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Abstract: Background: Although it has been noticed that depressed patients show differences in
processing emotions, the precise neural modulation mechanisms of positive and negative emotions
remain elusive. FMRI is a cutting-edge medical imaging technology renowned for its high spatial
resolution and dynamic temporal information, making it particularly suitable for the neural dynamics
of depression research. Methods: To address this gap, our study firstly leveraged fMRI to delineate
activated regions associated with positive and negative emotions in healthy individuals, resulting in
the creation of the positive emotion atlas (PEA) and the negative emotion atlas (NEA). Subsequently,
we examined neuroimaging changes in depression patients using these atlases and evaluated their
diagnostic performance based on machine learning. Results: Our findings demonstrate that the
classification accuracy of depressed patients based on PEA and NEA exceeded 0.70, a notable
improvement compared to the whole-brain atlases. Furthermore, ALFF analysis unveiled significant
differences between depressed patients and healthy controls in eight functional clusters during the
NEA, focusing on the left cuneus, cingulate gyrus, and superior parietal lobule. In contrast, the PEA
revealed more pronounced differences across fifteen clusters, involving the right fusiform gyrus,
parahippocampal gyrus, and inferior parietal lobule. Conclusions: These findings emphasize the
complex interplay between emotion modulation and depression, showcasing significant alterations
in both PEA and NEA among depression patients. This research enhances our understanding of
emotion modulation in depression, with implications for diagnosis and treatment evaluation.

Keywords: fMRI; positive emotion; negative emotion; depression; SVM; ALFF

1. Introduction

Depression, also known as depressive disorder, is a serious mental illness charac-
terized by elevated prevalence, frequent recurrence, significant suicide-related mortality,
and a substantial disease burden [1]. The fundamental symptoms of depression encom-
pass heightened negative emotions and an absence of positive affect [2]. Patients with
depression often exhibit pronounced negative emotions such as sadness, anxiety, irritability,
and self-blame. Positive emotions typically offer benefits, distinct from negative emo-
tions. Nevertheless, in patients with depression, positive emotions may exhibit complex
features. Some patients with depression may have a diminished response to positive emo-
tions, posing challenges for them to embrace sensations like happiness and satisfaction [3].
Conversely, under specific circumstances, patients with depression may exhibit intense

Tomography 2024, 10, 2014–2037. https://doi.org/10.3390/tomography10120144 https://www.mdpi.com/journal/tomography

https://doi.org/10.3390/tomography10120144
https://doi.org/10.3390/tomography10120144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0009-0001-4762-3390
https://orcid.org/0009-0004-2934-3135
https://orcid.org/0000-0003-0111-4328
https://orcid.org/0000-0002-9701-2918
https://doi.org/10.3390/tomography10120144
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography10120144?type=check_update&version=1


Tomography 2024, 10 2015

positive emotional reactions. However, these moments of positivity are transient, swiftly
overshadowed by a resurgence of depression [4]. Therefore, investigating the etiology and
therapeutic mechanisms of depression remains a central research objective. Clinical practice
primarily relies on drug treatment for depression, but approximately 30% of depressed
patients exhibit poor responsiveness to medication [5]. Moreover, the variations in brain
regions and the diverse treatment requisites of patients with different subtypes, severi-
ties, and accompanying symptoms are highly heterogeneous. Conventional diagnostic
and therapeutic modalities encounter challenges in accurately evaluating the condition of
these patients.

Recently, a plethora of neuroimaging modalities has emerged to investigate the struc-
ture and function of the human brain, with fMRI prominently positioned as a pivotal
methodology. This technique efficiently captures fluctuations in blood oxygen level-
dependent signals within the brain, providing valuable perspectives into the activity states
of various brain regions and their interrelationships [6]. Given the temporal and spatial
resolution of fMRI imaging, along with the recognition that abnormal manifestations of
depression primarily arise from atypical activity and interactions within brain regions [7],
an increasing number of researchers are turning to fMRI for the study of depression-related
phenomena. For instance, Sheline et al. [8] employed fMRI to evaluate resting-state func-
tional connectivity (RSFC) within cognitive control, default mode, and affective networks
in individuals with depression. They found increased connectivity in all three networks,
particularly with ipsilateral dorsomedial prefrontal cortex regions, compared to healthy
controls. Seema and Shankapal [9] examined differential brain-activation patterns between
depressed patients and healthy individuals during various music stimulation tasks using
fMRI. Their results underscored significant activation within the anterior cingulate cortex,
dorsolateral prefrontal cortex, and striatum in individuals with depression. Rubin-Falcone
et al. [10] employed fMRI to study the neural correlates of emotional reactivity and emotion
regulation during the viewing of emotionally salient images as predictors of treatment
outcomes with Cognitive Behavioral Therapy (CBT) for major depressive disorder (MDD).
Their results indicated that the neural correlates of emotional reactivity might possess
stronger predictive power for CBT outcomes. Phan et al.’s [11] meta-analysis elucidates
the differential effects of various emotions on brain-activation areas. The medial prefrontal
cortex universally mediates emotion processing, while specific emotions engage distinct
regions: fear primarily activates the amygdala, sadness correlates with the subgenual
cingulate, visual stimuli stimulate the occipital cortex and amygdala, emotional recall
and imagination involve the anterior cingulate and insula, and cognitively demanding
emotional tasks primarily engage the anterior cingulate and insula. Murphy et al.’s [12]
meta-analysis investigates the impact of different emotions on brain activity through the
lens of left–right brain symmetry and asymmetry. Their findings indicate that approach
emotions are associated with greater left-brain activity, particularly exhibiting significant
asymmetry in anterior regions. Conversely, negative or withdrawal emotions demonstrate
symmetry in left–right brain activity. To date, researchers have predominantly focused on
aberrant alterations in brain structure, functional connectivity (FC), and neural activity in
individuals with depression [13–15]. However, few studies have delved into the distinc-
tions of relevant brain regions in depressed patients, particularly concerning alterations
in regions associated with positive and negative emotions as observed in neurotypical
individuals. Moreover, a dearth of comprehensive research exists in elucidating the changes
and underlying mechanisms in specific brain regions closely linked to positive and negative
emotions in depressed patients.

In current studies, the analysis and diagnosis of brain disorders generally rely on
the universal template, which provides a basic framework for disease research but lack
specificity when addressing specific diseases like depression [16]. Due to the intricate emo-
tional fluctuations and individual diversities associated with depression, generic templates
often fail to capture the unique emotional changes of patients, resulting in unsatisfactory
diagnostic efficacy. Therefore, a depression-specific emotional template is essential to
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precisely capture the subtle differences in patients’ emotional changes [17]. Additionally,
the accuracy of traditional Region of Interest (ROI) level templates in depression diagnosis
has been notably limited. In fMRI imaging, a voxel serves as the smallest unit of analysis,
similar to a pixel in a two-dimensional image [18]. The fMRI-derived images are partitioned
into abstract 3D grids, with each unit termed a voxel [19]. Given the registration process
conducted according to distinct brain region templates, an indefinite number of voxels pop-
ulate a brain region, allowing voxel-level investigations to offer a more nuanced analysis
and potentially deeper insights into depression [20]. Despite their advantages, voxel-based
fMRI analysis methods are susceptible to technical limitations like image registration and
spatial transformation, which may affect the accuracy and reliability of results [21]. Accord-
ing to the Two-Factor Model of Affect [22], positive affect and negative affect constitute
two primary and relatively independent dimensions of the affective structure, exhibiting
significant differences in emotional regulation and neural mechanisms. These differences
are not only reflected in individuals’ emotional experiences but also impact brain activity.
Therefore, this paper introduces the Positive Emotion Atlas (PEA) and Negative Emotion
Atlas (NEA) as solutions to overcome these challenges. We anticipate that the PEA and
NEA can play a crucial role in depression research and treatment, serving as supplementary
diagnostic tools to aid physicians in the initial identification of individuals with depression.
Through continuously monitoring the changes in patients’ PEA and NEA throughout the
treatment process, the effectiveness of the therapy can be assessed and the treatment plan
can be adjusted accordingly. Furthermore, the establishment of PEA and NEA also aids
in refining brain imaging data analysis methods. Integration with other brain imaging
technologies like EEG allows for the fusion of multimodal data analysis, facilitating the
construction of a more comprehensive and sophisticated analytical template.

In summary, two key questions regarding the relationship between negative/positive
emotion modulation and depression remain unresolved. Firstly, the precise delineation
of PEA and NEA is deficient, despite their significant activation in normal individuals in
response to positive and negative emotional picture stimulation, respectively. Secondly,
it is imperative to investigate the changes that occur in depressed patients under the
PEA and NEA and determine whether they differ from those in healthy controls. To
bridge these gaps, this study utilized fMRI technology to elucidate the activation regions
associated with positive and negative emotions in healthy controls at both brain region
and voxel levels, thereby constructing the PEA and NEA. Subsequently, a Support Vector
Machine (SVM) classifier [23] was trained to distinguish between depression patients and
healthy controls based on the entire brain and the constructed PEA and NEA. To enhance
classification performance, the Cost-Sensitive Learning (CSL) [24] strategy was integrated
into the SVM classifier. Further analysis utilizing Amplitude of Low-Frequency Fluctuation
(ALFF) [25] was designed to reveal significant differences between depressed patients and
healthy controls.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Positive/Negative Stimulus Task FMRI Dataset

When selecting participants for the emotional stimulus dataset, we considered the
following factors: First, ensuring that the participants are in a normal mental state. Sec-
ondly, choosing participants of similar ages to minimize the impact of differences in social
experience, psychological resilience, and perspective on the experimental results. Thirdly,
considering the educational background of the participants, as different academic disci-
plines may influence the understanding of images. Finally, striving to maintain a balanced
gender ratio to reduce the impact of gender on emotional responses. Taking all these
factors into account, twenty-one participants (12 males, 9 females) with an average age of
23.65 ± 1.5 years were enrolled in the study, where part of participants was used in our
previous study [2]. All participants possessed normal or corrected-to-normal visual acuity,
maintained good health with no history of mental or serious physical illness, and were
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right-handed. Prior to the experiment, participants were fully informed of the study proce-
dures and provided written informed consent in accordance with the guidelines approved
by the Institutional Review Board (IRB) of East China Normal University (ECNU). This
study adhered to ethical principles and guidelines.

The fMRI images were obtained during exposure to positive and negative emotional
stimuli, followed by resting-state scans. Stimulus images were sourced from the Interna-
tional Affective Picture System (IAPS) [26], to ensure consistency and reliability. The experi-
mental paradigm, as depicted in Figure 1, involved alternating periods of rest and emotional
stimulation: rest–positive–rest–negative–rest–positive–rest–negative–rest–positive–rest–
negative–rest. A 20 s resting period preceded the formal experiment, allowing subjects to
stabilize their emotions. Each formal experiment lasted 240 s and comprised six blocks of
40 s each, alternating between task states (positive/negative emotional picture stimuli) and
rest periods. Subjects viewed positive or negative emotional stimuli for 20 s during task
blocks, randomly selected from the picture library. During rest periods, subjects lay flat
with their heads fixed and were instructed to refrain from active thought while fixating on
a white cross against a black background.

Figure 1. Schematic illustration of fMRI data-acquisition paradigm [27].

The fMRI data of 21 subjects were acquired at the Shanghai Key Laboratory of Magnetic
Resonance at ECNU using a GE 3.0 Tesla MRI scanner. The imaging protocol employed a
single-shot gradient echo planar imaging sequence comprising 33 slices, with a sensitivity
acceleration factor of 2.0. Parameters included a repetition time (TR) of 2.0 s, a scan
resolution of 64 × 64, an in-slice resolution of 3 mm × 3 mm, a slice thickness of 4 mm, and
a slice interval of 1 mm.

2.1.2. Resting-State Depression FMRI Dataset

The depression dataset used in this study was obtained from the public dataset
OpenNeuro “https://openneuro.org/ (accessed on 6 July 2023)”, with Accession Number
DS002748 [28]. This dataset complied with the Helsinki Declaration and the ethics board
of the Research Institute of Molecular Biology and Biophysics in Novosibirsk. The origi-
nal dataset comprised 51 depression patients and 21 healthy controls. The control group
consisted of individuals who were deemed healthy, lacking psychotic disorders, severe
neurological and somatic disorders (as confirmed by a neurologist), and having no con-
traindications for MRI. However, given the limited number of subtypes and the study was
restricted to the category of depression, we excluded one patient with dysthymia (sub-10),
one with persistent mood disorder (sub-30), and one unannotated case (sub-34). Addition-
ally, during the data preprocessing phase, we found that the data signal quality of sub-06,
sub-15, and sub-60 was poor, characterized by significant image noise. Consequently, the
data from these three subjects were also excluded. Ultimately, we selected resting-state
fMRI data from 46 depression patients and 20 healthy controls from the original dataset,
the details are shown in Table 1.

https://openneuro.org/
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Table 1. Demographic and clinical characteristics of the groups involved in the study; M: males; F:
females; SD: standard deviation; MADRS: Montgomery–Asberg depression rating scale; BDI: Beck
depression inventory; ZSRDS: Zung self-rating depression scale.

Group Sex Age, Mean ± SD IQ, Mean ± SD MADRS, Mean ± SD BDI, Mean ± SD ZSRDS, Mean ± SD

Healthy controls 6 M, 14 F 34.2 ± 8.5 106.4 ± 16.1 — 4.8 ± 4.5 32.8 ± 5.9

Depression patients 10 M, 36 F 33.0 ± 9.5 103.2 ± 14.6 27.1 ± 4.4 20.9 ± 10.0 46.6 ± 7.0

2.2. Positive/Negative Emotion Atlas Construction

The method for establishing the PEA and NEA is shown in Figure 2 and involves four
distinct steps. Initially, data splitting and recombination are conducted, which involves
timepoint segmentation based on the design of stimulus task blocks, resulting in 63 task
blocks for both positive and negative emotional stimuli. Each task block comprises 5 time
points of stimulus and resting-state image data. Subsequently, data undergo preprocessing
and registration with the Brainnetome Atlas [29] to obtain complete time series correspond-
ing to signals from each brain region. Following this, feature collection ensues, involves
normalization of the time series using Min-Max Normalization and mean calculation,
yielding matrices of positive/negative emotion features for subsequent feature selection.
Feature selection is then executed utilizing the Support Vector Machine recursive feature
elimination (SVM-RFE) algorithm [30] to select brain regions significantly activated by
positive and negative emotional stimuli, resulting in characteristic ROIs. Subsequent data
preprocessing and feature collection are then performed on the voxels within characteristic
ROIs, followed by another round of SVM-RFE algorithm to filter out characteristic sub-ROIs.
Given potential limitations in the extraction process, this study opts to identify external
characteristic voxels exhibiting strong functional connectivity with the characteristic sub-
ROIs. These voxels undergo calculation of their Pearson Correlation Coefficient, with those
exceeding a correlation threshold of 0.95 being retained and integrated to finalize the PEA
and NEA.

Figure 2. Flow chart of construction of PEA and NEA.

2.2.1. Data Splitting and Recombinations

The data sets collected for this study were divided into two categories. One type
of data showed 20 s of positive emotional stimulus pictures followed by 20 s of white
crosses on a black background. While the other type showed 20 s of negative emotional
stimulus pictures followed by 20 s of white crosses on a black background. Considering
that the BOLD signal of fMRI typically extends beyond the neural activity for 8–12 s, and
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recognizing the limited research on the transition from stimulus to baseline levels, post-
experiment data splitting and reconstruction were performed. Specifically, in the time series
of 40 s, data from 11–20 s were extracted as the data of the positive/negative emotional
stimulation state, and the data of 31–40 s were extracted as the data of the recovery to the
baseline state, aiming to minimize the impact of intrinsic emotional fluctuations on the
study. Since it takes 2 s to scan the whole brain, each 10 s task block yielded five brain
images. Following data extraction, the time series characteristics of the Positive-Rest (PR)
and Negative-Rest (NR) control groups were obtained.

Given the emphasis of this paper on identifying brain regions associated with emo-
tional function, minimizing the influence of individual differences is crucial. Therefore, six
task blocks per participant were selected from the formal experiment, resulting in a total of
63 task blocks for positive and negative categories across 21 subjects. From each task block,
a set of 10 brain images representing the stimulus and resting states was acquired.

2.2.2. Data Preprocessing

DPABI V8.1_240101 software [31] was used for preprocessing 20 brain images from
each of the 63 task blocks. The main steps included slice timing, motion correction, spatial
normalization, spatial smoothing and filtering, etc. To ensure image stability, the initial
five time points were excluded from each subject’s data, and corrections for septal scan
discrepancies were applied using the 33rd layer as the reference. To rectify image misalign-
ment resulting from head movements, the Friston 24 method [32] was utilized to adjust
head movement parameters, with shifts exceeding 3 mm or rotations exceeding 3 degrees
deemed as excessive head movements. The images were normalized using the EPI template,
the voxel size was set to 3 × 3 × 3 mm3, FWHM = [4 mm, 4 mm, 4 mm], and the data at
the frequency of 0.01 Hz–0.1 Hz were extracted [33]. Finally, the pre-processed data were
registered with Brainnetome Atlas to obtain the complete time series corresponding to the
signals of each brain region for subsequent research.

2.2.3. Feature Collection

Following data extraction and preprocessing, each task block exhibited distinct stimu-
lus and resting states, resulting in a data matrix of 5 × 246, representing 246 brain regions
with data across 5 time points. Min-Max Normalization was performed on the data of each
brain region in each task block, followed by the computation of the average value over
the five time points. The 5 × 246 positive/negative emotional stimulus and resting-state
matrices were converted into 1 × 246 matrices. Subsequently, in the comparative analyses,
the datasets segregated into positive/negative emotional picture stimulation and resting-
state data, yielding two sets of data matrix 126 × 246, o comprising 63 states of emotional
stimulation and 63 corresponding resting states. For all the voxels in each brain region,
the average activation value of each voxel in the positive/negative emotional stimulus
state and the resting state was calculated after the Min–Max Normalization of the five time
points of each voxel in the brain region. The overall process was similar to that of brain
regions, and all features based on brain regions and voxels were finally obtained.

2.2.4. Voxel Selection for PEA and NEA

To identify the characteristic ROIs and characteristic sub-ROIs significantly activated
by positive and negative emotional stimuli, a comprehensive feature selection process is
essential to eliminate redundant information. In the analysis of brain region level, 246 brain
regions were selected as the ROI. The average activation value of these brain regions
under positive/negative emotional picture stimulation or resting state in a time series were
utilized for feature selection. In the voxel-level analysis, all the voxels in a characteristic
ROI were selected as the ROI, and the average activation value of the voxel in a time series
was used as the feature for selecting. Positive emotional stimuli and resting state and
negative emotional stimuli and resting state were utilized as two control groups in this
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study. The SVM-RFE algorithm was employed for feature selection of brain regions and
voxels.

SVM is a generalized linear classifier, which is often used to solve binary classification
problems [34]. For the input independent variable x and label variable y, the objective
function of SVM is as follows:

J = 1/2·
N
∑

h=1

N
∑

k=1
yhykαhαk(xh·xk)−

N
∑

k=1
αk (1)

where, 0 ≤ αk ≤ C and ∑N
k=1 αkyk = 0, there exists an optimal solution αk for this objective

function, then the decision function for input variable x is as follows:

D(x) = w·x + b (2)

W =
N
∑

k=1
αkykxk and b = yk − w·xk (3)

SVM-RFE algorithm is a feature selection method combined with SVM, which uses the
weight as the ranking criterion to backward delete features, and finally obtains the optimal
feature subset [35]. SVM-RFE feature selection algorithm has strong generalization ability
and stable performance.

In order to make the results of feature selection more stable and robust, this study uses
the SVM-RFE algorithm with 10-fold cross validation. Input two groups of training sam-
ples, X0 = [x1, x2, . . . , xi, . . . , xm]

T and y = [y1, y2, . . . , yi, . . . , ym]
T, each group of samples

contains n features s = [1, 2, . . . , n], For the set of all features, the feature with the smallest
ranking coefficient is deleted in each iteration, until all the features are traversed, and the
features that reach the maximum classification accuracy are retained as the selected features.

Each time the SVM model is trained, a weight vector W is generated:

W = {w1, w2, . . . , wi, . . . , wn} (4)

Here wi means the weight value of the ith ROI. Use W to compute the ranking criterion
score for each round:

ci = (wi)
2, i = 1, 2, . . . , n (5)

Due to the randomness of this ranking score, 10-fold cross validation is introduced to
obtain the ten ranking criterion scores of the current feature, which are averaged to obtain
the average ranking score as shown in the following equation:

ai = ∑10
j=1 cj

i/10, i = 1, 2, . . . , n (6)

where j is the jth fold in the 10-fold cross validation. The feature with the smallest average
ranking coefficient in this round of 10-fold cross validation was deleted, and the final
feature subset was obtained when the accuracy of the SVM trained classifier was no
longer improved.

2.3. Identifying the Associated Regions in Depressed Patients Under PEA and NEA

The method for detecting associated brain regions in depressed patients under PEA
and NEA is shown in Figure 3. In this study, classification validation was conducted sepa-
rately across the Brainnetome Atlas template (246 brain regions), AAL template (90 brain
regions) [36], Brodmann template (52 brain regions) [37], and the PEA and NEA constructed
within this study. When employing SVM classification with Radial Basis Function (RBF) [38]
based on CSL, we trained SVM using 10-fold cross validation to select appropriate parame-
ter values from C (0.25, 0.5, 1, 2, 4) and gamma (0.5, 1, 2, 4, 8, 15) to enhance classification
accuracy. Incorporating CSL prioritizes avoiding higher-cost errors over merely improving
accuracy, as misdiagnosing depression as healthy carries potentially greater consequences
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in medical diagnosis than misdiagnosing healthy as depressed. Additionally, ALFF anal-
ysis was performed on depression patients and healthy controls under PEA and NEA,
identifying clusters with significant differences under the two-sample t-test (FDR, p < 0.01)
condition, followed by corresponding cognitive analysis.

Figure 3. Flow chart of detection of associated brain regions in depressed patients under PEA
and NEA.

3. Results
3.1. Determination of PEA and NEA in Normal Control

During characteristic ROIs selection, a total of 246 brain regions encompassing the
entire brain served as the feature set. The average activation value of brain regions under
positive/negative emotional picture stimulation or resting state in a time series was utilized
as the feature. The SVM-RFE algorithm was applied for feature selection, yielding emotion-
related characteristic ROIs for the PR and NR groups. To identify refined emotional
characteristic sub-ROIs, the SVM-RFE algorithm was iteratively employed to filter all
voxels within the characteristic ROIs, thereby achieving feature dimension reduction.
Subsequently, after voxel dimension extraction, refined emotional characteristic sub-ROIs
for the PR and NR groups were delineated.

3.1.1. Identified Positive Emotion-Associated Activation Regions

Following the implementation of the Data Splitting and Recombination procedure,
63 task blocks were generated for both positive emotional picture stimulation and resting
states. Each task block corresponded to a 1 × 246 feature vector. The feature vectors from
positive emotional stimuli and resting states were combined to form a 126 × 246 feature
matrix for selection. Subsequently, utilizing the SVM-RFE algorithm for feature selection,
26 positive emotion-activated characteristic ROIs were identified, spanning the frontal lobe,
temporal lobe, parietal lobe, insular lobe, occipital lobe, and subcortical nucleus. These
brain regions are detailed in Table 2, where their importance decreases gradually from top
to bottom. Notably, the activated regions are predominantly concentrated in the parietal
lobe, subcortical nucleus, temporal lobe, and occipital lobe.

Table 2. Positive emotion-associated characteristic ROIs; Label ID is the characteristic ROI index in
the Brainnetome Atlas; X, Y, Z represent the positions in MNI coordinates; L: left; R: right.

Label ID Gyrus Hemisphere MNI (X, Y, Z)

204 Lateral Occipital Cortex LOcC_R_4_3 22, −97, 4
193 MedioVentral Occipital Cortex MVOcC_L_5_3 −6, −94, 1
194 MedioVentral Occipital Cortex MVOcC_R_5_3 8, −90, 12
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Table 2. Cont.

Label ID Gyrus Hemisphere MNI (X, Y, Z)

131 Superior Parietal Lobule SPL_L_5_4 −22, −47, 65
239 Thalamus Tha_L_8_5 −16, −24, 6
88 Middle Temporal Gyrus MTG_R_4_4 58, −16, −10
3 Superior Frontal Gyrus SFG_L_7_2 −18, 24, 53

195 MedioVentral Occipital Cortex MVOcC_L_5_4 −17, −60, −6
216 Hippocampus Hipp_R_2_1 22, −12, −20
243 Thalamus Tha_L_8_7 −12, −22, 13
146 Inferior Parietal Lobule IPL_R_6_6 55, −26, 26
172 Insular Gyrus INS_R_6_5 39, −7, 8
105 Fusiform Gyrus FuG_L_3_2 −31, −64, −14
108 Fusiform Gyrus FuG_R_3_3 43, −49, −19
93 Inferior Temporal Gyrus ITG_L_7_3 −43, −2, −41

212 Amygdala Amyg_R_2_1 19, −2, −19
140 Inferior Parietal Lobule IPL_R_6_3 47, −35, 45
115 Parahippocampal Gyrus PhG_L_6_4 −19, −12, −30
147 Precuneus PCun_L_4_1 −5, −63, 51
156 Postcentral Gyrus PoG_R_4_1 50, −14, 44
138 Inferior Parietal Lobule IPL_R_6_2 39, −65, 44
21 Middle Frontal Gyrus MFG_L_7_4 −41, 41, 16

214 Amygdala Amyg_R_2_2 28, −3, −20
162 Postcentral Gyrus PoG_R_4_4 20, −33, 69
57 Precentral Gyrus PrG_L_6_3 −26, −25, 63

218 Hippocampus Hipp_R_2_2 29, −27, −10

To refine the corresponding characteristic ROIs further, this experiment conducted
quadratic feature selection in the voxel dimension to delineate more detailed characteristic
sub-ROIs. Figure 4 illustrates the comparison of the number of voxels in characteristic
ROIs and characteristic sub-ROIs under the Brainnetome Atlas template. The results reveal
a small number of retained voxels in each characteristic ROI, with some characteristic
ROIs retaining only single-digit voxels exhibiting significant activation. This suggests that
the fluctuations in activation value of these voxels under positive emotional stimulation
significantly contribute to the activation of their respective characteristic ROIs.

Figure 4. Comparison of the number of voxels in characteristic ROIs and characteristic sub-ROIs in
the PR group.

The distribution of characteristic ROIs and characteristic sub-ROIs obtained by brain
region and voxel feature selection in the human brain is shown in Figure 5, respectively,
and it can be seen that the characteristic ROIs after the secondary feature selection are
significantly reduced. The characteristic sub-ROIs serve as the basis for the subsequent
construction of PEA.
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Figure 5. (a) Voxel-based distribution of positive emotion-associated characteristic ROIs in the human
brain; (b) Voxel-based distribution of positive emotion-associated characteristic sub-ROIs in the
human brain.

3.1.2. Identified Negative Emotion-Associated Activation Regions

Following the implementation of the Data Splitting and Recombination procedure,
63 task blocks were generated for both negative emotional picture stimulation and resting
states. Each task block corresponded to a 1 × 246 feature vector. The feature vectors from
negative emotional stimuli and resting states were combined to form a 126 × 246 feature
matrix for selection. Subsequently, utilizing the SVM-RFE algorithm for feature selection,
22 negative emotion-activated characteristic ROIs were identified, spanning the frontal lobe,
temporal lobe, parietal lobe, insular lobe, limbic lobe, occipital lobe and subcortical nucleus.
These brain regions are detailed in Table 3, where their importance decreases gradually
from top to bottom. Notably, the activated regions are predominantly concentrated in
occipital lobe, temporal lobe and parietal lobe.

Table 3. Negative emotion-associated characteristic ROIs; Label ID is the characteristic ROI index in
the Brainnetome Atlas; X, Y, Z represent the positions in MNI coordinates; L: left; R: right.

Label ID Gyrus Hemisphere MNI (X, Y, Z)

203 Lateral Occipital Cortex LOcC_L_4_3 −18, −99, 2
204 Lateral Occipital Cortex LOcC_R_4_3 22, −97, 4
167 Insular Gyrus INS_L_6_3 −34, 18, 1
205 Lateral Occipital Cortex LOcC_L_4_4 −30, −88, −12
194 MedioVentral Occipital Cortex MVOcC_R_5_3 8, −90, 12
134 Superior Parietal Lobule SPL_R_5_5 31, −54, 53
197 MedioVentral Occipital Cortex MVOcC_L_5_5 −13, −68, 12
219 Basal Ganglia BG_L_6_1 −12, 14, 0
230 Basal Ganglia BG_R_6_6 29, −3, 1
104 Fusiform Gyrus FuG_R_3_1 33, −15, −34
133 Superior Parietal Lobule SPL_L_5_5 −27, −59, 54
151 Precuneus PCun_L_4_3 −12, −67, 25
170 Insular Gyrus INS_R_6_4 39, −2, −9
206 Lateral Occipital Cortex LOcC_R_4_4 32, −85, −12

124 posterior Superior Temporal
Sulcus pSTS_R_2_2 57, −40, 12

76 Superior Temporal Gyrus STG_R_6_4 66, −20, 6
207 Lateral Occipital Cortex LOcC_L_2_1 −11, −88, 31
159 Postcentral Gyrus PoG_L_4_3 −46, −30, 50
17 Middle Frontal Gyrus MFG_L_7_2 −42, 13, 36

109 Parahippocampal Gyrus PhG_L_6_1 −27, −7, −34
61 Precentral Gyrus PrG_L_6_5 −52, 0, 8

177 Cingulate Gyrus CG_L_7_2 −3, 8, 25

To refine the corresponding characteristic ROIs further, this experiment conducted
quadratic feature selection in the voxel dimension to delineate more detailed characteristic
sub-ROIs. Figure 6 illustrates the comparison of the number of voxels in characteristic
ROIs and characteristic sub-ROIs under the Brainnetome Atlas template. The results reveal
a small number of retained voxels in each characteristic ROI, with some characteristic
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ROIs retaining only single-digit voxels exhibiting significant activation. This suggests that
the fluctuations in activation value of these voxels under negative emotional stimulation
significantly contribute to the activation of their respective characteristic ROIs.

Figure 6. Comparison of the number of voxels in characteristic ROIs and characteristic sub-ROIs in
the NR group.

The distribution of characteristic ROIs and characteristic sub-ROIs obtained by brain
region and voxel feature selection in the human brain is shown in Figure 7, respectively,
and it can be seen that the characteristic ROIs after the secondary feature selection are
significantly reduced. The characteristic sub-ROIs serve as the basis for the subsequent
construction of NEA.

Figure 7. (a) Voxel-based distribution of negative emotion-associated characteristic ROIs in the
human brain; (b) Voxel-based distribution of negative emotion-associated characteristic sub-ROIs in
the human brain.

3.2. Results of Construction of PEA and NEA

The number of characteristic ROIs in PR group was 26, while the number of non-
characteristic ROIs was 220, and these non-characteristic ROIs contained a total of 36,398 vox-
els. The correlation coefficient between each voxel and the time series vector of 26 charac-
teristic sub-ROIs was calculated. If the FC strength between each voxel and a characteristic
sub-ROI was greater than 0.95, the voxel was retained. After FC analysis, a total of 776 vox-
els were retained and these voxels were distributed in 76 brain regions. The external
characteristic voxels distribution extracted using FC strength is shown in Figure 8a. Com-
bined with the above characteristic sub-ROIs, the final PEA of this paper was obtained,
involving 102 brain regions, as shown in Figure 8b.

The number of characteristic ROIs in NR group was 22, while the number of non-
characteristic ROIs was 224, and these non-characteristic ROIs contained a total of 37,400 vox-
els. The correlation coefficient between each voxel and the time series vector of 22 charac-
teristic sub-ROIs was calculated. If the FC strength between each voxel and a characteristic
sub-ROI was greater than 0.95, the voxel was retained. After FC analysis, a total of 715 vox-
els were retained and these voxels were distributed in 55 brain regions. The external
characteristic voxels distribution extracted using FC strength is shown in Figure 9a. Com-
bined with the above characteristic sub-ROIs, the final NEA of this paper was obtained,
involving 77 brain regions, as shown in Figure 9b.
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Figure 8. (a) External characteristic voxels obtained by FC in the PR group; (b) Demonstration of PEA.

Figure 9. (a) External characteristic voxels obtained by FC in the NR group; (b) Demonstration
of NEA.

To verify the PEA and NEA constructed in this paper, we used SVM classifiers based on
RBF and CSL for classification verification, and used four quality measurement indicators
of Accuracy, Precision, Recall and F-score to evaluate the effectiveness of templates.

In this experiment, we evaluated the PEA and NEA constructed in this paper, and
extracted the time series of PR and NR using PEA, NEA, and Brainnetome Atlas templates.
As shown in Table 4, the classification accuracy of PEA and NEA both exceeded 0.80.
Especially when PEA and NEA were combined to extract features for classification, all
performance indicators were better than those when using PEA or NEA alone.

Table 4. Classification Performance Comparison of various indicators of PR and NR under different
templates on positive/negative stimulus task fMRI dataset.

Template Accuracy Precision Recall F-Score

Brainnetome Atlas 64.29% 65.21% 64.36% 64.31%
PEA 84.65% 84.82% 87.69% 85.12%
NEA 81.31% 82.88% 80.36% 80.86%

PEA + NEA 87.27% 87.27% 89.26% 87.14%

In this experiment, we evaluated the application effects of PEA and NEA in patients
with depression. We extracted time series from patients with depression and healthy con-
trols using PEA, NEA, Brainnetome Atlas template, AAL template, and Brodmann template.
As shown in Table 5, the classification accuracy of both PEA and NEA exceeds 0.70.

Table 5. Classification Performance Comparison of various indicators between depression and
healthy control groups under different templates on resting-state depression fMRI dataset.

Template Accuracy Precision Recall F-Score

Brodmann Area 61.79% 64.82% 89.98% 75.29%
AAL 62.74% 65.64% 90.07% 75.86%

Brainnetome Atlas 62.89% 66.44% 88.85% 75.84%
ddPEA 72.52% 72.48% 99.80% 82.00%
NEA 73.84% 73.98% 99.60% 82.86%

PEA + NEA 74.38% 73.57% 99.80% 81.90%
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3.3. Associated Regions in Depressed Patients Under PEA and NEA

Two-sample t-test (FDR, p < 0.01) was used to evaluate the difference of brain signal
activation between patients with depression and healthy controls under PEA. Age and gender
were included as covariates and removed to ensure the accuracy of the results. Significant
differences under the PEA revealed 15 clusters, as detailed in Table 6. Brain regions implicated
included the right fusiform gyrus, parahippocampal gyrus, lingual gyrus, sub-lobar, extra-
nuclear, inferior parietal lobule, left parahippocampal gyrus, posterior cingulate, precuneus,
precentral gyrus, thalamus, and corpus callosum. Notably, the left precentral gyrus exhibited
a positive peak intensity of 2.83, while the peak intensities of other regions were negative,
with the left posterior cingulate demonstrating the lowest intensity at −4.81.

Table 6. Clusters of brain regions with significant differences between depressed patients and healthy
controls under PEA.

Cluster Number of Voxels Cluster Size (mm3) Peak MNI Coordinate Brain Regions Peak Intensity 1

1 1 27 36, −48, −21
Right Cerebrum
Temporal Lobe
Fusiform Gyrus

−2.8682

2 1 27 39, −42, −21
Right Cerebrum
Temporal Lobe
Fusiform Gyrus

−2.905

3 2 54 15, −12, −21 Right Cerebrum
Limbic Lobe −3.4998

4 1 27 −15, −39, −9
Left Cerebrum
Limbic Lobe

Parahippocampa Gyrus
−2.7886

5 3 81 15, −33, −9

Right Cerebrum
Limbic Lobe

Parahippocampa Gyruslingual
gyrus

−3.5011

6 2 54 −15, −24, −6

Left Brainstem
Midbrain
Thalamus

Medial Geniculum Body

−2.8383

7 3 81 −15, −30, −3 Left Cerebrum
Midbrain −3.5216

8 1 27 −9, −48, 6
Left Cerebrum
Limbic Lobe

Posterior Cingulate
−4.8121

9 5 135 6, −42, 9

Right Cerebrum
Sub-lobar

Extra-Nuclear
Corpus Callosum

−4.3618

10 3 81 −6, −45, 15
Left Cerebrum
Limbic Lobe

Posterior Cingulate
−3.8012

11 1 27 57, −33, 36
Right Cerebrum

Parietal Lobe
Inferior Parietal Lobule

−2.7507

12 1 27 45, −54, 42
Right Cerebrum

Parietal Lobe
Inferior Parietal Lobule

−2.9547

13 1 27 −3, −57, 45
Left Cerebrum
Parietal Lobe

Precuneus
−2.7553

14 1 27 −9, −69, 51
Left Cerebrum
Parietal Lobe

Precuneus
−2.9405

15 1 27 −21, −21, 69
Left Cerebrum
Frontal Lobe

Precentral Gyrus
2.8264

1 Peak intensity is the intensity of the maximum or minimum ALFF value in the statistically significant brain
region, reflecting the extreme activity level of this brain region in the ALFF analysis, the peak intensity may be
different in different brain regions and at different time points. In this study, the value of peak intensity reflects
the intensity of activity in a specific brain area, with higher values indicating more intense activity in that brain
area, while lower values may indicate less activity.
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Two-sample t-test (FDR, p < 0.01) was used to evaluate the difference of brain signal
activation between patients with depression and healthy controls under NEA. Age and
gender were included as covariates and removed to ensure the accuracy of the results.
Under the NEA, significant differences between the groups yielded 8 clusters, as detailed
in Table 7. Implicated brain regions included the right superior temporal gyrus and middle
temporal gyrus, as well as the left cuneus, middle frontal gyrus, cingulate gyrus, and
superior parietal lobule. The peak intensity of the right superior temporal gyrus and
middle temporal gyrus, as well as the left cuneus and middle frontal gyrus, were positive.
Notably, the peak intensity of the right middle temporal gyrus was 3.11. Conversely, the
peak intensity of the left cingulate gyrus, middle frontal gyrus, and superior parietal lobule
was negative, with the peak intensity of the left superior parietal lobule recorded at −3.59.

Table 7. Clusters of brain regions with significant differences between depressed patients and healthy
controls under NEA.

Cluster Number of Voxels Cluster Size (mm3) Peak MNI Coordinate Brain Regions Peak Intensity 1

1 1 27 69, −30, 3
Right Cerebrum
Temporal Lobe

Middle Temporal Gyrus
2.9256

2 3 81 66, −24, 3
Right Cerebrum
Temporal Lobe

Superior Temporal Gyrus
3.1057

3 1 27 −12, −90, 30
Left Cerebrum
Occipital Lobe

Cuneus
2.676

4 1 27 −42, 21, 30
Left Cerebrum
Frontal Lobe

Middle Frontal Gyrus
2.7882

5 1 27 −3, −30, 42
Left Cerebrum
Limbic Lobe

Cingulate Gyrus
−2.7923

6 8 216 −6, −6, 48
Left Cerebrum
Limbic Lobe

Cingulate Gyrus
−3.2281

7 3 81 −51, 9, 42
Left Cerebrum
Frontal Lobe

Middle Frontal Gyrus
−3.1645

8 5 135 −9, −69, 57
Left Cerebrum
Parietal Lobe

Superior Parietal Lobule
−3.5853

1 Peak intensity is the intensity of the maximum or minimum ALFF value in the statistically significant brain
region, reflecting the extreme activity level of this brain region in the ALFF analysis, the peak intensity may be
different in different brain regions and at different time points. In this study, the value of peak intensity reflects
the intensity of activity in a specific brain area, with higher values indicating more intense activity in that brain
area, while lower values may indicate less activity.

4. Discussion
4.1. Positive/Negative Emotion-Associated Regions in Normal Control

The first three activated regions of positive emotion-associated characteristic ROIs
were all occipital lobe regions, including the Lateral Occipital Cortex (LOcC_R_4_3), the
MedioVentral Occipital Cortex (MVOcC_L_5_3, MVOcC_R_5_3). In addition to these three,
the activated regions also included the MedioVentral Occipital Cortex (MVOcC_L_5_4).
Because the experimental paradigm designed in this paper requires subjects to view pic-
tures of different emotional stimuli, the activation of emotional regions is accompanied
by the activation of visual regions. The largest proportion of the 26 regions activated was
in the parietal lobe, accounting for seven of them, they were the Superior Parietal Lobule
(SPL_L_5_4), the Inferior Parietal Lobule (IPL_R_6_2, IPL_R_6_3, IPL_R_6_6), the Pre-
cuneus (PCun_L_4_1) and the Postcentral Gyrus (PoG_R_4_1, PoG_R_4_4). They play an
important role in attention and cognitive function. By regulating the brain’s attention focus
and understanding and analysis ability, they make the subjects have different responses
to emotional stimulus pictures [39]. Moreover, they also participate in the regulation
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of emotional and social behaviors, helping the brain to identify emotional expressions
and participate in the understanding of social situations [40]. Meanwhile, six subcortical
nuclei were activated in response to positive emotion stimulation, including the Amyg-
dala (Amyg_R_2_1, Amyg_R_2_2), the Hippocampus (Hipp_R_2_1, Hipp_R_2_2) and the
Thalamus (Tha_L_8_5, Tha_L_8_7). Among them, the amygdala and hippocampus are
considered to be related to emotion, and the amygdala is mostly involved in the generation
and regulation of emotion. Barrett [41] found that the amygdala is involved in predicting
the threat or reward brought by emotional stimuli. While the hippocampus is associated
with memory and emotional processing [42,43], the data in this paper were extracted
from subjects during viewing emotional stimulus pictures, and this process may trigger
short-term memory of the picture content. The thalamus is the higher center of sensa-
tion, and its activation may be related to positive emotion production [44]. Furthermore,
Fusiform Gyrus (FuG_L_3_2, FuG_R_3_3) in the temporal lobe region is an important part
of the ventral visual system, which processes a large number of visual and visual-related
signals and is sensitive to emotional stimulus pictures [45]. The Parahippocampal Gyrus
(PhG_L_6_4), as the main cortical input to the hippocampus, has an important relation-
ship with cognition and emotion [46]. Middle Temporal Gyrus (MTG_R_4_4) and Inferior
Temporal Gyrus (ITG_L_7_3), which receive information from occipital lobe input, are
more advanced regions of visual processing and also function as memory regions [47]. In
addition, three brain regions in the frontal lobe were significantly activated, namely the
Superior Frontal Gyrus (SFG_L_7_2), Middle Frontal Gyrus (MFG_L_7_4) and Precentral
Gyrus (PrG_L_6_3), which are often considered to be responsible for emotional regulation
and decision-making, and can inhibit negative emotions such as anger, anxiety and fear
produced by the amygdala [48]. Only one brain region in the insular lobe was significantly
activated, namely the Insular Gyrus (INS_R_6_5), which is often related to the production
and representation of emotions [49].

Four of the top five important activated regions for negative emotion-associated char-
acteristic ROIs were occipital lobe regions, including Lateral Occipital Cortex (LOcC_L_4_3,
LOcC_R_4_3, LOcC_L_4_4) and MedioVentral Occipital Cortex (MVOcC_R_5_3). In
addition, three occipital lobe regions were included, namely Lateral Occipital Cortex
(LOcC_R_4_4, LOcC_L_2_1) and MedioVentral Occipital Cortex (MVOcC_L_5_5). Similar
to the positive emotion activation region, because the experimental paradigm designed
in this paper requires subjects to view pictures of different emotional stimuli, the acti-
vation of emotional regions is accompanied by the activation of visual regions. Among
the 22 activated regions, parietal lobe and temporal lobe regions accounted for the same
proportion, and both accounted for four of them. Parietal lobe regions include the Superior
Parietal Lobule (SPL_L_5_5, SPL_R_5_5), Precuneus (PCun_L_4_3), and Postcentral Gyrus
(PoG_L_4_3), which are similar to the positive emotion activation region and will not be
described in more detail here. Temporal lobe regions included the Superior Temporal Gyrus
(STG_R_6_4), Fusiform Gyrus (FuG_R_3_1), Parahippocampal Gyrus (PhG_L_6_1) and
posterior Superior Temporal Sulcus (pSTS_R_2_2). Similar to the positive emotion activa-
tion region, Watson et al. [50] found that compared with the neutral expression, emotional
expression induced more significant activation in the posterior superior temporal sulcus,
and the higher the expression intensity, the greater the activation. At the same time, the
Basal Ganglia (BG_L_6_1 and BG_R_6_6) in the subcortical nuclei region were significantly
activated, with the former often considered related to emotion, and the latter related to
the production mechanism of negative emotions [51]. Furthermore, the Middle Frontal
Gyrus (MFG_L_7_2) and the Precentral Gyrus (PrG_L_6_5) of the frontal lobe regions were
also significantly activated, similar to the positive emotion activation region, which will
not be described in more detail here. The Insular Gyrus (INS_L_6_3, INS_R_6_4) of the
insular lobe region was also significantly activated, indicating that the activated regions of
negative emotions were evenly and symmetrically distributed on both sides of the brain.
In addition, only one brain region in the limbic lobe region was significantly activated,
namely the Cingulate Gyrus (CG_L_7_2). Papez [52] believed that emotional experience
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was mainly controlled by the cingulate gyrus and proposed the “Papez loop”, and Kamali
et al. [53] updated the original Papez loop based on this concept.

4.2. Brain Regions in Depressed Patients Under PEA and NEA

ALFF calculates the mean square root of the power spectrum of the signal in the low
frequency range (0.01–0.08 Hz), which is used to detect the regional intensity of spontaneous
fluctuations in BOLD signal [54], and the variation in the regional intensity of the BOLD
signal primarily reflects changes in blood flow and blood oxygenation levels in local brain
regions, which are typically associated with neural activity, especially spontaneous or
task-related neural activity. Therefore, the increase of ALFF may be a sign of excessive
neural activity in brain regions, while the decrease of ALFF may indicate insufficient
neural activity [55]. Previous studies have reported that machine learning models trained
with ALFF features have good performance in identifying patients with depression and
predicting antidepressant efficacy [56,57].

In this study, we used a two-sample t-test (FDR, p < 0.01) to assess the difference in
ALFF signaling activation during PEA and NEA between depressed patients and healthy
controls. This method was chosen based on its widespread use and endorsement in
neuroimaging studies, as demonstrated in the study by Yan et al. [58]. Among the many
statistical correction methods, we preferred FDR correction because it was more stringent
in controlling the false positive rate. The significance level of p < 0.01 was chosen to provide
a conservative threshold to ensure the reliability and statistical power of the findings.

Under the PEA, depressed patients in this study had significantly lower ALFF values
than healthy controls in the right fusiform gyrus, which is generally considered to be related
to the storage and recognition of faces. Depressed patients are prone to misunderstand
other people’s facial expressions, which may be related to weaker activation. Zhang
et al. [59] found that when the spontaneous brain activity of the fusiform gyrus is abnormal,
patients with depression may have reduced recognition and memory of facial features,
along with certain deviations in language understanding, leading them to have negative
cognition in study and life. Additionally, Reynolds et al. [60] found that the functional
connectivity of the right fusiform gyrus in patients with mild cognitive impairment was
abnormal, which may lead to memory defects, hallucinations and emotional disorders.
Therefore, the dysfunction of the fusiform gyrus may be the neurophysiological basis
for patients with depression being more prone to negative emotions. Lingual gyrus is
located in the visual system and plays an important role in integrating visual information,
introverted sensation and stimulation [61,62]. Consistent with the research of other scholars,
the ALFF value of the right lingual gyrus in patients with depression in this study was
also significantly lower than that of the healthy control group. Lee et al. [63] found that
the ALFF value of the bilateral lingual gyrus decreased in depressed patients with anxiety
symptoms, and the gray matter connectivity of the right lingual gyrus changed abnormally
in these patients. Jing et al. [64] found that compared with the healthy control group, the
ALFF/fALFF value of the left lingual gyrus of patients with depression was decreased.
The inferior parietal lobule is involved in many functions such as attention, sensation and
spatial information integration [65]. Wang et al. [66] found that the ALFF value of the
bilateral inferior parietal lobule in patients with first-episode depression decreased, with
the significantly reduced region being the right inferior parietal lobule cortex. This is also
consistent with the results of this study, which found that the ALFF value of the right
inferior parietal lobule in patients with depression was significantly lower than that of the
healthy control group. As the core brain region of the default mode network, the precuneus
is related to many high-level cognitive functions and is responsible for self-related cognitive
activities, such as collecting information and evaluating external emotional stimuli [67].
Sendi et al. [68] conducted a brain network study on depression and found that when
there was abnormal activity in the precuneus, patients would have cognitive disorders
such as inattention, active negative thoughts, and negative emotional rumination. This
study found that the ALFF value of the left precuneus in patients with depression was
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significantly lower than that of the healthy control group. This may be related to the clinical
manifestation of repeated introspection in depressed patients. Thalamus is involved in
the emergence of consciousness and is a neuronal transfer station for somatosensory
conduction in the human body. It interacts with and influences the prefrontal-temporal
lobe, prefrontal-amygdala, and prefrontal-basal ganglia, and participates in a series of
cognitive and emotional processing processes [69]. Because depression is characterized by
emotional and cognitive impairments, many neuroimaging and histological studies have
shown that dysfunction of the thalamus and its projection cortical targets are involved in
both the pathology and physiology of depression [70]. In this study, there were significant
differences in the left thalamus between patients with depression and healthy controls.
We can speculate that there are functional and structural abnormalities in the thalamus
in patients with depression, which cause symptoms such as loss of pleasure, attention,
and memory decline. The parahippocampal gyrus can collect a variety of perceptual
information, process and integrate it and then transmit it to the hippocampus, which
plays a pivotal role in the cognitive processing of depression [71]. Lawrence et al. [72]
found that after patients with depression and healthy controls received different degrees
of facial expression image stimulation such as fear, happiness and sadness, the activation
response of the right parahippocampal gyrus to positive image stimulation in patients with
depression was weakened, and the activation degree of the left parahippocampal gyrus
was significantly positively correlated with the severity of depressive symptoms. This is
partially consistent with the results of the present study, showing that the ALFF values of
the parahippocampal gyrus were significantly lower in depressed patients than in healthy
controls. The posterior cingulate is mainly involved in the regulation of emotions and
self-awareness, while patients with depression often show emotional instability, reduced
sense of self-worth, rumination and other symptoms, which are related to abnormal activity
of the posterior cingulate cortex. Caetano et al. [73] found structural changes with reduced
posterior cingulate volume in patients with depression, which is in line with the results of
this study that the ALFF value of the left posterior cingulate in patients with depression
was significantly different from that in healthy controls. The corpus callosum is the most
important nerve fiber bundle in the brain, connecting the coordination and integration of
the left and right cerebral hemispheres [74]. Abnormal conduction of the corpus callosum
can affect the emotional coordination, control, memory and attention of the left and right
brains [75]. Li et al. [76] found that compared with the healthy control group, the fractional
anisotropy (FA) values of the genu and body of the corpus callosum in patients with
depression were significantly reduced, and the abnormal changes of Diffusion Tensor
Imaging (DTI) only appeared in the genu and body of the corpus callosum. In this study, the
ALFF value of the corpus callosum in patients with depression was significantly lower than
that in healthy controls. There are few studies on the relationship between depression and
the corpus callosum using fMRI technology, which can be further explored and improved
in the future. The precentral gyrus is related to voluntary movement. Although this study
showed that the ALFF value of the left precentral gyrus in patients with depression was
significantly higher than that in the healthy control group, the patients with depression
showed fewer limb movement abnormalities. Therefore, the relationship between the
precentral gyrus and depression needs further research and analysis.

Under the NEA, the ALFF values in the right superior temporal gyrus and middle
temporal gyrus of the depressed patients in this study were significantly higher than those
of the healthy controls. The superior temporal gyrus and middle temporal gyrus are
not only related to mentalization ability, but also involved in the process of explaining
and predicting individual behavioral ability based on autonomous beliefs, desires and
emotions, as well as in the process of semantic processing and the regulation of emotional
information and cognition [77,78]. Fan et al. [79] found that ALFF activity in the right
superior temporal gyrus was significantly enhanced in depressed patients with suicide
attempts. Guo et al. [80] found that the ALFF values of bilateral superior temporal gyrus
and middle temporal gyrus were increased in patients with depression. Therefore, it can
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be speculated that the abnormalities of the superior temporal gyrus and middle temporal
gyrus may lead to emotional disorders in patients with depression, and subsequently
leading to negative cognition, depression, anxiety and other symptoms. The occipital
lobe is involved in the coding and transmission of visual information in the cortex and
the perception of various facial emotions [81]. The cuneus is a part of the occipital lobe
and plays a core role in the neural network related to consciousness. The function of the
cuneus may be related to the process of self-reflection, and it is involved in the extraction
of visuospatial imagery and episodic memory. In this study, the ALFF value of the left
cuneus of patients with depression was significantly higher than that of the healthy control
group, Zhou et al. [82] found a decrease in ALFF values in the left cuneus after 16 weeks
of treatment with escitalopram and lithium in patients with bipolar II depression, which
proved the results of this experiment in disguised form. Therefore, it can be speculated that
cuneus dysfunction may lead to the preference of depressed patients for negative emotional
information in episodic memory, and continuous attention to negative information may
lead to the aggravation of depressive symptoms [83]. The cingulate gyrus plays a key role
in cognitive and emotional information management, and it has extensive connections
with brain regions that regulate emotion, the emotional valence of thoughts and autonomic
nerves and visceral reflexes. Gong et al. [84] found that the ALFF value of the posterior
cingulate gyrus was significantly reduced in patients with MDD and bipolar disorder. In
this study, it was found that the ALFF value of the left cingulate gyrus in patients with
depression was significantly lower than that in healthy controls, which was consistent with
the functional disorders of emotional instability and decreased decision-making ability in
patients with depression. The activation of the superior parietal lobule is not only related
to response inhibition, but it is also a key brain region for response inhibition control.
The damage of its structure and function can cause the impairment of inhibitory control.
Response inhibition is a cognitive process that removes inappropriate behavior attempts. It
is an important component of executive function and plays an important role in making
correct behavioral decisions to adapt to the requirements of environmental changes. In the
present study, the ALFF value of the left superior parietal lobule was significantly lower
in depressed patients than in healthy controls, and it can be speculated that depressed
patients have weakened response inhibition function, which leads to increased impulsivity
and increases the risk of suicide in depressed patients. The middle frontal gyrus is involved
in cognitive processes of executive function and working memory, as well as emotional
processing. In the present study, the ALFF value of the left middle frontal gyrus was
significantly higher in depressed patients than in healthy controls in one part of the voxels,
while it was opposite in the other part of the voxels. Cao et al. [85] found that the ALFF
value of the left middle frontal gyrus in depression patients without suicidal tendencies
was significantly higher than that in healthy controls. Liu et al. [86] found that patients with
bipolar disorder had lower ALFF values in the left middle frontal gyrus during depression
than healthy controls. Bremner et al. [87] found that the metabolism of the middle frontal
gyrus was reduced in normal people with induced depression. It has been suggested that
the middle frontal gyrus may be a key site in the neuropathology of depression. These
studies suggest that the dysfunction of the middle frontal gyrus plays an important role in
the induction of depressive emotion and the pathogenesis of depression.

4.3. Neural Substrates and Manifestations of Depression Symptoms

Depression is characterized by persistent low mood, pessimism, and a loss of interest
in daily activities, often accompanied by sleep disturbances (insomnia or hypersomnia)
and appetite changes (leading to weight loss or gain) [88]. Patients frequently experience
fatigue, decreased self-worth, self-blame, and impaired concentration and memory, with
actions becoming slow or agitated [89]. Severe symptoms include recurrent thoughts of
death and suicide risk [90]. The brain regions implicated in these symptoms include the pre-
frontal cortex (PFC), particularly the dorsolateral prefrontal cortex (DLPFC), orbital frontal
cortex, and anterior cingulate cortex (ACC), which are crucial for emotional regulation,
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cognitive control, problem-solving, working memory, and autonomic and neuroendocrine
responses [91]. The cingulate cortex, especially the subgenual and dorsal anterior cingulate
cortices, is involved in the cognitive aspects of emotion and conflict resolution of emo-
tional stimuli. The thalamus integrates sensory stimuli, emotions, and arousal, with its
volume often reduced in depression. The striatum, including the caudate nucleus and
putamen, is associated with reward-oriented behavior, cognitive processes, motivation,
and emotional control, and its gray matter intensity may be reduced in depression [92].
The hippocampus, related to memory and complex cognitive processes, shows volume
reduction linked to emotional and cognitive symptoms of depression [93]. The amygdala,
involved in emotional responses, especially negative emotions, may have increased volume
in depression [94]. The insula, related to emotional experience, self-reflection, and internal
visceral state assessment, shows heightened response to aversive stimuli in depression [95].
The parietal lobe, part of the default mode network (DMN), is associated with internal
self-focus and rumination, with DMN overactivation linked to negative emotions in de-
pression [96]. This study observed significant differences in multiple brain regions, closely
related to depression symptoms. The fusiform gyrus, involved in facial recognition and
visual processing, the parahippocampal gyrus, related to memory and emotional regulation,
and the lingual gyrus and cuneus, involved in visual information processing, may all be
affected [97–99]. The inferior and superior parietal lobules, related to spatial perception,
and the corpus callosum, linked to cognitive and emotional symptoms, may also show
abnormalities [100]. The cingulate cortex’s role in self-reflection and emotional regulation,
the precuneus’s involvement in spatial perception, and the primary motor cortex’s link
to slow movement in depression are noted [101,102]. The thalamus’s role in emotional
regulation, the superior and middle temporal gyri’s involvement in auditory processing
and language comprehension, and the middle frontal gyrus’s link to executive dysfunction
are also highlighted [103–105].

5. Limitations and Future Work

This study exhibits some limitations. First, due to a relatively small sample size,
especially with the emotional dataset primarily consisting of graduate students, the gen-
eralizability of the research conclusions may be somewhat limited. Secondly, since the
depression dataset we used is a public dataset, it lacks detailed information about patients’
comorbidities, drug therapies, and non-drug therapies (such as meditation and relaxation).
This may have some impact on the research results. Finally, this study is primarily based on
cross-sectional data, lacking longitudinal data support, and is thus unable to verify whether
the research findings remain stable or change over time. In summary, while this study
provides a new perspective on the brain mechanisms of emotional regulation in depression,
further research is still needed to overcome the aforementioned limitations.

In future work, we plan to deepen our research on depression from multiple aspects.
First, we will explore the classification of depression subtypes based on brain region dif-
ferences and analyze the emotional expression differences among these subtypes. Second,
we will conduct longitudinal studies to track changes in the differential brain regions of
patients from the onset of the illness to the treatment process, assessing their correlation
with changes in depression symptoms, thereby revealing the evolution of these brain
regions throughout the course of depression more accurately. Additionally, we will inte-
grate multimodal data, including brain imaging data beyond fMRI, clinical presentations,
psychological assessments, and genetic factors for comprehensive analysis. Finally, we
will focus on the neural plasticity of these differential brain regions, investigating how
intervention treatments can promote the recovery or improvement of their functions.

6. Conclusions

This study utilizes fMRI technology to develop PEA and NEA based on voxel method-
ology, facilitating the precise identification and localization of brain regions and their
associated voxels linked to positive and negative emotional responses. These atlases not
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only enhance the cognitive understanding of human emotional states but also, through
the comparison of depression patients with healthy controls, reveals significant differences
in neural mechanisms between the two groups, identifying key brain regions such as
the cingulate gyrus, parahippocampal gyrus, and thalamus. With further validation and
refinement, this atlas is expected to be utilized for early diagnosis of depression and the
assessment of treatment efficacy.
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37. Trišins, M.; Zdanovskis, N.; Platkājis, A.; Šneidere, K.; Kostiks, A.; Karelis, G.; Stepens, A. Brodmann Areas, V1 Atlas and
Cognitive Impairment: Assessing Cortical Thickness for Cognitive Impairment Diagnostics. Medicina 2024, 60, 587. [CrossRef]

38. Li, Y.; Wang, Z.; Dai, H. Improved Parkinsonian tremor quantification based on automatic label modification and SVM with RBF
kernel. Physiol. Meas. 2023, 44, 025003. [CrossRef]
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