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® N o

Abstract: Background/Objectives: Breast cancer is a leading cause of mortality among women in
Taiwan and globally. Non-invasive imaging methods, such as mammography and ultrasound, are
critical for early detection, yet standalone modalities have limitations in regard to their diagnostic
accuracy. This study aims to enhance breast cancer detection through a cross-modality fusion
approach combining mammography and ultrasound imaging, using advanced convolutional neural
network (CNN) architectures. Materials and Methods: Breast images were sourced from public
datasets, including the RSNA, the PAS, and Kaggle, and categorized into malignant and benign
groups. Data augmentation techniques were used to address imbalances in the ultrasound dataset.
Three models were developed: (1) pre-trained CNNs integrated with machine learning classifiers,
(2) transfer learning-based CNNs, and (3) a custom-designed 17-layer CNN for direct classification.
The performance of the models was evaluated using metrics such as accuracy and the Kappa score.
Results: The custom 17-layer CNN outperformed the other models, achieving an accuracy of 0.964
and a Kappa score of 0.927. The transfer learning model achieved moderate performance (accuracy
0.846, Kappa 0.694), while the pre-trained CNNs with machine learning classifiers yielded the lowest
results (accuracy 0.780, Kappa 0.559). Cross-modality fusion proved effective in leveraging the
complementary strengths of mammography and ultrasound imaging. Conclusions: This study
demonstrates the potential of cross-modality imaging and tailored CNN architectures to significantly
improve diagnostic accuracy and reliability in breast cancer detection. The custom-designed model
offers a practical solution for early detection, potentially reducing false positives and false negatives,
and improving patient outcomes through timely and accurate diagnosis.

Keywords: artificial intelligence; deep learning algorithms; convolutional neural networks; breast cancer

1. Introduction

Breast cancer remains one of the most significant health challenges worldwide, par-
ticularly among women [1]. In 2021, breast cancer was the most diagnosed cancer among
women in Taiwan, with an age-adjusted incidence rate of 82.51 per 100,000 women. It also
ranked as the fourth leading cause of cancer-related deaths among Taiwanese women, with
an age-adjusted mortality rate of 13.77 per 100,000 women. The incidence of breast cancer
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in Taiwan has been increasing over the past few decades, reflecting changes in lifestyle,
reproductive patterns, and increased awareness leading to more screenings. The peak age
of breast cancer diagnosis in Taiwan falls between 45 and 69 years, indicating a significant
impact on women in their most productive years.

The importance of non-invasive imaging techniques, such as mammography and
ultrasound, in the early detection of breast cancer cannot be overstated [2—4]. These
methods have been widely adopted in clinical settings due to their ability to identify
tumors at an early stage, which is crucial for improving patient outcomes [5]. However,
despite the advancements in imaging technology, challenges persist in the accurate and
timely interpretation of breast images. The complexity of breast tissue, particularly in
younger women with denser breast tissue, can obscure the visibility of tumors, leading to
false negatives [6,7]. Conversely, the sensitivity of these imaging techniques can also result
in false positives, leading to unnecessary biopsies and patient anxiety. This dual challenge
underscores the need for more sophisticated methods that can enhance the accuracy and
efficiency of breast cancer screening.

In recent years, artificial intelligence (Al) has emerged as a transformative tool in the
field of medical imaging. Al, particularly using deep learning algorithms, has demonstrated
remarkable potential in automating the analysis of medical images, thereby reducing the
burden on radiologists and increasing the speed and accuracy of diagnosis. Convolutional
neural networks (CNNSs), a type of deep learning algorithm, have been particularly suc-
cessful at image classification tasks, making them well-suited for applications in breast
cancer detection [8-11]. The integration of Al into breast imaging presents several op-
portunities [12,13]. Al can assist in the interpretation of complex images by highlighting
areas of interest that may require further investigation, thus serving as a valuable second
opinion for radiologists [14-16]. Additionally, AI can enhance the speed of image analysis,
enabling quicker decision-making and potentially reducing the time between screening
and diagnosis [17-20].

Al can also improve the consistency of image interpretation, reducing variability
caused by human factors, such as fatigue or differences in experience levels among ra-
diologists [21]. Despite these advantages, the application of Al in breast imaging is not
without challenges [22,23]. A primary challenge is the need for large, diverse datasets to
effectively train Al models [24]. These datasets must encompass a wide range of imaging
modalities, including mammography and ultrasound, and must reflect the variability in
breast tissue across different populations [25,26]. Furthermore, developing Al models that
are able to generalize effectively across different imaging modalities is critical [27]. This
necessitates robust training processes and the integration of cross-modality data to ensure
that Al systems interpret images accurately, regardless of the imaging technique used.

To address these challenges, this study focuses on the development and application of
cross-image and fusion Al methods. The primary goal is to improve the breast cancer recog-
nition speed and screening accuracy by leveraging the strengths of both mammography
and ultrasound imaging. By integrating these imaging modalities, this study aims to create
a more comprehensive diagnostic tool that provides a richer set of features for Al models
to learn from. This approach is expected to enhance the ability of Al to detect tumors,
particularly in cases where one imaging modality alone might be insufficient [28-30].

2. Materials and Methods

The breast images used in this study were sourced from reputable public databases,
including the Radiological Society of North America, the Polish Academy of Sciences,
and Kaggle. These datasets provide a diverse collection of images, including B-mode
ultrasound and mammography images, which are essential for training robust AI models.
The images were divided into two categories: malignant and benign tumors. To address the
imbalance in the dataset, particularly in the number of ultrasound images, data augmenta-
tion techniques were employed. This process involved generating additional samples from
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the existing images, thereby increasing the dataset’s size and variability and improving the
Al model’s ability to generalize across different cases [31,32].

The methodology in this study is structured around three distinct models. The first
model involves using CNNs to separately extract features from ultrasound and mam-
mography images, which are then integrated into a machine learning classification model.
This approach allows the model to learn from the unique characteristics of each imaging
modality, before combining them to make a final classification. The second model takes
a more integrated approach by incorporating both ultrasound and mammography sets
simultaneously to build a CNN classification model. This model is designed to leverage
the complementary strengths of both imaging techniques, providing a more holistic view
of the breast tissue. The third model is built on the second by extracting features after the
initial CNN classification and using these features to construct a separate machine learning
model [33]. This layered approach aims to refine the classification process further and
improve the overall accuracy of the model.

Figure 1 shows the flowchart used in this study. The study begins with the input
modality fusion after data augmentation, involving 2799 benign and 2414 malignant images
after applying data augmentation. The data are then processed through three distinct
models: Model 1 involves the use of pre-trained CNNss for feature extraction, followed by
machine learning classification; Model 2 utilizes pre-trained CNNSs for transfer learning,
with all the weights retrained for image classification; and Model 3 is a user-defined CNN
model, with a new round of training for image classification. The models are subsequently
evaluated through a training schema, validation of the classification performance, and
analysis of the results.

Modality Fusion and Data Augmentation
Mammography ] Sonography-1 [ Sonography-2 ]
(RSNA) (PAS)

Benign (be)
N=1200

Malignant (ma)
N=1158

Model Training

Benign (be)
N=96

Benign (be)
N =437

Malignant (ma)
N=210

Malignant (ma)
N =104

m Evaluated Performance

Sonography-1 [ Sonography-2 ]

Benign (be)
N = 1311

Benign (be)
N =288

Malignant (ma)
N=416

3

Modality Fusion after Data Augmentation Results

Malignant (ma)
N =2414

Figure 1. Workflow of modality fusion and data augmentation for breast cancer detection.

2.1. Data Source

This study utilized breast images from three prominent public databases: the Radi-
ological Society of North America (RSNA), the Polish Academy of Sciences (PAS), and
Kaggle (Table 1). Table 1 provides a summary of the data sources and imaging modalities
used in this study and the dataset distribution, both before and after data augmentation.
The RSNA dataset contains mammography images, with 1200 benign and 1158 malignant
cases, and the images were resized to 256 x 256 pixels. The Kaggle dataset includes B-
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mode ultrasound images, with 437 benign and 210 malignant cases, expanded using data
augmentation to 1311 benign and 840 malignant cases. The image sizes in this dataset vary
between 324 x 510 and 719 x 811 pixels. Similarly, the Polish Academy of Sciences dataset
comprises B-mode ultrasound images, with 96 benign and 104 malignant cases originally,
augmented to 288 benign and 416 malignant cases, with an image size of 256 x 256 pixels.
The overall dataset after augmentation consists of 2799 benign and 2414 malignant images.
The table illustrates the diversity of the data sources and modalities used in this study
and highlights the role of augmentation in addressing dataset imbalances. The diversity
of these datasets allowed for the development of Al models capable of performing well
across different imaging modalities and patient populations. The images are categorized
by modality and diagnosis: mammography (RSNA) for benign (A-C) and malignant (D-F)
cases, sonography-1 (Kaggle) for benign (G-I) and malignant (J-L) cases, and sonography-2
(PAS) for benign (M-O) and malignant (P-R) cases. These images illustrate the diversity of
the data sources and imaging modalities utilized for the classification tasks in this research
(Figure 2).

Table 1. Summary of data sources, imaging modalities, and dataset distribution before and after

augmentation.
Original Augmentation .
Data Source Modality Image Size
Benign Malignant Benign Malignant
RSNA Mammography 1200 1158 1200 1158 256 x 256
Kaggle B-mode ultrasound 437 210 1311 840 324 x 510~719 x 811
Polish Academy 1 e ultrasound 9 104 288 416 256 x 256
of Sciences
Total 1733 1472 2799 2414

Note: Data sources include the RSNA Breast Cancer Detection Dataset (https://www.kaggle.com/datasets/
gauravduttakiit/mammography-breast-cancer-detection, accessed on 28 June 2024), the Polish Academy of Sciences
Dataset (http://bluebox.ippt.gov.pl/~hpiotrzk, accessed on 2 July 2024), and the Kaggle Breast Ultrasound Images
Dataset (https://www.kaggle.com/datasets/aryashah2k /breast-ultrasound-images-dataset, accessed on 4 July 2024).

{ Mammography J Sonography-1 Sonography-2
(Kaggle)

(RSNA) (PAS)

Figure 2. Representative examples of breast imaging modalities used in the study. The mammography
(RSNA) for benign (A-C) and malignant (D-F) cases, sonography-1 (Kaggle) for benign (G-I) and
malignant (J-L) cases, and sonography-2 (PAS) for benign (M—O) and malignant (P-R) cases.

2.2. Data Preprocessing and Augmentation

Before model development, the images underwent several preprocessing steps to
ensure consistency and quality. First, the images were resized to a uniform dimension,
with both mammography and ultrasound images adjusted to 300 x 300 pixels. The choice
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to resize the images to 300 x 300 pixels was made to balance computational efficiency
with the preservation of important image features. This size ensures that the model can
process images efficiently, while retaining sufficient resolution for the CNN to capture key
diagnostic features in both mammography and ultrasound images. This standardization
was necessary to facilitate the input of images into the CNN models. Additionally, data
augmentation techniques were applied to the ultrasound images to address the imbalance
between the number of malignant and benign cases. The data augmentation included
random rotations (up to £30 degrees), horizontal and vertical flipping, zooming (range:
0.8-1.2x), and Gaussian noise addition. These parameters were selected to increase the
dataset’s diversity, improve model generalizability, and mitigate overfitting. The use of
augmentation was particularly critical for the ultrasound dataset, where the number of
images was significantly lower compared to the mammography dataset.

2.3. Model Development

The study developed three distinct models, each designed to explore different strate-
gies for improving breast cancer detection through Al-driven image analysis. The analysis
was conducted using a high-performance workstation, equipped with an Intel Core i9-
12900K processor, 64 GB RAM, an NVIDIA RTX 3090 GPU (24 GB DDR5 RAM), and
2 TB SSD storage, ensuring efficient handling of computationally intensive tasks and the
data augmentation. The software environment included MATLAB R2024a, with the Deep
Learning Toolbox, running on Windows 11.

The selection of the pre-trained CNN models was based on their proven performance
in medical imaging tasks and their suitability in terms of the dataset characteristics in this
study. The models were chosen due to the following reasons:

1.  Image Types and Dataset Characteristics:

e  The dataset includes both mammography and B-mode ultrasound images, which
vary significantly in terms of texture, contrast, and spatial resolution. The selected
models have been shown to perform well with similar medical imaging datasets,
involving high variability in regard to the image features;

2. Prior Performance in Studies:

o  EfficientNetB0 was chosen for its ability to achieve an optimized balance between
accuracy and computational efficiency, achieved through compound scaling. Its
lightweight architecture is particularly well-suited for medical imaging tasks,
where computational resources may be limited;

e  MobileNetV2 was selected for its streamlined architecture, which makes it com-
putationally efficient and capable of handling tasks involving smaller datasets.
Its performance in prior studies has demonstrated its robustness in extracting fea-
tures from ultrasound and mammography images, which have varying textures
and contrasts;

e InceptionV3 was included due to its multi-scale feature extraction capability,
achieved through inception modules. This model is particularly effective when
used on datasets containing heterogeneous image characteristics, such as the
fusion of mammography and ultrasound data in this study;

e  ResNet50 was chosen for its deep residual network architecture, which allows for
the effective training of deeper models by addressing vanishing gradient issues.
It has been widely adopted for medical imaging tasks, demonstrating superior
performance in extracting hierarchical features;

o  ResNetl01, as a deeper version of ResNet, was included for its enhanced ability
to capture fine-grained details in complex datasets. Its depth makes it particularly
suitable for analyzing cross-modality imaging data;

3. Applicability in regard to the Study Objectives:
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e  The selected models align well with the need to handle diverse image features
from two modalities and to leverage transfer learning to enhance the models’
performance when using a relatively small dataset.

The selection of the three machine learning algorithms, Support Vector Machine
(SVM), Logistic Regression (LR), and Naive Bayes (NB), was based on their complementary
characteristics and suitability for different aspects of the classification tasks involving
Model 1.

SVM was chosen for its effectiveness in high-dimensional spaces and its ability to
handle non-linear relationships using kernel functions. For this study, a radial basis
function (RBF) kernel was employed, as it is well-suited to handling non-linear separability
in complex datasets. The primary hyperparameters used were:

e  C(Regularization Parameter): Set to 1, balancing the trade-off between maximizing
the margin and minimizing classification errors;

e Gamma: Set to 1/(number of features), controlling the influence of individual data
points on the decision boundary.

LR was selected for its simplicity, interpretability, and suitability for binary classifica-
tion tasks. The algorithm fits a linear decision boundary and provides probabilistic outputs,
which are useful for threshold-based decision-making. The following hyperparameters
were used:

e  Regularization Type: L2 regularization to prevent overfitting;
e  Regularization Strength (C): Set to 1, ensuring a balance between underfitting and
overfitting.

NB was included due to its computational efficiency and ability to perform well using
small datasets, even under the assumption of feature independence. A Gaussian Naive
Bayes variant was used in this study. The following parameter was used:

e  Variance Smoothing Parameter: Set to 1e-9 to stabilize calculations for small datasets
and avoid zero probabilities in regard to feature distributions.

2.3.1. Model 1: Fusion of Modalities Using Pre-Trained CNNs

The first model involved the use of CNNs to separately extract features from ultra-
sound and mammography images. The CNNs employed were pre-trained on the ImageNet
dataset, allowing them to leverage previously learned features. The extracted features
from each modality were then integrated into a machine learning classification model. The
machine learning algorithms used for this classification included Logistic Regression (LR),
Naive Bayes (NB), and Support Vector Machines (SVMs). The combination of CNN feature
extraction and traditional machine learning classifiers aimed to enhance the interpretability
and performance of the model (Figure 3).

Input Fusion Images | Model 1: Fusion of Modalities Using Pre-Trained CNN5s |

—

bp

EfficientNetB0 058 019 .. .. . . .. 03%

0465 014 .. .. . . .08

MobileNetV2

LOgIS|

Nﬁfv 7

Classification

InceptionV3

ResNet101

032125 e e [ P L071

Figure 3. The workflow of Model 1.
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2.3.2. Model 2: Fusion of Modalities Using Transfer Learning

The second model took a more integrated approach, by simultaneously incorporat-
ing both ultrasound and mammography image sets into the CNN classification models.
Model 2 employed a transfer learning approach to fuse the modalities and enhance the
classification performance. Pre-trained CNN architectures, including EfficientNetB0, Mo-
bileNetV2, InceptionV3, ResNet50, and ResNet101, were retrained in regard to the weights
of the fused mammography and ultrasound images. All the input images were resized to
300 x 300 pixels to ensure compatibility with the pre-trained models, while preserving
important diagnostic features. The models were trained using Stochastic Gradient De-
scent with Momentum (SGDM), Adaptive Moment Estimation (ADAM), and Root Mean
Square Propagation (RMSprop), each configured with a learning rate of 0.001. Training was
conducted over 30 epochs, with a batch size of 30 images per iteration, to ensure efficient
convergence, while balancing the computational demands. To prevent overfitting, early
stopping was applied, halting training if the validation loss did not improve for 5 consecu-
tive epochs. This approach allowed the models to leverage the pre-trained weights from
large-scale image datasets, adapting them to the fused medical imaging data for enhanced
feature extraction and classification. The transfer learning strategy effectively utilized the
strengths of the pre-trained architecture, providing a robust framework for analyzing the
fused modalities (Figure 4).

Model 2: Fusion of Modalities Using Transfer Learning
g EfficientNetBO 038054 v | | | oo | . 058
» = [ - 045 035 .. .. . .. .. 047
I' > . N\ (hijeNetV2
l l ”m e e e e e e . e
— InCepﬁOHV3 e e e . e oo oo P =N ClaSSlﬁcatlon

ResNet101

0124058 o e e 11 0.8

Transferred Learning

Figure 4. The workflow of Model 2.

2.3.3. Model 3: User-Designed CNN Layers for Classification

This model features a custom 17-layer CNN architecture specifically designed for
classifying fused images from both ultrasound and mammography datasets (Figure 5). Key
hyperparameters, such as padding, stride, the number of filters, the filter size, pooling
type and size, and dilation, were carefully selected to optimize the model’s performance.
The rationale for using a 17-layer CNN model has been included in the manuscript. The
design choice was based on achieving an optimal balance between model complexity and
performance. The 17-layer architecture was specifically tailored to capture the intricate
features of fused mammography and ultrasound data, while avoiding overfitting, which
could occur with deeper networks. Figure 5 illustrates the detailed design of this architec-
ture, providing additional context on this decision. The hyperparameters for the training
models are similar to those used in Model 2, including a learning rate of 0.001 and an early
stopping schema. Also, the training was conducted over 25 and 30 epochs, with a batch
size of 30 and 64 images per iteration.
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Model 3: User-Designed CNN Model

Customized 17-Layers Design

imagelnputLayer=>convolution2dLayer->reluLayer-»maxPooling2dLayer=>convolution2dLayer

=reluLayer->maxPooling2dLayer->convolution2dLayer->batchNormalizationLayer->reluLayer

->maxPooling2dLayer->convolution2dLayer->batchNormalizationLayer->reluLayer

—| (Classification

= fullyConnectedLayer-softmaxLayer->classificationLayer

Setting Hyperparameters:
1. Padding, 2. Stride, 3. Number of filters, 4. Filter size
5. Pooling type and size, 6. Dilation

Figure 5. The workflow of Model 3.

2.3.4. Model Training and Testing

An 80/20 split was selected as a widely recognized practice in machine learning,
providing an effective balance between training the model and reserving sufficient data
for testing. This approach ensures the model has adequate data for learning from, while
enabling a robust evaluation using an independent test set to assess the model’s general-
izability. The dataset was divided into training and testing sets, with 80% allocated for
training and the remaining 20% reserved for testing, across all three models.

2.4. Evaluation Metrics

The performance of each model was evaluated using a set of standard classification
metrics. These included accuracy, specificity, sensitivity, positive predictive value (PPV),
negative predictive value (NPV), and the Kappa statistic. Accuracy measured the overall
correctness of the model’s predictions, while specificity and sensitivity provided insights
into the model’s ability to correctly identify benign and malignant cases, respectively. The
PPV and NPV offered additional context by evaluating the proportion of true positive and
true negative results among all the positive and negative predictions. The Kappa statistic
was used to measure the agreement between the predicted and actual classifications,
accounting for the possibility of agreement occurring by chance. The ROC curve was
applied to investigate the performance of the models.

3. Results
3.1. Model 1: Fusion Modalities Using Pre-Trained CNNs with Classifiers

In regard to the first model, pre-trained CNNs were used to extract the features
from both the B-mode ultrasound and mammography images. The extracted features
were then fed into traditional machine learning classifiers, including LR, NB, and SVM.
The combined use of CNN feature extraction and machine learning classifiers yielded
moderate classification performance (Table 2). The highest accuracy was achieved by
the EfficientNetBO CNN combined with the SVM classifier, resulting in an accuracy of
0.769 and a Kappa score of 0.534. The sensitivity and specificity were 0.781 and 0.754,
respectively. Other pre-trained models, such as InceptionV3, MobileNetV2, ResNet50, and
ResNet101, showed varying levels of performance, but none surpassed the results obtained
with EfficientNetB0 and SVM.

This model demonstrated that integrating pre-trained CNNs with traditional classifiers
can provide a decent starting point for breast cancer classification, although the performance
was limited by the feature extraction capabilities of the CNNs and the generalization
capacity of the machine learning classifiers.
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Table 2. Performance metrics of pre-trained CNN models combined with machine learning classifiers.

Model 1 Sensitivity Specificity PPV NPV Accuracy Kappa
EfficientNetB0 + LR 0.783 0.676 0.665 0.768 0.713 0.428
EfficientNetBO + NB 0.648 0.561 0.564 0.645 0.601 0.207

EfficientNetB0 + SVM 0.781 0.754 0.790 0.743 0.769 0.534
InceptionV3 + LR 0.700 0.632 0.662 0.667 0.664 0.328
InceptionV3 + NB 0.691 0.585 0.569 0.705 0.632 0.270

InceptionV3 + SVM 0.742 0.707 0.751 0.697 0.726 0.449
MobileNetV2 + LR 0.639 0.742 0.870 0.429 0.666 0.308
MobileNetV2 + NB 0.717 0.587 0.543 0.752 0.640 0.289
MobileNetV2 + SVM 0.762 0.722 0.760 0.725 0.743 0.484
ResNet101 + LR 0.730 0.679 0.655 0.627 0.642 0.284
ResNet101 + NB 0.649 0.550 0.525 0.671 0.593 0.194
ResNet101 + SVM 0.771 0.726 0.759 0.738 0.749 0.497
ResNet50 + LR 0.790 0.657 0.602 0.746 0.669 0.344
ResNet50 + NB 0.679 0.570 0.544 0.701 0.617 0.241
ResNet50 + SVM 0.763 0.721 0.758 0.727 0.743 0.484

Figure 6 illustrates the Receiver Operating Characteristic (ROC) curves for Model 1,
which integrated pre-trained CNN architectures with the SVM classifier, that achieved
the highest accuracy compared to Logistic Regression (LR) and Naive Bayes (NB). The
plots display the performance of each pre-trained CNN (EfficientNetB0, InceptionV3,
MobileNetV2, ResNet101, and ResNet50) in terms of their true positive rate (sensitivity)
and false positive rate (specificity) across various thresholds. The Area Under the Curve
(AUC) values, denoted on each plot, provide a quantitative measure of the classification
performance. EfficientNetBO and ResNet101 achieved the highest AUC values of 0.9275
and 0.9311, respectively, indicating superior discriminative capability in classifying benign
(be) and malignant (ma) cases. These ROC curves highlight the robustness of Model 1
when paired with SVM, effectively leveraging the strengths of different CNN architectures
to handle cross-modality fused input data.

(A) EfficientNetB0 + SVM (B) InceptionV3 + SVM (C) MobileNetV2 +SVM

True Positive Rate

02 ’ be (AUC = 0.9275) 02 ’
, ®  be Model Ope in ,

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate False Positive Rate

(D) ResNet101 + SVM (E) ResNet50 + SVM

True Positive Rate
N

N
True Positive Rate

0 02 04 06 08 1 0 02 04 06 08 1

False Positive Rate False Positive Rate

Figure 6. ROC curves for Model 1, with maximum accuracy across classifiers (SVM, LR, and NB) for
each pre-trained CNN.
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3.2. Model 2: Fusion Modalities Using Transfer Learning with Classifiers

The second model explored the use of transfer learning by applying pre-trained CNNs
to fusion modalities (Table 3). The features extracted from the CNNs were then fused
and fed into a single classification model. Transfer learning significantly improved the
classification performance compared to Model 1. The best results were observed with the
EfficientNetBO model using the SGDM optimizer. This combination achieved an accuracy
of 0.820 and a Kappa score of 0.644. The application of transfer learning allowed the models
to adapt better to the specific characteristics of the breast imaging datasets, leveraging the
knowledge from pre-training using a large, diverse dataset.

Table 3. Performance metrics of transfer learning by applying pre-trained CNNs to fusion modalities.

Model 2 Sensitivity Specificity PPV NPV Accuracy Kappa
EfficientNetB0 + ADAM 0.803 0.596 0.496 0.826 0.649 0.314
EfficientNetBO0 + RMSprop 0.777 0.644 0.616 0.781 0.692 0.390
EfficientNetB0 + SGDM 0.906 0.754 0.742 0.911 0.820 0.644
InceptionV3 + ADAM 0.681 0.566 0.530 0.711 0.614 0.236
InceptionV3 + RMSprop 0.537 0.463 0.667 0.333 0.512 0.010
InceptionV3 + SGDM 0.633 0.649 0.740 0.462 0.611 0.205
MobileNetV2 + ADAM 0.832 0.574 0414 0.899 0.639 0.302
MobileNetV2 + RMSprop 0.869 0.582 0.423 0.916 0.651 0.327
MobileNetV2 + SGDM 0.764 0.632 0.606 0.742 0.669 0.343
ResNet101 + ADAM 0.603 0.535 0.653 0.471 0.568 0.122
ResNet101 + RMSprop 0.517 0.305 0.808 0.142 0.499 0.020
ResNet101 + SGDM 0.678 0.573 0.546 0.701 0.618 0.243
ResNet50 + ADAM 0.757 0.560 0.433 0.831 0.618 0.256
ResNet50 + RMSprop 0.789 0.560 0.409 0.872 0.623 0.271
ResNet50 + SGDM 0.709 0.559 0.463 0.784 0.612 0.240

The integration of transfer learning with multiple imaging modalities resulted in a
more robust model, better equipped to handle the complex task of breast cancer classifi-
cation. This approach outperformed the initial method, underscoring the effectiveness of
transfer learning in medical image classification.

Figure 7 presents the Receiver Operating Characteristic (ROC) curves for Model 2,
which employed transfer learning-based CNN architectures combined with three opti-
mization algorithms, namely ADAM, RMSprop, and SGDM for classified benign (be) and
malignant (ma) cases. The plots display the ROC curves for each pre-trained CNN (Effi-
cientNetB0, InceptionV3, MobileNetV2, ResNet101, and ResNet50) using the optimizer that
achieved the highest accuracy. The Area Under the Curve (AUC) values, annotated on each
plot, quantify the discriminative performance of the models. EfficientNetB0 with SGDM
achieved the highest AUC (0.9349), showcasing its superior ability to distinguish between
benign and malignant cases. In contrast, InceptionV3 with ADAM resulted in the lowest
AUC (0.6842), reflecting lower classification effectiveness. These results underscore the
importance of choosing the most appropriate optimizer when fine-tuning transfer learning
models and highlight SGDM'’s robustness in achieving high sensitivity and specificity in
breast cancer detection, using fused mammography and ultrasound images.

3.3. Model 3: User-Designed CNN Layers for Classification

The third model involved the development of a custom-designed 17-layer CNN, specif-
ically tailored for the classification of breast images (Table 4). This user-designed CNN
outperformed both Model 1 and Model 2, achieving an accuracy of 0.964 and a Kappa score of
0.927, along with impressive sensitivity (0.976) and specificity (0.964). These results remained
consistent across different image sizes and training epochs. The model demonstrated excellent
classification performance, with high sensitivity and a high positive predictive value (PPV)
for both malignant and benign categories. Specifically, 25 and 30 epochs were selected based
on empirical observations to ensure model convergence without overtraining, while batch
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sizes of 25 and 30 images was chosen to balance computational efficiency and memory usage,
given the hardware limitations and dataset size.
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Figure 7. ROC curves for Model 2, with maximum accuracy across optimizers (ADAM, RMSprop,
and SGDM) for each transfer learning CNN.

Table 4. Performance metrics of the user-designed CNN model across different epochs and batch sizes.

Epoch Image Sensitivity Specificity PPV NPV Accuracy Kappa
25 32 0.976 0.946 0.954 0.976 0.946 0.890
64 0.976 0.964 0.970 0.973 0.964 0.927
30 32 0.988 0.979 0.984 0.988 0.957 0.915
64 0.972 0.971 0.976 0.968 0.962 0.925

Figure 8 illustrates the Receiver Operating Characteristic (ROC) curves for Model 3
(user-designed CNN) for different training configurations, showcasing the highest accuracy
achieved based on varying epochs and batch sizes. Subfigure (A) represents the model’s
performance with 30 epochs and a batch size of 32 images, achieving an AUC of 0.9585 for
both benign (be) and malignant (ma) cases. Subfigure (B) shows the model’s performance
with 25 epochs and a batch size of 64 images, achieving a slightly higher AUC of 0.9688
for both classes of images. These results highlight the impact of training in regard to the
hyperparameters on the model’s ability to discriminate between benign and malignant
cases. The configuration in (B) demonstrates superior discriminative power, suggesting
that a slightly lower number of epochs combined with a larger batch size optimizes the
balance between computational efficiency and model performance.
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Figure 8. ROC curves for Model 3 (custom CNN), with optimal accuracy based on epochs and batch sizes.

The superior performance of this model underscores the effectiveness of the custom-
designed CNN architecture for this application. The ability to fine-tune each layer and
optimize the network to account for the nuances in breast imaging data proved to be highly
advantageous, resulting in the best performance among the three models.

The findings suggest that for clinical applications where accuracy and reliability are
paramount, a custom-designed CNN, such as Model 3, would be the most appropriate
choice. The other models, particularly Model 2, could serve as effective alternatives in
settings where computational resources are more limited, but the need for a high level of
accuracy remains critical.

The results of this study highlight the potential of Al-driven methods in breast cancer
screening. The pre-trained CNN combined with machine learning demonstrated solid
classification performance, with notable improvements observed when using transfer
learning techniques. The user-designed CNN, a 17-layer model specifically tailored for this
study, achieved the highest accuracy and Kappa score among the models tested, indicating
its effectiveness in classifying breast images. These findings suggest that the integration of
cross-modality data and Al fusion techniques can significantly enhance the detection and
diagnosis of breast cancer.

The application of Al in breast cancer screening holds great promise for improving
the accuracy and efficiency of diagnosis. By leveraging the strengths of multiple imaging
modalities and advanced Al techniques, this study contributes to the ongoing efforts
to develop more effective tools for breast cancer detection. The results underscore the
importance of continued research and development in this area, particularly in the creation
of Al models that can generalize effectively across different imaging modalities and patient
populations. As the field of Al in medical imaging continues to evolve, it is expected that
these technologies will play an increasingly vital role in the fight against breast cancer.

4. Discussion

The findings from this study highlight the significant potential of advanced Al tech-
niques, particularly CNNs, in enhancing the accuracy and efficiency of breast cancer
detection through medical imaging. By comparing three distinct models, each employing
different strategies for feature extraction, classification, and model design, this research pro-
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vides valuable insights into the strengths and limitations of various Al-driven approaches
for breast cancer classification.

4.1. Model Performance and Implications

The user-designed 17-layer CNN (Model 3) demonstrated superior performance com-
pared to the other two models, achieving an accuracy of 0.964 and a Kappa score of 0.927.
This high level of accuracy indicates that a custom-designed CNN architecture, specifically
tailored to the task, can effectively capture the complex patterns and features present in
breast imaging data. The model’s ability to consistently distinguish between malignant
and benign tumors suggests that it could be a powerful tool in clinical settings, potentially
reducing the incidence of both false positives and false negatives. In contrast, the pre-
trained CNNs combined with traditional machine learning classifiers (Model 1) showed
the lowest performance, with an accuracy of 0.780 and a Kappa score of 0.559. While this
approach provided a solid baseline, the results highlight the limitations of relying solely
on pre-trained networks without further adaptation to the specific dataset. The relatively
modest performance underscores the importance of developing models that are finely
tuned to the characteristics of the target data, especially in complex tasks like medical
image classification.

The fusion of modalities through transfer learning (Model 2) provided a significant
improvement over Model 1, achieving an accuracy of 0.846 and a Kappa score of 0.694.
This model demonstrated the benefits of leveraging transfer learning, which allowed the
CNN s to apply learned features from a large, diverse dataset to the specific task of breast
cancer classification. The improvement in performance suggests that transfer learning is a
valuable strategy, particularly when working with limited labeled data, as it enables the
model to benefit from previously acquired knowledge.

Table 5 provides comparative analysis of the computational metrics for various models,
including the executed inference time, parameter size, and the number of layers. Among
the pre-trained models combined with SVM, EfficientNetBO had the longest execution
time (79.0 s) due to its larger architecture, while MobileNetV2 demonstrated the shortest
time (27.2 s), reflecting its lightweight design. The custom-designed CNN model achieved
significantly reduced execution times, with 4.9 s for 30 epochs and a batch size of 32 images
and 6.7 s for 25 epochs and a batch size of 64 images. Additionally, the parameter sizes
and layer counts highlight the efficiency of the user-designed CNN compared to pre-
trained architectures, with parameter sizes of 678.9 MB and 679.6 MB, and a consistent
layer count of 17. These results suggest that the custom-designed CNN not only improves
the classification performance, but also minimizes computational demands, making it a
practical solution for real-time clinical applications. The findings underscore the importance
of optimizing both the model architecture and the hyperparameters to achieve a balance
between performance and computational efficiency.

Table 5. Comparison of computational metrics across models, including executed time, parameter
size, and number of layers in the model.

Model Executed Time (s) Parameter Size (MB) Number of Layers
EfficientNetB0 + SVM 79.0 77.4 290
InceptionV3 + SVM 37.9 92.1 315
MobileNetV2 + SVM 27.2 142 154
ResNet101 + SVM 412 173.0 347
ResNet50 + SVM 274 99.7 177
EfficientNetB0 + SGDM 25.9 113.9 290
InceptionV3 + ADAM 11.3 84.2 315
MobileNetV2 + SGDM 15.0 9.2 154
ResNet101 + SGDM 174 163.9 347
ResNet50 + RMSprop 12.0 90.6 177
User-Designed CNN: Epochs (30) and Images (32) 49 678.9 17

User-Designed CNN: Epochs (25) and Images (64) 6.7 679.6 17
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4.2. Comparison with Similar Studies in the Literature

Table 6 provides comparative analysis of the methods in regard to similar studies in
the literature, highlighting differences in the data sources, sample sizes, methodologies,
and accuracy rates. Previous studies, such as those by Byra M et al. (2019) and AlZoubi A
et al. (2024), employed transfer learning and DCNN approaches, using US-based datasets,
achieving accuracy rates of 0.887 and 0.894, respectively. Jabeen K et al. (2022) reported a
high accuracy of 0.993 using a probability-based serial approach, while Pesapane F et al.
(2023) and Jaamour A et al. (2023) utilized CNNs and mammography data, achieving
accuracy rates of 0.950 and 0.674, respectively. Michael E et al. (2024) demonstrated
near-perfect accuracy (0.999) using CNNs on mammography data [25,34-38].

Table 6. Comparison of the proposed methods with similar studies in literature.

Authors Years Data Sample Size Methods Accuracy
Jabeen K et al. [25] 2022 Breast Ultrasound 780 Probability-based serial approach 0.993
Byra M et al. [34] 2019 Breast Ultrasound 882 Transfer learning 0.887
AlZoubi A et al. [35] 2024 Breast Ultrasound 1289 DCNN 0.894
Pesapane F et al. [36] 2023 Mammography 1000 CNN 0.950
Jaamour A et al. [37] 2023 Mammography 10239 CNN 0.674
Michael E et al. [38] 2024 Mammography 322 CNN 0.999
Breast Ultrasound 847 0.998
The proposed 2024 Mammography 2358 User-designed CNN 0.923
methods Fusion Modalities 3205 0.943

In comparison, the proposed methods, utilizing a custom-designed CNN, achieved
an accuracy of 0.923 for mammography data and 0.943 for fused modalities. The rela-
tively larger sample size (3205 for fusion modalities) and the integration of cross-modality
imaging contributed to the improved performance, indicating the potential of fusion-
based approaches for enhanced breast cancer detection. These results demonstrate the
effectiveness of the proposed methods and their competitive performance compared to
state-of-the-art techniques in literature.

4.3. The Role of Cross-Modality Imaging

A key contribution of this study is the successful integration of cross-modality imaging,
which combines mammography and ultrasound images, to enhance classification accuracy.
By fusing features from these different imaging modalities, the models were able to leverage
the complementary strengths of each, resulting in more robust and accurate classifications.
For example, mammography excels at visualizing dense structures, while ultrasound
provides detailed images of soft tissues. This integration allowed the Al models to perform
more comprehensive analysis of breast tissue, which is crucial for accurate tumor detection.
Ultrasound images, as shown in Figure 9A-C, depict various breast tissue characteristics,
while mammography images, as shown in Figure 9D-F, illustrate different breast tissue
densities. These images were instrumental in training and testing the Al models for breast
cancer detection and classification.

The findings suggest that cross-modality imaging can significantly enhance Al-driven
diagnostic tools, making them more reliable and versatile in different clinical scenarios.
This approach is particularly beneficial in cases where a single imaging modality may
not provide sufficient information for an accurate diagnosis. The ability to combine and
analyze data from multiple sources could lead to earlier detection and better treatment
outcomes for patients with breast cancer.
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Figure 9. Comparison of breast tissue textures in sonography and mammography images.

4.4. Clinical Implications

The findings of this study have significant clinical implications for breast cancer
screening and diagnosis. The integration of mammography and ultrasound imaging using
a custom-designed 17-layer CNN demonstrated superior diagnostic accuracy, sensitivity,
and specificity, which could facilitate earlier and more reliable breast cancer detection.
By leveraging the complementary strengths of these imaging modalities, the proposed
approach addresses limitations such as decreased sensitivity in dense breast tissue and
false positives in mammography. This has the potential to reduce diagnostic variability
and improve the consistency of interpretations across radiologists, ultimately leading
to more effective clinical workflows. Furthermore, the computational efficiency of the
custom model makes it feasible for real-time deployment in clinical settings, offering
healthcare professionals a robust and reliable diagnostic aid. As the method is further
developed and validated with larger and more diverse datasets, it could serve as a critical
tool for improving patient outcomes through timely and accurate diagnosis, particularly in
resource-limited environments.

4.5. Limitations and Future Directions

Despite the promising results, this study has several limitations that should be addressed
in future research. First, the study relied on public datasets, which, although diverse, may
not fully capture the variability encountered in clinical practice (Figures 10 and 11). The
datasets used in this study were relatively balanced after augmentation; however, real-world
clinical data often exhibit significant imbalances, particularly between malignant and benign
cases. To ensure that models generalize effectively across different populations, future studies
should incorporate larger and more diverse datasets that encompass a broader range of patient
demographics and imaging conditions.



Tomography 2024, 10

2053

Figure 11. Examples of varying contrast levels in mammography images.

Second, the computational complexity of the user-designed CNN (Model 3) may limit
its practicality in resource-constrained settings. While the model’s superior performance
justifies its use in high-stakes clinical environments, further work is needed to optimize the
model’s efficiency without compromising accuracy. Techniques such as model pruning,
quantization, or the development of lightweight architectures could be explored to reduce
the computational demands of the model. Specifically, the model’s demands included
extended training times, increased memory usage due to its deeper architecture, and the
need for a high level of computational resources during both training and inference stages.

Third, while the study demonstrated the potential of Al in improving breast cancer
detection, the interpretability of AI models remains a critical challenge. In clinical prac-
tice, it is essential that Al-driven decisions can be explained and understood by medical
professionals. Future research should focus on developing explainable Al models that
not only provide accurate predictions, but also offer insights into the decision-making
process. This could involve the use of attention mechanisms, feature importance maps,
or other techniques that help to visualize and interpret the features contributing to the
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model’s decisions. Lastly, the studies mentioned in this article offer valuable insights into
the potential benefits of utilizing datasets where both imaging modalities are available for
the same subjects. The referenced studies will be included in the manuscript, along with
a discussion on how such datasets could facilitate a more comprehensive evaluation of
the custom-designed 17-layer CNN model. Incorporating dual-modality data or 3D breast
ultrasound images could further enhance the model’s performance by increasing the depth
and richness of the fused features [39,40].

4.6. Clinical Impact and Future Applications

The results of this study underscore the potential for Al-driven models to significantly
enhance breast cancer screening and diagnosis. By improving the accuracy and speed
of image analysis, these models could reduce the workload on radiologists, allowing
them to focus on more complex cases. The integration of cross-modality imaging, as
demonstrated in this research, could become the standard approach in regard to the future
use of diagnostic tools, providing a more comprehensive assessment of breast health.

Looking ahead, the methodologies and findings from this study could be extended
to other areas of medical imaging. For example, similar Al-driven approaches could be
applied to the detection of other cancers or diseases where multiple imaging modalities
are used. Furthermore, the development of Al models that can integrate data from non-
imaging sources, such as patient history or genetic information, could lead to even more
personalized and accurate diagnostic tools.

5. Conclusions

This study demonstrates the significant potential of advanced Al techniques, particu-
larly convolutional neural networks (CNNs), in enhancing breast cancer detection through
the integration of cross-modality imaging. The study developed and evaluated three dis-
tinct models, each employing unique approaches to feature extraction, classification, and
design. Among these, the custom-designed 17-layer CNN (Model 3) emerged as the most
effective, achieving an accuracy of 0.964 and a Kappa score of 0.927. This superior perfor-
mance highlights the value of tailoring the Al architecture to the specific characteristics of
the imaging data and the diagnostic tasks.

The integration of mammography and ultrasound images proved to be highly ben-
eficial, enabling more comprehensive analysis that enhanced screening accuracy. The
cross-modality fusion approach leverages the complementary strengths of both imaging
modalities, contributing to more reliable and earlier breast cancer detection. This advance-
ment has the potential to significantly improve patient outcomes by facilitating timely
diagnosis and treatment.

The successful integration of multiple imaging modalities underscores the feasibility
and potential of combining diverse datasets for Al-driven diagnostic tools. However, the
study also highlights the need for larger and more diverse datasets to improve model gen-
eralizability across populations. Future research should focus on optimizing computational
efficiency, incorporating explainable Al techniques, and collaborating with local medical
institutions to include population-specific imaging data, such as Taiwanese datasets.

Finally, the proposed approach offers significant benefits for healthcare personnel by
improving diagnostic accuracy, reducing variability, and supporting radiologists in regard
to their workflow. This study lays a strong foundation for future research and clinical
applications, with the goal of enhancing breast cancer detection and patient care through
innovative Al-driven solutions.
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