ensembles
were created. A training set of 68 images and a test set of 9 images were used for the
left-lung fissure segmentation, with encoders’ weights initialized with the weights from the
respective right-lung fissure segmentation model encoders before training. For example,
the left-lung sagcat model encoder weights were initialized with the weights of the same
model of the right lung. All but the largest connected component of the oblique fissure
were also removed before testing.

Table 5. F1 and FDoS scores depending on right-lung fissure and model.

Method FOblique
1 FHorizontal

1 FOblique
DoS FHorizontal

DoS

cc + cd + cr + sc + sd + sr 0.678 0.682 0.909 0.915
sagcat 0.643 0.653 0.884 0.887
sagraw 0.615 0.617 0.873 0.867
cordos 0.652 0.638 0.877 0.856
corraw 0.630 0.590 0.873 0.855
sagdos 0.630 0.632 0.871 0.855
corcat 0.652 0.608 0.880 0.844

Table 6 shows the comparison of the best single model, the two best ensembles, and the
standalone DoS method. We also used models trained for right-lung fissure segmentation
(R-models) to segment left-lung fissures. The comparison results can be seen in the same
table, namely, the best single model and the best ensemble. In the task of left-lung fissure
segmentation, the FDoS of R-models is just 2.6% lower than that of L-models, which shows
that R-models have achieved significant generalization ability.
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Table 6. Our four best ensembles, the best model, and the DoS method on the left lung. sagcat R and
sc+sd+sr R are the best model and the best ensemble trained on the right-lung slices.

Method F1 Precision Recall FDoS PDoS RDoS

sagcat 0.725 0.753 0.724 0.926 0.933 0.922
cd + cr + sc + sd + sr 0.737 0.745 0.747 0.933 0.944 0.923

cd + sc + sr 0.738 0.743 0.753 0.932 0.940 0.927
sagcat R 0.721 0.658 0.826 0.907 0.933 0.886

sc + sd + sr R 0.710 0.626 0.846 0.907 0.933 0.886
Standalone DoS 0.285 0.702 0.188 0.666 0.767 0.617

3.2. Cross-Validating Fissure Segmentation Models

Since the training and test datasets we used for training and evaluation are relatively
small, we performed 10-fold cross-validation to ensure that the results are reliable. For this
purpose, we combined the training and test datasets into two sets of 99 and 77 scans
each for the right and left lungs, respectively. We then divided the first set into 10 folds
of 9 or 10 CT scans and the second set into 10 folds of 7 or 8 scans for the left lung.
The second-best ensemble for the right lung and the second-best ensemble for the left
lung were also re-evaluated. This choice is explained by the fact that these ensembles
include fewer models than the top ones but perform no more than 0.2% worse according to
Tables 4 and 6. For each fold, the models included in the selected ensembles were re-trained
and re-evaluated.

Table 7 shows the overall cross-validated performance of the right-lung models.
The values to the left of the brackets are the mean values across folds, while the val-
ues in the brackets are their standard deviations. The cross-validated performance of the
single best model (sagcat) is 0.4% higher than the non-cross-validated result (see Table 4),
while the top performance of the ensemble dropped by 4.4%. Although the best ensem-
ble previously showed better performance than any single model by a margin of 2.4%,
after cross-validation, sagcat showed superior performance, incidentally also by a margin
of 2.4%. Despite this, it cannot be concluded that ensembling is useless, since the ensemble
still has higher Precision than the single best model, almost preserving the old margin (4.8%
then vs. 4.2% now).

Table 7. Right-lung models’ overall cross-validated performance.

Method F1 Precision Recall FDoS PDoS RDoS

cd + cr + sc + sd 0.550 (0.051) 0.452 (0.053) 0.786 (0.064) 0.870 (0.055) 0.900 (0.048) 0.858 (0.061)
sagcat 0.559 (0.059) 0.425 (0.076) 0.904 (0.068) 0.894 (0.055) 0.858 (0.057) 0.942 (0.058)
corraw 0.522 (0.049) 0.394 (0.047) 0.833 (0.053) 0.861 (0.047) 0.824 (0.049) 0.912 (0.046)
cordos 0.507 (0.045) 0.399 (0.050) 0.768 (0.058) 0.839 (0.048) 0.828 (0.053) 0.865 (0.051)
sagdos 0.495 (0.060) 0.384 (0.062) 0.781 (0.071) 0.810 (0.073) 0.819 (0.085) 0.823 (0.073)

Table 8 demonstrates cross-validated by-fissure performance for the right-lung models.
It can be seen that both before and after cross-validation, the models detected the horizontal
fissures better than the oblique fissures. Although it was previously more evident with the
ensemble, now the single best model performs similarly.

Table 8. Right-lung models’ by-fissure performance with 10-fold cross-validation.

Method FOblique
1 FHorizontal

1 FOblique
DoS FHorizontal

DoS

cd + cr + sc + sd 0.541 (0.050) 0.565 (0.061) 0.881 (0.051) 0.839 (0.072)
sagcat 0.529 (0.066) 0.622 (0.051) 0.887 (0.054) 0.903 (0.062)
corraw 0.518 (0.045) 0.517 (0.064) 0.871 (0.040) 0.816 (0.074)
cordos 0.510 (0.045) 0.482 (0.056) 0.857 (0.042) 0.774 (0.067)
sagdos 0.486 (0.063) 0.506 (0.057) 0.825 (0.074) 0.761 (0.080)
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Figures 6 and 7 contain box-with-whisker plots for the oblique and horizontal fissures.
The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a line
at the median. The whiskers extend from the box to the farthest data point lying within
1.5× the inter-quartile range (IQR) from the box. Flier points are those past the ends of
the whiskers.

Table 9 demonstrates cross-validated performance for the left-lung models. After cross-
validation, the performance drops by 3.4%, but unlike the right-lung models, the ensemble
still performs better, albeit by a smaller margin of 0.4% (compared to 0.7%). The boxplot
for the left lung is shown in Figure 8.

Figure 6. Plot for the right-lung models’ cross-validated performance on the oblique fissure.

Figure 7. Plot for the right-lung models’ cross-validated performance on the horizontal fissure.
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Table 9. Left-lung models’ performance with 10-fold cross-validation.

Method F1 Precision Recall FDoS PDoS RDoS

cd + sc + sr 0.726 (0.061) 0.787 (0.067) 0.690 (0.056) 0.899 (0.065) 0.950 (0.064) 0.869 (0.065)
sagcat 0.707 (0.059) 0.782 (0.064) 0.664 (0.056) 0.895 (0.065) 0.945 (0.054) 0.869 (0.065)
sagraw 0.722 (0.059) 0.738 (0.072) 0.722 (0.057) 0.894 (0.062) 0.926 (0.066) 0.873 (0.058)
cordos 0.672 (0.072) 0.752 (0.063) 0.621 (0.079) 0.847 (0.085) 0.929 (0.063) 0.794 (0.099)

Figure 8. Plot for the left-lung models’ cross-validated performance.

3.3. Pulmonary Lobe Segmentation

Fissure masks can be used to obtain lung lobe masks by applying curvilinear approx-
imation algorithms such as thin-plate splines [23]. Such lobe segmentation will not be
accurate because not only fissures but also airways have a large influence on the appearance
of lung lobes; for example, they occlude lung fissures’ visibility on a CT image in certain
areas of the lung. Consequently, meaningful segmentation of the lobes requires either
segmenting the airways [7] or segmenting the lobes directly [28]. Both of these approaches
are beyond the scope of this paper.

Nevertheless, it is possible to perform an additional indirect assessment of the fissure
segmentation quality using the lobe segmentation obtained using just the lung mask and
fissure masks. For this purpose, the lobes found using ground-truth masks were compared
with those found using predicted masks.

Before applying thin-plate splines, all components with sizes less than 500 voxels were
removed from the right-lung fissure masks, and all components except the largest one were
removed from the left-lung fissure mask. To eliminate misclassification, KNN was applied
as described above. The lung mask was also used to establish the outer boundaries of
the lobes.
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The cd + cr + sc + sd + sr ensemble was used to segment the left-lung lobes, and the
ensemble of all models (cc + cd + cr + sc + sd + sr) was used to segment the right-lung lobes,
since these are the best ensembles for the left and right lung lobes, respectively. The sagcat
model was also used to segment the lobes of both lungs. The comparison is shown in
Table 10.

Table 10. The Dice scores of the results of lobe segmentation by two ensembles and the sagcat model
with the approximation algorithm applied. UR, MR, LR, UL, and LL stand for upper right, middle
right, lower right, upper left, and lower left, respectively.

Method UR MR LR Right avg UL LL Left avg All avg

All-models ensemble R 0.991 0.977 0.991 0.986 - - - 0.989
cd + cr + sc + sd + sr L - - - - 0.993 0.993 0.993 0.989

sagcat L 0.980 0.952 0.986 0.973 0.994 0.994 0.994 0.981

Here, UR, MR, LR, UL, and LL are the upper-right, middle-right, left-right, upper-left,
and lower-left lobes, respectively; right avg, left avg, and all avg are the average scores for
the right lung, left lung, and both lung lobes, respectively. In the first two rows, all avg is
the average for the two ensembles. R or L in the index designates either the right or left
lung, respectively, for the model.

Ensembles of models perform better than any single model because they are less prone
to type I errors. The results of left-lung lobe segmentation with ensembles are shown in
Figure 9. Ensembles show a higher average result on both lungs, 0.989. In comparison,
Wang et al. [28] achieved a median Dice score of 0.993, and Gerard et al. [25] achieved a
median Dice score of 0.947.

Figure 9. Right-lung lobes on one of the test images. (a) Lobes in the sagittal cross-section. Green,
yellow and red colors are for the upper, middle, and red lobes, respectively. (b) A 3D model of
lobes. (c) A 3D model of fissures. Green and yellow colors are for the oblique and horizontal
fissures, respectively.

Figure 10 shows an example of a discrepancy between the predicted and true masks.
The greatest discrepancy is observed in the regions of the lung adjacent to the mediastinum.
In these regions, the fissures are the least segmented in both training and test samples as a
result of various factors, such as other organs overlapping with the fissures.
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Figure 10. A comparison of true and predicted lobe masks of the right lung on one of the test images.
Colors have the same meanings as in the Figure 9, except for purple, which denotes airways. Here,
the values of F1 are 0.992 for the upper lobe; 0.952 for the middle lobe; and 0.986 for the lower lobe.
(a) A region on a 3D lobe model on which the section corresponding to (b) is highlighted with red.
(b) A sagittal slice with both masks superimposed. (c) The 3D lobe model with masks superimposed
in the area of the right lung adjacent to the mediastinum; the areas of discrepancy are circled in red.
(d) The same area highlighted on the 3D model.

4. Discussion

We have proposed a new method for pulmonary fissure segmentation on CT images
based on the combination of DoS filtering, CNNs, and model ensembling techniques. Our
method shows better results than the DoS method. Segmentation networks were trained
on individual slices of sagittal and coronal cross-sections of preprocessed DoS-filtered CT
images. Several models were also trained on slices of non-filtered images.

For the right lung, the best result is shown by the ensemble of models, with a modified
F1 score of 0.916, compared to the standalone DoS method [6] score of 0.724. For the left
lung, the ensemble of five models shows the best result, with a score of 0.933 (the standalone
DoS method shows a score of 0.666).

While our method relies on 2D CNN models, it still accounts for volumetric infor-
mation, firstly because a DoS filter is used as a preprocessing step and secondly since
different components of the ensembles are trained on different cross-sections. Ensembles
of networks trained on both coronal and sagittal slices give more accurate predictions
than individual models or ensembles of models trained on only one of the cross-sections,
which was confirmed experimentally. An axial cross-section was not used because the
right horizontal fissure is almost perpendicular to the axis in most cases, making the data
for training and evaluation very limited. Assuming that 32-bit floating point (FP) encod-
ing is used, each model requires memory for at least one slice of 512 × 512 per inference
pass, which is 1MB for a grayscale image and 3MB for an RGB image, which may be the
original slice, a synthesized feature such as a DoS-filtered slice, or both. For comparison,
Gerard et al. [24] used fixed-size image crops of 64 × 200 × 200, which is 5 MB for a 32-bit
FP-encoded grayscale volume [24]. There is a trade-off between inference speed and mem-
ory consumption, as using very small batches or single samples slows down inference but
reduces memory requirements.

Most modern computers have gigabytes of RAM. CPUs are able to segment fissures
with CNN models by storing data and weights in the RAM rather than the video memory,
although they will be much slower than GPUs. In addition to input and output data, there
are model weights and intermediate outputs of hidden layers, the memory for which may
not be reused in the same pass because the model can have skip connections. Assuming
that segmenting the fissures in the scan will require no more than hundreds of times more
memory than the input data themselves, the task can be accomplished on most modern
computers, even with a 3D model.

The task of fissure segmentation is far from being completely solved and has many
issues. Therefore, approaches that allow rapid experimentation are needed. In the inference
and evaluation stage, the batch size only affects the execution time. In the training stage,
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the batch size is an important hyperparameter that has a huge impact on the learning
process. For instance, a larger batch size gives a more accurate estimate of the true gradient,
which makes the whole learning process more stable, especially at high learning rates.
Two-dimensional CNNs give more freedom to choose the batch size because they are less
constrained by memory resources. For this reason, approaches based on 2D CNNs, such as
the proposed solution, have an advantage in research, even though this advantage is less
significant in the inference process.

We performed cross-validation to ensure that the results are reliable, as the dataset
was relatively small. Although on the right lung, the ensemble performed worse, according
to the F1 score, than the single model in cross-validation, it still had a higher Precision
score, which is more important for applications such as lung lobe segmentation, as they are
very sensitive to false positives. Models trained on data preprocessed with the DoS filter
performed better both before and after cross-validation; therefore, the combination of the
DoS filter and the CNN model gives more reliable prediction results than the CNN model
trained on raw data.

The scope of the proposed method is limited to CT scans in which fissures are clearly
visible. If a person cannot see fissures on a particular CT scan, they need additional data
to do so, for example, a higher-resolution scan of the same patient taken under the same
conditions. Patients rarely undergo CT scans twice in a row due to health risks. However,
a dataset of high-resolution scans can be collected that can be algorithmically processed to
mimic the performance of a low-resolution scanner. In this case, the segmentation masks
for training and evaluation can be obtained from high-resolution scans, and the model
can be trained and estimated on low-resolution scans. However, we then need a way to
evaluate the accuracy of an algorithm that imitates low-resolution scanning.

In addition, in many cases, fissures remain partially invisible despite high scanning
quality. Getting more people to annotate the same data and finding a consensus among
them partially solves this problem, but the time and effort required increase proportionately.
Another possible approach is to use other types of scanning, such as magnetic resonance
imaging (MRI), along with CT. Although cases in which both types of imaging are per-
formed on the same patient in a short period of time are rare, there are studies that address
such cases [37,38].

Another weakness of our approach is that cases where the disease (more precisely,
cancer or nodules mimicking cancer) obscures the lung fissures were rare in our dataset,
while these are the most interesting cases, since one possible application of lobe detection is
the diagnosis of lung cancer, which largely depends on whether the tumor has reached the
inner boundaries of the lobe, which are defined by the lung fissures. Lobectomy, surgery to
remove the diseased lobe of the lung, is more effective if the tumor does not cross the lobe
boundary [5].

In addition, lung lobe segmentation was performed using fissure segmentation. Al-
though the only purpose of lobe segmentation was to evaluate the quality of the fissure
segmentation method, the lobe segmentation algorithm still shows results close to those
of state-of-the-art methods, with an average Dice coefficient value of 0.989, which sug-
gests the high efficiency of the proposed fissure segmentation method. In comparison,
Wang et al. [28] achieved a median Dice score of 0.993, and Gerard et al. [25] achieved a
median Dice score of 0.947.

To improve the fissure segmentation algorithm, we can collect more data, especially
those where the appearance of fissures is affected by a disease, which will make the
model more robust in edge cases. In addition, in future work, the performance of the
proposed method and state-of-the-art 3D CNN models can be compared on the same data.
Alternatively, future work can include the segmentation of airways and vessels to further
improve the lobe segmentation algorithm. Also, the fissure segmentation algorithm can be
used in the task of fissure integrity assessment.
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5. Conclusions

We proposed a new method for pulmonary fissure segmentation on CT images using
CNNs, image filtering, and model ensembles. The proposed method shows a modified F1
score of 0.916 for right-lung fissures and 0.933 for left-lung fissures, with a cross-validated
performance of 0.894 and 0.899, respectively. We also developed a lung lobe segmentation
method using the fissure segmentation method and thin-plate spline algorithm. It shows an
average Dice coefficient of 0.989, so we conclude that the underlying fissure segmentation
algorithm is effective. Future work may include making the fissure segmentation algorithm
more robust in edge cases, particularly by utilizing a larger and more balanced dataset
or developing an accurate lobe segmentation method. The fissure segmentation method
can also be part of a fissure integrity assessment algorithm.
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