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Abstract: Accurate assessment of N staging in patients with non-small cell lung cancer (NSCLC) is
critical for the development of effective treatment plans, the optimization of therapeutic strategies,
and the enhancement of patient survival rates. This study proposes a hybrid model based on 3D
convolutional neural networks (CNNs) and transformers for predicting the N-staging and survival
rates of NSCLC patients within the NSCLC radiogenomics and Nsclc-radiomics datasets. The model
achieved accuracies of 0.805, 0.828, and 0.819 for the training, validation, and testing sets, respectively.
By leveraging the strengths of CNNs in local feature extraction and the superior performance of
transformers in global information modeling, the model significantly enhances predictive accuracy
and efficacy. A comparative analysis with traditional CNN and transformer architectures demon-
strates that the CNN-transformer hybrid model outperforms N-staging predictions. Furthermore,
this study extracts the one-year survival rate as a feature and employs the Lasso–Cox model for
survival predictions at various time intervals (1, 3, 5, and 7 years), with all survival prediction p-values
being less than 0.05, illustrating the time-dependent nature of survival analysis. The application
of time-dependent ROC curves further validates the model’s accuracy and reliability for survival
predictions. Overall, this research provides innovative methodologies and new insights for the early
diagnosis and prognostic evaluation of NSCLC.

Keywords: non-small cell lung cancer; N-staging prediction; survival analysis; CNN-transformer
hybrid model

1. Introduction

Lung cancer remains a malignant tumor with high incidence and mortality rates world-
wide, drawing significant concern due to its severity and urgency [1]. Non-small cell lung
cancer (NSCLC) constitutes the majority of lung cancer cases, accounting for 80% to 85%
of all instances, leading to approximately 1.6 million deaths annually [2,3]. This presents a
substantial challenge to public health. The eighth edition of the American Joint Committee on
Cancer (AJCC) lung cancer staging system is a widely used tool, classifying NSCLC based
on tumor size (T), lymph node involvement (N), and distant metastasis (M) [4]. This staging
system provides clinicians with a fundamental description of the severity of lung cancer,
serving as a critical reference for treatment planning and prognosis evaluation. The treatment
strategy and prognosis of NSCLC are highly dependent on its staging system, especially the
N staging, which is crucial for guiding treatment decisions and predicting patient survival [5].

N staging is divided into several levels based on the extent of lymph node involvement [4].
N0 indicates no lymph node metastasis. N1 represents hilar lymph node involvement without ex-
tending beyond the hilar nodes. N2 indicates regional (extrapulmonary) lymph node involvement.
N3 denotes lymph node involvement that has spread to distant (remote) lymph nodes, potentially
involving contralateral intrapulmonary or extrapulmonary lymph nodes. As an integral part
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of lung cancer diagnosis, N staging significantly impacts the formulation of personalized treat-
ment plans. For example, patients with N0 staging might only require surgical resection, while
those with N1 staging and beyond might need a combination of radiotherapy, chemotherapy, or
immunotherapy [6]. Notably, approximately 30% to 40% of NSCLC patients experience lymph
node metastasis during the course of the disease, which can not only lead to disease progression
and deterioration but also cause a series of unpredictable complications, thereby significantly
affecting treatment outcomes and survival rates [7]. Therefore, accurately assessing N staging is of
paramount importance for developing effective treatment plans, optimizing therapeutic strategies,
and improving patient survival rates.

Current methods for N staging for NSCLC mainly depend on imaging techniques
(such as CT and PET-CT) and pathological analysis. Pathological methods, including tissue
biopsy and molecular biology techniques, provide insights into tumor characteristics but
are invasive and limited by sample acquisition [8–11]. Imaging techniques like CT and PET-
CT offer anatomical and metabolic information that is crucial for staging, though they have
limitations in detecting small or low-activity lesions and rely on physician expertise [12–15].
Therefore, there is a pressing need for more accurate, non-invasive techniques to improve
N-staging accuracy and minimize human error.

In recent years, deep learning and machine learning have been widely applied in cancer-
staging research. In traditional machine learning, Chen et al. [16] predicted STAS in stage-I
lung adenocarcinoma using radiomic features, selecting five key features to construct a
naive Bayes model with an AUC of 0.69, validating its application value in STAS prediction.
Gu et al. [17] analyzed the CT images and clinical data of T1N0M0 lung adenocarcinoma
patients, combining texture and clinical features to predict lymph node metastasis through a
logistic regression model, achieving an AUC of 0.808 in the validation set, aiding in treatment
planning. Parmar et al. [18] extracted quantitative features from CT images of 422 NSCLC
patients, identifying 11 stable lung cancer-specific radiomic feature clusters, with external
validation showing high stability and reliability, although the feature-extraction process was
unclear. Parmer et al. [19] extracted 440 radiomic features from CT images of 464 NSCLC
patients, evaluating the performance of various feature-selection and classification methods
in predicting overall survival, with Wilcoxon feature selection and random forest classifier
performing best. Janik et al. [20] constructed machine-learning models for early-stage NSCLC
patient data, achieving accuracies of 0.76 and 0.68 in the prediction of recurrence for tabular
and graph data models, respectively. Moon et al. [21] used PCA to extract features from
postoperative lung tumor resection patient data, including radiomic features and clinical data,
with the PCA-SVM model achieving the highest accuracy (ACC of 0.77) in the prediction of
recurrence risk. Kim et al. [22] studied lymph node residuals in stage-IIIa NSCLC patients
after neoadjuvant CCRT treatment, with the logistic regression model predicting metastasis
with an AUC of 0.77. Gu-Wei Ji et al. [23] applied SVM and LASSO algorithms to establish
radiomics nomograms, analyzing CT images of bile duct cancer patients to predict lymph
node metastasis, with AUCs of 0.81 and 0.80, respectively. Cong et al. [24] developed a model
combining clinical parameters and radiomic features to predict lymph node metastasis in
stage-IA NSCLC patients using LASSO for feature selection and achieving an AUC of 0.86.
Chen et al. [25] studied a radiomics nomogram that combines intratumoral and peritumoral
features to predict lymph node metastasis and overall survival (OS) in clinical stage-IA
non-small cell lung cancer. They selected 199 cases and defined four volumes of interest,
using manually designed feature extractors. They developed a nomogram combining optimal
radiomics features and clinical predictive factors with the Lasso–Cox method. The experiments
demonstrated that GPTV6 (tumor and 6mm peritumoral volume) radiomics outperformed
GTV, GPTV3, and GPTV9 radiomics in the training (area under the curve [AUC], 0.81), internal
validation (AUC, 0.79), and external validation cohorts (AUC, 0.71).

In NSCLC prediction tasks, traditional machine-learning methods face challenges, such
as reliance on manual feature extraction, which is time-consuming and may miss important
data. Limited data also restricts model generalization, leading to inconsistent performance
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across datasets. Furthermore, balancing model complexity with interpretability is difficult,
particularly in the medical field, where transparency in decision-making is crucial.

In terms of deep-learning methods, Wang et al. [26] utilized BP-ANN to extract fea-
tures from the PET/CT images of NSCLC patients and classify them, achieving an ACC of
0.81–0.85 and an AUC of 0.87–0.92 in 10-fold cross-validation. Zhang et al. [27] used multi-
view radiomics and ResNet18 to establish a model predicting N2 lymph node metastasis
in clinical stage I-II NSCLC patients, with an AUC of 0.83. Zhong et al. [28] developed a
ResNet152 deep-learning model for predicting N2 lymph node metastasis and prognostic
stratification in stage-I NSCLC, achieving AUCs of 0.82, 0.81, and 0.81 in internal, external,
and prospective test cohorts, respectively. Ouyang et al. [29] constructed a deep-learning
model to predict occult lymph node metastasis (OLM) in clinically lymph node-negative
(cN0) lung adenocarcinoma patients, with an AUC of 0.81 in internal validation and 0.87 in
prospective testing. Sibille et al. [30] retrospectively analyzed the 18F-FDG PET/CT images of
629 lung cancer and lymphoma patients, evaluating the performance of a deep CNN in lesion
localization and classification, with the DenseNet model excelling in identifying suspicious
high-metabolic lesions. Zhao et al. [31] proposed a cross-modal 3D neural network model,
DensePriNet, combining preoperative CT images and clinical prior knowledge to improve
the accuracy of predicting lymph node metastasis in clinical T1-stage lung adenocarcinoma
patients, with a test AUC of 0.926. Noam Tau et al. [32] used DenseNet to analyze 18F-FDG
PET images of newly diagnosed NSCLC patients to predict the risk of lymph node and distant
metastasis, achieving an AUC of 0.80 for lymph node metastasis prediction. Mu et al. [33]
used ResNet18 to predict the malignancy and metastasis of solid lung nodules in CT images
of primary lesions at initial diagnosis, with the deep-learning system achieving AUCs of
0.8037 and 0.8644 for malignancy and metastasis prediction, respectively. Lian et al. [34]
developed a population graph model combining Transformer-based radiomics and clinical
features to predict OS and RFS in early-stage NSCLC. Using 1,705 stage I-II patients and
127 for external validation, the model achieved OS AUCs of 0.785 (internal) and 0.695 (external)
and RFS AUCs of 0.726 and 0.700.

In lung cancer staging and survival prediction, convolutional neural networks (CNNs) are
widely used due to their strong ability to capture local features and retain spatial information,
effectively analyzing tumor characteristics such as size, shape, and texture in CT images.
However, CNNs are limited in capturing global contextual information, which is essential for
understanding the complex relationship between tumors and surrounding tissues.

Transformer architectures, known for their global context comprehension and efficient
parallel processing, excel in capturing long-range dependencies and tumor progression patterns.
Yet, pure transformer models may struggle with fine-grained local details and require significant
data and computational resources, limiting their direct application in medical imaging.

It is worth noting that, in other medical image-processing tasks, such as lesion
classification [35–37], object detection [38,39], and segmentation [40,41], an increasing
number of studies are adopting a hybrid approach that combines CNN and transformer
architectures. The hybrid model capitalizes on CNNs’ local feature extraction and trans-
formers’ global understanding, offering flexibility, scalability, and improved accuracy in
predictions. This integration provides a more comprehensive and personalized diagnostic
approach, addressing both tumor features and overall patient condition.

Based on the above analysis, we have decided to integrate CNN and transformer
architectures in the task of lung cancer staging and survival prediction. This decision is
guided by several considerations. First, a hybrid model can combine the local feature-
extraction capabilities of CNNs with the global contextual understanding of transformers,
thereby enhancing the accuracy and robustness of predictions. Second, the hybrid model
offers greater flexibility and scalability, allowing us to adjust the ratio and configuration
of CNNs and transformers according to specific task requirements to optimize model per-
formance. Finally, the hybrid model addresses the practical need in lung cancer diagnosis
to consider both local tumor features and the patient’s overall condition, providing more
comprehensive, accurate, and personalized diagnostic and predictive results.
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Thus, combining CNNs and transformers represents a promising solution for complex
medical imaging tasks like lung cancer staging and survival prediction.

2. Model Description

The workflow for predicting non-small cell lung cancer (NSCLC) N staging is shown
in Figure 1. The proposed HCT model consists of three parts, namely the transformer
feature-extraction block, the ResNet feature-extraction block, and the feature fusion module.
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The transformer architecture, originally successful in NLP due to its self-attention
mechanism that captures sequence dependencies, is used in the HCT model to capture
the global context in 3D imaging data. It employs a multi-head self-attention mechanism
to process each image region, capturing the interactions between different areas. This
mechanism is shown in Equation (1).

Attentioni(Qi, Ki, Vi) = So f tmax(Qi×KT
i√

d
)× Vi

MultiHead = Concat(Attention1, . . . Attentioni)
Output = Input + FFN(MultiHead)

(1)
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where, Q, K, and V represent the query, key, and value, respectively, and d is the dimen-
sionality of the keys. MultiHead represents the concatenated multi-head attention, Concat
denotes the concatenation operation, FFN stands for feedforward neural network, Input
refers to the input features, and Output refers to the output features.

ResNet (residual network) is a major advancement in deep learning, solving the
vanishing gradient issue in deep networks through residual connections. In the HCT model,
the ResNet module extracts local features from 3D imaging data using convolutional layers
and residual connections, allowing the network to capture detailed image information. The
residual structure of the ResNet module is defined by Equation (2).

y1 = h(x1) + F(xl , {Wi}) (2)

where, xl represents the input to the l-th layer, h(x1) denotes the output of the convolutional
layer, and F(xl , {Wi}) signifies the weights of the convolutional layer. The identity mapping
is represented by {Wi}.

The feature fusion module is the core of the HCT model, combining features from
both the transformer and ResNet to create a more comprehensive feature representation. It
uses convolutional layers, downsampling, and other techniques to merge features across
different scales and levels. The fusion process is described in Equation (3).

F = Conv(Concat(FTrans f ormer , FResNet )) (3)

where FTrans f ormer and FResNet represent the features extracted by the transformer and
ResNet modules, respectively.

In hybrid models, CNNs and transformers complement each other by capturing
local details and global context. The feature fusion module, the key to integrating this
information, is critical for model performance. It consists of 1 × 1 convolution and feature
concatenation. The 1 × 1 convolution adjusts the output channels, enabling a seamless
concatenation of features from both networks while extracting useful information.

Feature concatenation offers clear advantages over addition by fully retaining all information
from CNNs and transformers, avoiding bias or loss. This improves classification accuracy and
model robustness, particularly in NSCLC staging and survival analysis, allowing the model to
capture tumor patterns and relationships more precisely. Consequently, feature concatenation
enhances model performance and generalization and excels in these complex tasks.

The processing workflow starts with data preprocessing, converting raw lung cancer
images into regions of interest (ROI) and performing 3D cuboid cropping to focus on
key diagnostic areas, reducing data size while retaining critical information. Next is the
feature extraction, where stacked transformer and ResNet blocks progressively extract
image features. Transformers capture global features and long-range dependencies, crucial
for understanding the image structure and context. Conversely, the ResNet blocks focus
on extracting local features and capturing detailed information within the image, which
are essential for identifying small lesion areas. After feature extraction, the model uses a
1 × 1 convolutional layer to fuse features from different transformer blocks and ResNet
blocks. The fused feature maps are combined into a comprehensive feature set through a
multi-layer, multi-scale fusion process, enhancing precision and robustness in lung cancer
detection. A custom ROI classifier then analyzes global and local information to make
accurate classification decisions, offering reliable diagnostic support.

3. Data Preprocessing and Experimental Parameter Settings

The NSCLC-Radiomics dataset [42] includes imaging data from 422 NSCLC patients across
three types, namely adenocarcinoma (52 cases), large cell carcinoma (114 cases), and squamous
cell carcinoma (152 cases). The NSCLC Radiogenomics dataset [43] focuses on the radiogenomics
of adenocarcinoma (112 cases) and squamous cell carcinoma (29 cases), with 211 subjects in
total. Training and validation sets were sourced from Maastricht University Medical Center,
and the validation set came from Stanford University and the Palo Alto, VA, USA, representing
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different ethnicities and countries. After excluding incomplete cases, 380 patients from the NSCLC-
Radiomics dataset and 133 from the NSCLC Radiogenomics dataset were included. Seventy
percent of the NSCLC-Radiomics dataset was used for training, with the rest for internal validation,
while the NSCLC Radiogenomics dataset served as an external test set. This diverse data ensured
robust validation, and chi-square tests confirmed no statistical differences between the training
and validation sets (p > 0.05), ensuring an unbiased split, as shown in Table 1.

Table 1. Baseline characteristics of our cohort.

Feature_Name ALL Train Val Test p Value

Age 68.33 ± 9.63 67.89 ± 10.22 68.43 ± 9.24 69.23 ± 8.59 0.44

Gender
Female 154 (29.62) 90 (32.37) 32 (26.67) 32 (26.23)

0.335Male 366 (70.38) 188 (67.63) 88 (73.33) 90 (73.77)

During CT data preprocessing, images are resampled to a 1 mm3 voxel size, with the
HU values standardized between −600 and 600 using a window width of 1200 and center
of zero. This ensures consistency across scans and improves model performance. Slices
with the largest VOI are selected, and a minimal bounding cuboid is extracted to reduce
background noise. Z-score normalization is applied to standardize intensity distributions, and
these images are used for deep-learning input. In training, random cropping and flipping
enhance generalization, while testing only uses standardization for consistency. The main goal
of these strategies is to improve robustness and accuracy across varying scans and datasets.

During the model-training phase, cropped sub-region images are resized to 1 × 1 × 1
using nearest-neighbor interpolation to fit the model’s input dimensions. Given the limited
amount of image data, the learning rate is carefully chosen to enhance the model’s generaliza-
tion performance. A cosine annealing learning rate algorithm is employed, which is defined
by the following formula:

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)) (4)

where ηi
min = 0 is the minimum learning rate, ηi

max = 0.01 is the maximum learning rate,
and Ti = 96 represents the number of cycles during the iterative training process. This study
uses stochastic gradient descent (SGD) as the optimizer and softmax cross-entropy as the loss
function, aiming to optimize the training performance and ensure stable, robust learning.

The analysis uses Python 3.7, statsmodels 0.13.2, and scikit-learn 1.0.2 for deep-
learning model development. Training is powered by an NVIDIA 4090 GPU with MONAI
and PyTorch frameworks. The NVIDIA 4090 GPU is manufactured by NVIDIA Corpo-
ration in Santa Clara, CA, USA. Features from the penultimate model layer are selected
using the Lasso–Cox method for survival analysis. The study applies the Cox proportional
hazards model with L2 regularization and Kaplan–Meier analysis, classifying the samples
by predicted hazard ratios and evaluating stratification via the multivariate log-rank test.

4. Experimental Metrics Explanation

To assess the performance of the proposed model for predicting the N staging of
non-small cell lung cancer (NSCLC), the following metrics are introduced:

accuracy: the proportion of correctly classified instances (both true positives and true
negatives) out of the total number of instances. It is given by

Accuracy =
TP + TN

FP + FN + TP + TN
; (5)

sensitivity: the proportion of actual positive cases that are correctly identified by the
model. It is given by:

Sensitivity =
TP

TP + FN
; (6)
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specificity: the proportion of actual negative cases that are correctly identified by the
model. It is given by:

Speci f icity =
TN

FP + TN
. (7)

In these formulas, true positive (TP) represents cases where the model correctly
predicts the positive class. True negative (TN) represents cases where the model correctly
predicts the negative class. False positive (FP) represents cases where the model incorrectly
predicts the positive class for samples that are actually negative. False negative (FN)
represents cases where the model incorrectly predicts the negative class for samples that
are actually positive.

A 95% confidence interval (95% CI) provides a range within which the true value of
the metric is expected to fall with 95% confidence. It is computed for each metric to provide
an estimate of the variability and reliability of the metric. For example, for accuracy, the
confidence interval can be calculated using statistical methods or bootstrapping techniques.

To calculate the 0.95 confidence interval for the accuracy of a model, the following
expression is used:

CI = p̂ ± Z α
2
×

√
p̂(1 − p̂)

n
(8)

In this context, p̂ is the estimated accuracy of the sample. Z α
2

is the critical value from
the standard normal distribution corresponding to the upper α

2 quantile of the confidence
level. n is the sample size. p̂(1 − p̂) is the variance estimate of the sample accuracy. This
formula calculates the confidence interval for accuracy, where there is a 95% probability
that the true value of the population accuracy falls within this interval.

AUC, or the area under the curve, represents the area under the ROC (receiver op-
erating characteristic) curve and provides a comprehensive assessment of the model’s
predictive performance across different thresholds. The ROC curve plots the relationship
between the true-positive rate (TPR, equivalent to Sensitivity) and the false-positive rate
(FPR, equivalent to 1-Specificity). The AUC measures the overall performance of the model
across the entire ROC curve. The AUC for that class can be represented as:

AUCc =
∫ 1

0
Sensitivityc((1 − Speci f icity)−1

c(t))dt (9)

In this context, (1 − Speci f icity)−1
c(t) denotes the inverse function of (1 − Speci f icity)c.

It is used to calculate the false-positive rate given a specific true-positive rate. The trape-
zoidal rule is typically used for numerical integration to approximate this area.

The micro-AUC can be calculated by taking the weighted average of the AUCs for each
class. If n0, n1, n2, n3 represents the number of samples for each class, then the micro-AUC
can be computed as follows:

microAUC =
∑3

c=0 nc · AUCc

∑3
c=0 nc

(10)

5. Experimental Results
5.1. N Stage Prediction and Survival Analysis

To evaluate the effectiveness of the HCT model in diagnosing N staging of non-small
cell lung cancer (NSCLC), this study conducted a comprehensive performance analysis of
five different deep-learning models. These models include the HCT model, DenseNet121,
ResNet50, ShuffleNet, and ViT. Among them, DenseNet121, ResNet50, and ShuffleNet are
based on convolutional neural network (CNN) architectures, while ViT is based on transformer
architecture. HCT combines both CNN and transformer architectures. To ensure fairness
in the model comparisons, all models compared in Table 2 used the same optimizer and
were trained for the same number of epochs. During the evaluation, we used performance
metrics to assess the models, including accuracy (ACC), sensitivity, and specificity, with results
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presented in Table 2. These metrics help us gain a comprehensive understanding of each
model’s performance in the diagnosis of N staging in NSCLC patients.

Table 2. Evaluation indicators for N staging using different deep-learning models.

Model Acc Micro-AUC 95% CI Sensitivity Specificity Cohort

HCT 0.805 0.837 0.788–0.845 0.757 0.817 Train
HCT 0.828 0.813 0.750–0.854 0.724 0.835 Val
HCT 0.819 0.816 0.771–0.860 0.693 0.881 Test

DenseNet121 0.773 0.862 0.838–0.885 0.808 0.761 Train
DenseNet121 0.745 0.741 0.629–0.753 0.613 0.710 Val
DenseNet121 0.737 0.732 0.603–0.700 0.796 0.530 Test

ResNet50 0.786 0.798 0.753–0.832 0.728 0.721 Train
ResNet50 0.773 0.766 0.649–0.743 0.622 0.748 Val
ResNet50 0.792 0.722 0.673–0.739 0.686 0.617 Test

ShuffleNet 0.713 0.784 0.754–0.814 0.746 0.702 Train
ShuffleNet 0.644 0.687 0.625–0.748 0.663 0.638 Val
ShuffleNet 0.734 0.637 0.584–0.691 0.543 0.848 Test

VIT 0.783 0.794 0.734–0.824 0.716 0.792 Train
VIT 0.764 0.767 0.695–0.778 0.673 0.818 Val
VIT 0.799 0.754 0.716–0.821 0.651 0.837 Test

In the precision-medicine task of N staging for non-small cell lung cancer (NSCLC),
evaluating the performance of different models during training, validation, and testing
phases is crucial, as it directly reflects the overall predictive effectiveness of the models.
Notably, the HCT model demonstrated an exceptional accuracy of over 0.8 in all three
sets, significantly surpassing other comparative models, which strongly supports the HCT
model’s superior capability in accurately determining lung cancer staging in patients.
Furthermore, the specificity metric reveals that the HCT model has high precision in effec-
tively distinguishing between healthy individuals and NSCLC patients, with the specificity
values staying above 0.8 across all stages, markedly outperforming other models. This
underscores the model’s high accuracy in identifying disease status. Additionally, the HCT
model’s positive predictive value in identifying specific N stages is also significantly better
than that of other models, indicating its advantage for reducing misdiagnosis. Examples of
cases correctly and incorrectly classified by the HCT model are shown in Figure 2.
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The HCT model exhibits a significant advantage in handling 3D medical imaging data
due to its innovative structural fusion, combining the strengths of convolutional neural
networks (CNNs) and transformers. Traditional CNN architectures, such as DenseNet121,
ResNet50, and ShuffleNet, excel in extracting local features but struggle with the complex
spatial structures and contextual relationships in 3D data, requiring additional adjustments
to accommodate the increased data dimensions. In contrast, Transformer-based models
like ViT can naturally capture long-range dependencies through self-attention mechanisms,
which are crucial for understanding global information. However, they are less efficient
in the initial stages of extracting local image features compared to CNNs. The HCT
model cleverly integrates both approaches, allowing CNNs to extract rich local features
from within the image and leveraging transformers to use these features to build global
dependencies through self-attention mechanisms. This complementary approach not only
overcomes the limitations of each individual method but also enhances the model’s ability
to comprehensively understand and analyze complex 3D imaging data, providing more
precise and comprehensive information support for medical diagnosis and analysis.

For the HCT model, the AUC scores consistently exceed 0.8 across all dataset segments,
indicating strong discriminative power. Specifically, the AUC is 0.837 for the training cohort,
0.813 for the validation cohort, and 0.816 for the testing cohort. These results demonstrate
robust performance across different samples. In contrast, DenseNet121 achieves an AUC
of 0.862 for the training cohort, but this significantly drops in the validation (0.741) and
testing cohorts (0.732), suggesting potential overfitting to the training data. On the other
hand, ShuffleNet shows moderate AUC scores, with a maximum of 0.784 for the training
cohort and a minimum of 0.637 for the testing cohort. ResNet50 exhibits moderate AUC
scores as well, with a highest of 0.798 for the training cohort and a lowest of 0.722 for the
testing cohort. ViT also shows moderate AUC scores, with a highest of 0.794 for the training
cohort and a lowest of 0.756 for the testing cohort. Compared to DenseNet121, ShuffleNet,
ResNet50, and ViT, the HCT model demonstrates superior generalization and stability
across different datasets. As illustrated in Table 2, the consistently high AUC values above
0.8 for the training, validation, and testing cohorts highlight the robustness and reliability of
HCT. In contrast, the significant variability in the AUC scores for DenseNet121, ShuffleNet,
ResNet50, and ViT suggests that these models may perform less effectively when applied
to different datasets. DenseNet121 and ResNet50 effectively capture complex data features
with their deep structures and large parameters but are prone to overfitting the training data
and may face gradient vanishing or explosion issues, impacting stability and convergence.
ShuffleNet enhances efficiency through grouped convolutions and channel shuffling but
limits the feature communication between groups, affecting the overall feature extraction.
Although ViT captures long-range dependencies, it may overlook local information in
medical image processing. Therefore, due to its consistent performance and prediction
accuracy, HCT emerges as a more desirable choice.

In addition, Table 3 presents a summary of the latest research on classification models
for NSCLC, provided for reference and comparative analysis.

Table 3. A summary of the latest research on classification models for NSCLC.

References Number of
Samples Tasks Methods Metrics

[17] 501 Lymph node metastasis in T1N0M0 stage lung adenocarcinoma patients Logistic AUC: 0.808
[18] 422 Staging status of non-small cell lung cancer patients Clustering AUC: 0.61 ± 0.01
[28] 140 N2 lymph node status in stage I-II NSCLC patients ResNet18 AUC: 0.83
[30] 376 Occult lymph node metastasis in cN0 adenocarcinoma patients Inception V3 (2D) AUC: 0.81
[31] 629 Suspicious and non-suspicious states of lung cancer lesions DenseNet ACC: 0.981
[33] 264 Distant metastasis status in NSCLC patients DenseNet AUC: 0.65 ± 0.05
[34] 689 Malignancy degree of PNs in stage T1 lung cancer patients ResNet18 AUC: 0.8037

Further, the study employed the Lasso–Cox method for feature selection and ana-
lyzed the impact of the selected features on patient survival time. The Lasso–Cox method
successfully identified and retained the 15 most influential features contributing to the
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model’s predictive performance, as illustrated in Figure 3. With increasing regularization
parameters, the coefficients of most features approached zero. The optimal regulariza-
tion parameter value was determined to be 0.541, at which point, the coefficients of the
15 selected features were found to be significant.
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Figure 4 presents the results of survival analysis for NSCLC patients based on the
N-staging classification features extracted by the model, highlighting the performance of
the model based on risk grouping (high risk vs. low risk). In the training set, the survival
curves for the two groups are significantly separated, with the high-risk group having
a lower survival rate than the low-risk group, indicating effective risk differentiation by
the model on the training data. However, although the C-index is 0.573 (p < 0.05), and
statistically significant, it is close to 0.5, suggesting a limited discriminative ability of the
model. Moving to the validation set, the confidence intervals of the survival curves widely
overlap, with the C-index dropping to 0.532 (p < 0.2172). Despite still being statistically
significant, this indicates further limitations to the model’s discriminative ability. The
performance on the test set is even poorer, with a C-index of 0.545 and a p-value rising
to 0.3777 (p > 0.05), losing statistical significance, and approaching the level of random
prediction, strongly suggesting a limited generalizability of the model on unseen data.

Figure 4. Cont.
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Figure 4. Kaplan–Meier survival curves of different cohorts at N stages. (a) Training cohort.
(b) Validation cohort. (c) Test cohort.

In summary, although the model demonstrates some distinguishing efficacy within
the training set, its performance significantly declines in the validation and test sets, par-
ticularly failing to achieve statistically significant predictive ability on the test set. This
reflects the model’s limitations in external validation and the need for further optimization.
Additionally, the C-index values approaching the threshold indicate that the model’s pre-
dictive accuracy needs improvement, potentially requiring the inclusion of more relevant
features to enhance its predictive precision and robustness.

5.2. Survival Time Prediction

In the deep-learning study focused on the N staging of non-small cell lung cancer
(NSCLC) described above, we successfully achieved AUC values exceeding 0.80 at different
staging phases. Subsequently, we conducted a further analysis of survival time prediction
using the features extracted for N staging. However, in both the internal validation and
external test sets, we observed that the p-values were greater than 0.05, indicating that
the extracted features did not show significant statistical significance in the prediction of
survival time. Therefore, we infer that these features might not be sufficient for accurate
survival time prediction. To address this issue, we turned to extracting time-related features
and incorporated a loss function for 1-year survival time into our experimental design.

We trained a time-dependent binary classification model to predict 1-year survival rates.
The HCT model demonstrated outstanding performance in the deep-learning-based NSCLC
N staging experiments, maintaining significant stability in its performance metrics. As a
result, we selected the HCT model for the time-dependent binary classification task. The
HCT model showed high and consistent AUC values across different datasets (training, test,
and validation), proving its strong ability to handle data variability and extract key features.
Given its overall excellence, we chose the HCT model for feature extraction and constructed a
survival analysis model. Table 4 presents the corresponding performance metrics.

Table 4. Evaluation indicators of HCT model under 1-year rate period.

Model Name Acc AUC 95% CI Sensitivity Specificity Cohort

HCT 0.745 0.772 0.7156–0.8281 0.726 0.756 train
HCT 0.700 0.676 0.5711–0.7800 0.757 0.630 val
HCT 0.729 0.618 0.4401–0.7949 0.715 0.742 test

In the study of 1-year survival prediction for non-small cell lung cancer (NSCLC)
patients using the Lasso–Cox regression method, we achieved significant progress based
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on the HCT model. Through meticulous statistical analysis, we successfully identified
38 features that contribute most significantly to the model’s predictive performance. This
number far exceeds the 15 features identified by the HCT model for NSCLC N staging,
thereby significantly expanding the feature dimensions of the prediction model. The results
are illustrated in Figure 5.
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Figure 5a reflects the trend in which the correlation coefficients of the features obtained
by the deep-learning feature extractor approach zero as the regularization parameter
lambda increases in the Lasso–Cox algorithm. In the figure, when lambda is set to 9.661,
38 retained features have a significant impact on survival, while the discarded features
help prevent overfitting due to an excessive number of variables. Figure 5b shows these
38 retained features and lists their importance weights in the model. The larger the
absolute value of the coefficient, the greater its impact on patient survival. This approach
effectively enhanced the model’s sensitivity to variations in survival time. To visually
present the importance of these features, we utilized graphical representation, displaying
the coefficients of each feature in ascending order. This visual representation not only
improved the interpretability of the results but also allowed researchers to easily understand
the contribution of each feature to the prediction model. It provides a solid data foundation
for further clinical decision support and the optimization of treatment strategies.

Through training, the model successfully identified significant survival probability differ-
ences between the two groups, as visually demonstrated by the Kaplan–Meier survival curves.
As shown in Figure 6, the survival rate of the high-risk group significantly declines over time.
The model achieved a C-index of 0.670 on the training set, with a very low p-value (<0.001),
strongly confirming its predictive performance and the statistical significance of the group
differences. Further evaluation of the validation set confirmed the model’s generalization
capability, with a C-index of 0.668 and a p-value still significantly below 0.001. This indicates
that the model performs effectively not only on the training data but also maintains high
discrimination and predictive accuracy on an independent-validation dataset. Finally, the
results from the test set (C-index = 0.665, p = 0.0013) reinforced the model’s generalization per-
formance on unseen data, effectively differentiating survival probabilities among risk groups
and confirming the statistical significance of this differentiation. In the test set, the increase in
the p-value may be due to the validation data being collected at different institutions using
various pieces of equipment. Additionally, the validation set includes diverse ethnicities and
age groups, such as Asian, Caucasian, and African populations.
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Figure 6. Kaplan–Meier survival curves of different cohorts by features extracted from the one-year
survival rate. (a) Training cohort. (b) Validation cohort. (c) Test cohort.

Table 5 presents the results of survival-dependent features extracted by the model
for predicting survival time. From the data in Table 5, it is evident that, as the prediction
survival time increases, the model’s performance in terms of sensitivity and specificity also
varies. Sensitivity and specificity are two critical metrics for evaluating model performance,
measuring the accuracy of the model in the identification of positive cases and negative
cases, respectively. In the training cohort, sensitivity fluctuates with an increasing prediction
time, while specificity shows a significant improvement. This indicates that, over time, the
model becomes more adept at accurately identifying true survivors in the training cohort.

Table 5. Indicators for predicting 1-year, 3-year, 5-year, and 7-year survival risks based on different
cohorts’ 1-year survival rates.

Survival Accuracy AUC 95% CI Sensitivity Specificity Cohort

1Y Survival 0.773 0.707 0.6433–0.7702 0.745 0.831 Train
3Y Survival 0.808 0.779 0.7216–0.8362 0.762 0.845 Train
5Y Survival 0.823 0.821 0.7654–0.8765 0.768 0.946 Train
7Y Survival 0.748 0.797 0.7337–0.8594 0.714 1.000 Train
1Y Survival 0.763 0.749 0.6606–0.8373 0.758 0.806 Val
3Y Survival 0.785 0.697 0.6041–0.7908 0.771 0.840 Val
5Y Survival 0.796 0.727 0.6242–0.8298 0.790 0.814 Val
7Y Survival 0.785 0.726 0.6102–0.8422 0.780 0.822 Val
1Y Survival 0.767 0.710 0.5957–0.8242 0.756 0.805 Test
3Y Survival 0.774 0.735 0.6379–0.8313 0.772 0.848 Test
5Y Survival 0.759 0.663 0.5427–0.7826 0.766 0.795 Test
7Y Survival 0.714 0.697 0.4498–0.9440 0.701 0.757 Test
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Overall, as the predicted survival time increases, the model shows an increase in
specificity in the training cohort, while sensitivity and specificity exhibit varying trends in
the validation and test cohorts. These variations reflect differences in the model’s predictive
capabilities at different survival time points and its performance across different datasets
(training, validation, and test).

Figure 7 presents the ROC curves for time-dependent analysis. Combined with
Table 5 and Figure 7, the AUC (area under the curve) results demonstrate the model’s
ability to predict survival at different time points across three cohorts (training, validation,
and test). In the training cohort, the AUC values increase with the length of the predicted
survival time, rising from 0.707 for 1-year survival to 0.797 for 7-year survival. In the
validation cohort, the AUC values are relatively lower, peaking at 0.749 for 1-year survival
and dropping to a low of 0.697 for 3-year survival. In the test cohort, the AUC values show
more variability, with the highest value being 0.735 for 3-year survival and the lowest being
0.663 for 5-year survival. These variations highlight how the model’s prediction accuracy
changes based on the length of the predicted survival time and the cohort being evaluated.
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An analysis of the AUC metrics at different time points and across different cohorts
indicates that the model performs more robustly for long-term survival predictions in the
training cohort, where the clinical data and model training are closely aligned. However,
as the prediction window extends, AUC values in the validation and test cohorts generally
decline or fluctuate. This suggests that the model may be overfitting to the training data
or facing challenges when generalizing to new unseen data. This indicates the need for
further model refinement and validation, particularly in real-world clinical settings, where
diverse patient data and varying conditions can significantly impact model performance.
Enhancing the robustness and reliability of predictions is essential to ensure the model’s
effectiveness across different scenarios and patient populations.
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6. Conclusions

The hybrid model proposed in this study integrates the advantages of 3D convolu-
tional neural networks (CNNs) and transformers, demonstrating remarkable performance
in N staging and survival prediction for non-small cell lung cancer (NSCLC). This model
leverages the multi-layer convolutional and pooling operations of 3D CNNs to accurately
capture subtle structural features within CT scan images, providing a solid foundation for
disease staging. Simultaneously, the self-attention mechanism of the transformer endows
the model with robust capabilities for global information integration and long-range depen-
dency modeling, effectively enhancing the overall contextual understanding and predictive
performance. This ingenious combination not only addresses the limitations of single
CNNs in the processing of global information but also compensates for the challenges
transformers face when directly handling image data, resulting in significant improvements
in both prediction accuracy and efficiency. This opens up new avenues for the precise
diagnosis of NSCLC. Moreover, the study delves into the time sensitivity of survival pre-
dictions by conducting predictive experiments at various time points and incorporating
the one-year survival rate as a key feature, revealing a close relationship between survival
predictions and temporal variations. The stable performance of time-dependent ROC
curves substantiates the model’s exceptional capability in capturing dynamic changes in
patient survival. This finding not only underscores the critical role of temporal factors in
survival predictions but also equips clinicians with more precise and dynamic prognostic
assessment tools. Additionally, the phenomenon of “time windows” identified in the
research further elucidates key time points in disease progression, providing valuable
insights for optimizing predictive models and enhancing accuracy, as well as offering
significant references for the development of personalized treatment strategies for NSCLC.

However, this study has corresponding limitations, primarily manifested in four
aspects. For the limitations of the dataset, although the mixed model demonstrates sig-
nificant advantages over the existing dataset, the dataset itself may exhibit biases, such
as regional differences in patient populations, the diversity of treatment methods, and
inconsistencies in the data collection process. These factors may impact the model’s gen-
eralization capability. For computational cost limitations, the mixed model combines the
spatial feature-extraction capabilities of CNNs with the global context modeling abilities of
transformers, resulting in a need to process a large number of parameters and data during
both training and inference. Particularly when handling high-resolution medical images or
large-scale datasets, the computational demands of the mixed model increase dramatically,
requiring substantial hardware resources (e.g., GPUs, TPUs). This not only raises the diffi-
culty and time costs of model training but also limits its application in resource-constrained
environments. For the limitations of feature interpretability in deep learning, while the
mixed model can automatically learn and extract deep features from data, these features are
often highly abstract and difficult to understand. Medical experts are more concerned with
the biological significance behind the model’s predictions rather than merely mathematical
or statistical patterns. However, due to the “black box” nature of the mixed model, its
internal decision-making processes are challenging to intuitively interpret, which limits
physicians’ trust and acceptance of the model’s predictions. Additionally, the lack of inter-
pretability hinders scientists from deriving biologically meaningful insights with practical
guidance from the model. For temporal dependency in survival prediction, although this
study considers survival predictions at different time points, the model’s adaptability to
dynamic factors, such as changes in patient conditions and treatment responses, requires
further validation. For the validation of clinical applications, despite the encouraging
experimental results, the practical effectiveness of the model in clinical applications still
needs to be verified through large-scale, multi-center clinical trials.

In the future, the precise diagnosis of lung cancer can develop in the following directions.
For multimodal data fusion, by incorporating patient data from diverse regions and

utilizing various treatment methods, alongside imaging, genomics, proteomics, and other
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multimodal data, a more comprehensive and representative dataset can be constructed to
enhance the model’s generalization capability and accuracy.

For computational efficiency optimization, developing more efficient algorithms and
training strategies, such as model pruning, quantization, and knowledge distillation, can
reduce the number of model parameters and computational load. Additionally, leverag-
ing distributed computing and edge computing technologies can improve training and
inference speeds. The development of specialized hardware to accelerate specific types of
computational tasks also represents an important direction.

For enhanced feature interpretability, researching and integrating more interpretable
deep-learning architectures and techniques, such as attention mechanism visualization,
rule-based model fusion, and concept activation vectors (CAV), can help reveal the internal
decision-making processes of models and improve feature interpretability. Furthermore,
incorporating knowledge from the medical field to construct biologically meaningful
feature representations can facilitate better explanations of model predictions.

For real-time dynamic prediction, developing dynamic prediction models that can
update patient information in real-time, adjusting predictions based on changes in pa-
tient conditions and treatment responses, is crucial. This necessitates models with strong
adaptive capabilities and efficient computational power.

For large-scale clinical trials and clinical decision support systems, large-scale, multi-center
clinical trials can evaluate the model’s stability and accuracy in various medical institutions and
with various equipment conditions. Moreover, integrating the model into clinical decision support
systems can provide physicians with AI-assisted diagnostic and prognostic evaluation tools based
on big data, thereby enhancing the efficiency and quality of healthcare services.

For cross-disease expansion, after validating the effectiveness of this mixed model in
the NSCLC domain, efforts can be made to extend its application to other types of cancer
or disease areas to explore its universality and transferability. This would contribute to the
further advancement of precision medicine and personalized treatment.
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