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Abstract: This research introduces BAE-ViT, a specialized vision transformer model developed
for bone age estimation (BAE). This model is designed to efficiently merge image and sex data, a
capability not present in traditional convolutional neural networks (CNNs). BAE-ViT employs a
novel data fusion method to facilitate detailed interactions between visual and non-visual data by
tokenizing non-visual information and concatenating all tokens (visual or non-visual) as the input to
the model. The model underwent training on a large-scale dataset from the 2017 RSNA Pediatric
Bone Age Machine Learning Challenge, where it exhibited commendable performance, particularly
excelling in handling image distortions compared to existing models. The effectiveness of BAE-
ViT was further affirmed through statistical analysis, demonstrating a strong correlation with the
actual ground-truth labels. This study contributes to the field by showcasing the potential of vision
transformers as a viable option for integrating multimodal data in medical imaging applications,
specifically emphasizing their capacity to incorporate non-visual elements like sex information
into the framework. This tokenization method not only demonstrates superior performance in
this specific task but also offers a versatile framework for integrating multimodal data in medical
imaging applications.

Keywords: bone age regression; machine learning; vision transformer; gender embedding;
multimodal data

1. Introduction

Bone age assessment is one of the most common radiological studies, and is essential
for experts to determine growth disorders from differences between bone and chrono-
logical age. Historically, skeletal development was assessed manually from metacarpals,
phalanges, and carpals in X-rays using techniques such as Greulich–Pyle [1] and Tanner–
Whitehouse [2]. However, these methods rely heavily on radiologists’ experience, leading
to massive time and labor costs.

Recently, automatic bone age estimation (BAE) using deep learning has demonstrated
superior efficiency and accuracy. The existing literature may be categorized into two types:
methods that focus on specific anatomical Regions of Interest (ROI-based) and those that
analyze entire images (image-based methods). ROI methods first extract image features of
the palm or local bone parts using experts [3] or deep networks [4], which are then used
for BAE by convolutional neural networks (CNNs) [5], residual attention networks [6], or
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regression models [7]. Although ROI methods are accurate, feature extraction requires
much manual labor. The multi-stage pipeline also has low prediction efficiency, limiting
clinical applicability. Image-based methods directly feed images into CNNs [8–11], which
is efficient for both training and testing. The winning solution for the RSNA Pediatric Bone
Age Challenge 2017 [12] used an InceptionV3-based model with a mean absolute error
(MAE) of 4.2 months.

Sex information is important for BAE [13], and is often concatenated to image features
either directly [14] or after being converted to an embedding vector by linear layers [15].
The combined features are then fed into a multilayer perceptron (MLP) for prediction.
Notably, this method does not permit interactions between sex and image information.

Machine learning techniques have also been used to enhance traditional methods
of bone age assessment by automating feature analysis. Subtle skeletal features, such as
cortical decalcification and microfractures in CT scans, have been analyzed using texture
analysis and deep learning methods to refine age and sex detection [16]. Texture-based
local binary patterns and spatial attention mechanisms have been integrated into deep
residual networks, addressing challenges specific to ethnicity in datasets [17]. Multiscale
imaging approaches have been employed to study skeletal aging by combining traditional
radiography with advanced microscopy techniques [18], while MRI-based models have
been developed as non-invasive alternatives for age estimation through textural feature
extraction [19].

Recently, vision transformers (ViTs) [20–22] have shown great potential in computer
vision. Unlike CNNs, characterized by locality, the self-attention module [23] in ViTs allows
each pixel in the input image to interact with all other pixels. ViTs can further handle
multi-source inputs by converting them into sequences of tokens, making them a popular
choice for multimodal data [24–26].

To the best of our knowledge, there is no existing work exploring multimodal ViTs in
BAE. In this paper, we design a multimodal vision transformer, BAE-ViT, that integrates
both image and sex information more efficiently than CNNs, and demonstrate its improved
performance on normal and challenging samples.

2. Materials and Methods
2.1. Dataset

We consider two datasets of left-hand radiographs. The first dataset is publicly
available from the 2017 RSNA Pediatric Bone Age Challenge. There are 12,611 training
images (6833 male, 5778 female), 1425 validation images (773 male, 652 female), and 200 test
images (100 male, 100 female). Based on the study in [27], this dataset is distinguished as
one of the largest and most comprehensive, extensively published and validated, which
enhances the reproducibility and applicability of our research. For training and validation,
images were sourced from the Children’s Hospital Colorado (Aurora, Colo) and Lucile
Packard Children’s Hospital at Stanford, while the test set images were exclusively obtained
from the Lucile Packard Children’s Hospital [12], making this a multi-site dataset. The
second dataset is an external validation dataset consisting of data from our own institution
from 100 different patients (61 male, 39 female). This retrospective study was approved by
our Institutional Review Board. The need for informed consent was waived for this Health
Insurance Portability and Accountability Act-compliant study.

2.2. Models

Two traditional model architectures for BAE are shown in Figure 1a,b. The regression
model only uses CNNs or ViTs to obtain image features and a linear layer for regression.
Sex information is ignored. The ensemble model has two branches to encode image and
sex information, which are concatenated as inputs to three linear layers for prediction.
However, extracting features from different data types using independent branches may
be suboptimal. Therefore, we convert image and sex information into tokens of the same
dimension, which interact in the transformer blocks and are aggregated and fed into the
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linear regressor in Figure 1c. The hyperparameters used were those recommended by the
original model designers, leveraging their extensive expertise and experimentation, while
ensuring consistency and fairness in comparisons by selecting configurations with a similar
number of parameters.

Figure 1. A comparison of architectures between the regression, ensemble, and embedding models.
The red area indicates the intensive feature learning phase (red), which requires significant com-
putational resources, while the green area indicates the multimodal feature fusion phase (green),
where image features are integrated with non-visual features such as sex. (a) Regression model:
This model only takes images as inputs, without using biological sex information. (b) Ensemble
model: In this model, two branches encode the image and sex information into feature vectors
separately. These features are concatenated and fed into linear layers for bone age estimation. The
biological sex information is integrated after the image encoder and processed only by the linear
layer. (c) Embedding model (proposed): Our proposed multimodal vision transformer converts both
the image and sex information into tokens. These tokens interact in the transformer blocks through
attention mechanisms and are finally projected through a linear layer for predictions.

In our methodology, we integrate visual and non-visual data, leveraging the strengths
of ViTs for their comprehensive data processing capabilities, a task for which the Swin Trans-
former and DeiT model’s distillation strategy are particularly suited. The Swin Transformer,
customized for the nuanced processing of image data, and the DeiT’s efficiency-focused
distillation approach, pave the way for TinyViT, a model that embodies the essence of
rapid learning through progressive distillation from large, pretrained models. This model
harmonizes performance with computational efficiency, a testament to its sophisticated
design. Additionally, we employ an architectural innovation by utilizing inverted residual
blocks, which adopt a narrow -> wide -> narrow channel structure, contrasting with tradi-
tional residual blocks. This choice is complemented by the incorporation of lightweight
and efficient MBConv layers in the initial stages of our model, optimizing the learning of
low-level representations through their strong inductive biases, thereby enhancing both
the efficiency and effectiveness of our integrated approach.

From a methodological perspective, tokenization is a process that transforms multi-
modal data into uniform vectors, facilitating cross-validation among features from diverse
modalities. Typically, features from images are extracted through convolutional blocks,
while sex information is derived using linear layer projection. The specific technical details
are elaborated upon in the following sections.

Our proposed multimodal ViT architecture is illustrated in Figure 2. We follow the
design of TinyViT-21M [28], which is more efficient than DeiT-S [21] and Swin-T [20], and
has even better performance than Swin-L on ImageNet-1k [29]. It consists of a patch-
embedding layer, patch merging layers, and transformer blocks with shifted windows.
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Additionally, we generate a novel sex embedding using a linear layer with 2C hidden nodes
(the dimension of the image tokens).

Figure 2. BAE-ViT architecture with biological sex embedding. This diagram illustrates the three-
stage design of the BAE-ViT architecture. In the feature fusion phase (green), the model uses
patch-embedding, convolutions, and MBConv blocks, followed by patch merging to create token
sequences. The biological sex information is tokenized through a linear layer and processed by the
transformer alongside other visual patch tokens. In the feature learning phase (red), stages 1, 2, and 3
involve transformer blocks with shifted window attention, processing features at varying scales. The
architecture is designed for efficient feature extraction and integrates sex information, facilitating
enhanced classification performance.

Considering the default input dimension for a visual transformer, the image is initially
resized or randomly cropped to dimensions of 224× 224 pixels. We obtain the image tokens
through the patch-embedding layer, involving two 3 × 3 convolutional layers with stride 3
to reduce the input resolution from (H, W) to (H/4, W/4) and increase the channel size
from 3 to C. After two inverted residual blocks (also known as MBConv) [30], we use the
patch-merging layer to decrease the resolution of feature maps to (H/8, W/8), in which
there are two pointwise convolutional layers and one depthwise convolutional layer in the
middle with kernel size 3 and stride 2. Finally, the feature maps are rearranged to HW/64
image tokens with dimension 2C. Combined with the sex token, all HW/64 + 1 tokens are
fed into the transformer blocks.

Traditional transformer blocks contain multi-head attention [23], layer normalization [31],
and MLP. However, the global computational complexity is quadratic in the number of tokens
N. To improve efficiency, TinyViT introduces shifted windows from Swin-T [20] to separate
image tokens into groups. Attention is performed within each group:

Attention(Q, K, V) = softmax(QKT/
√

d + B)V, (1)

where Q, K, V ∈ RM2×d are the query, key, and value matrices; d is the hidden dimension;
and M2 is the group size. B is the relative position bias matrix taken from a learnable matrix
B̂ ∈ R(2M+1)×(2M+1) according to the relative position of each token pair in each axis, lying
in [−M + 1, M − 1]. This reduces the computational complexity to O(NM2). Notably, the
group partition is shifted by half the group size in adjacent blocks to avoid performance
degradation due to lack of interaction across groups. Moreover, a depthwise convolution
with kernel size 3 and stride 1 is applied to capture local features to supplement global
attention. In BAE-ViT, the sex token is included in each group for interaction. Therefore,
Q,K,V have dimensions (M2 + 1)× d in the attention module of transformer blocks. We
fix the last row and column in B ∈ R(M2+1)×d to 0, indicating no relative positional bias in
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the sex token. We did not observe performance improvements after introducing relative
positional bias.

2.3. Evaluation

We compare BAE-ViT to regression and ensemble models using three different CNNs
(InceptionV3 [32], ResNet50 [33], and EfficientNet-B5 [34]) and TinyViT as the image
encoder, after removing their original classification head. In the ensemble model, we fix the
size of the sex feature vector as 8 and the hidden dimension of the first two linear layers as
1000. The last linear layer is a single neuron.

For model evaluation, we calculated the MAE between model predictions and the
ground truth. Each test image was resized to make the shorter edge equal to the input
resolution, and we obtained a square crop of the resized image at the center along the longer
edge. We also adopted a multi-crop test method from [35]: for each test image, we obtained
10 random square crops with the given resolution and fed them into the model. The median
of the outputs was used as the final prediction. The number of random crops needs to be
sufficiently large to yield stable predictions. The adoption of a multi-crop testing method-
ology, specifically the utilization of 10 random square crops, represents a standard and
widely recognized approach in the evaluation of deep learning models, particularly in the
domain of image classification. This methodological choice is predicated on the objective of
enhancing model robustness and generalization by simulating a diverse array of real-world
imaging conditions. By incorporating crops from the four corners and center of the image,
along with their horizontal flips, this approach systematically evaluates the model’s perfor-
mance across varied spatial presentations, thereby mimicking the multifaceted nature of
real-world visual perception. Such a strategy not only aims to mitigate potential overfitting
by challenging the model with less predictable image segments but also leverages ensemble
learning principles, wherein the aggregation of predictions across these crops serves to
bolster prediction accuracy and stability. This comprehensive evaluation framework thus
ensures that the model’s high performance is indicative of genuine learning rather than
mere memorization of training data biases. Despite the increased computational demands
associated with processing multiple crops per image, the adoption of this popular and
standardized method is justified by its significant contributions to improving the depth and
reliability of model evaluations, thereby facilitating the development of more adaptable
and dependable image classification models.

To evaluate the influence of demographic attributes on the model evaluation, we
designed a label perturbation experiment during the testing stage. In this experiment,
biological sex labels in the RSNA dataset were intentionally perturbed by assigning in-
correct values. This altered demographic information was then used to assess model
performance on X-ray scans, allowing us to observe the impact of such inconsistencies on
prediction accuracy.

In our study, we employ ScoreCAM [36] for generating class activation maps due to its
distinct advantages over gradient-based methods like Grad-CAM [37]. ScoreCAM’s reliance
on forward-pass activations, rather than gradients, offers clearer and more interpretable
visual explanations of model decisions by directly assessing the impact of different image
regions on the model’s output. This approach mitigates issues associated with gradient-
based visualizations, such as noisy gradients, providing a more accurate reflection of
the model’s focus areas. Although ScoreCAM demands higher computational resources
due to its need for multiple forward passes, its capacity for producing more faithful and
interpretable activation maps justifies its selection in our methodology, enhancing the
transparency and accuracy of our model evaluations.

In our analysis, the Wilcoxon signed-rank test was employed to identify statistically
significant differences between model predictions and ground-truth labels, with a pre-
defined significance level set at 0.05. This choice reflects standard practice in statistical
analysis, balancing the detection of genuine effects against the risk of false discoveries. To
address the concern of increased type I errors due to multiple comparisons, the Bonferroni
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correction method was rigorously applied, thereby adjusting the significance thresholds to a
more stringent criterion. This step is crucial in preserving the integrity of our findings amid
multiple statistical tests. It is pertinent to note, however, that while the Wilcoxon signed-
rank test is robust to the non-normality of data, it operates under the assumption that the
differences between matched pairs are symmetrically distributed around the median. This
assumption is a potential limitation of the method, suggesting cautious interpretation of
results when the distribution of differences is expected to deviate from symmetry. Our
adherence to these statistical protocols underscores our commitment to methodological
rigor and the reliability of our conclusions, within the acknowledged constraints of the
chosen statistical tests.

3. Results

All models were trained on the RSNA training dataset; the RSNA validation dataset
was used to optimize the hyperparameters. The trained models were evaluated on both
the RSNA and external datasets. All experiments were conducted on two NVIDIA A100
GPUs (NVIDIA Corporation, Santa Clara, CA, USA) with 80 GB memory using PyTorch
(software version 1.7.1, created by Meta Platforms, Inc., Menlo Park, CA, USA). For image
preprocessing, we obtained the mean and standard deviation for z-score normalization
based on the RSNA dataset. Data augmentation techniques included RandAugment [38]
and random erasing [39]. For training, we inherited the hyperparameters from Swin-T:
when using CNNs as image encoders, we set the learning rate to 2.5 × 10−4, batch size to
256, and number of epochs to 500. All models were trained from scratch. For the ensemble
model that uses TinyViT, we used the same settings. The dropout rate for all ensemble
models was 0.5. For the regression model with TinyViT as the image encoder, we used
a learning rate of 3.1 × 10−5, batch size of 32, and number of epochs of 300. Weights
pretrained on ImageNet-1k were used for initialization. The training settings for BAE-ViT
were the same as the regression model with TinyViT.

3.1. Comparison of Performance of CNNs and ViTs

Table 1 summarizes the performance of our proposed multimodal BAE-ViT and the
regression and ensemble models with CNNs and ViTs as the image encoder. We observe
that sex information is critical for BAE: the ensemble model outperforms the regression
model by more than 1.0 month in MAE. This conforms to the expectation that models are
prone to fitting the average age of images with similar skeletal maturity, but since females
generally achieve maturity nearly two years earlier than males, models that disregard sex
information have larger errors.

Table 1. Performance comparison between our proposed BAE-ViT and the regression and ensemble
models that use CNNs and ViTs as the image encoder. For regression models, we consider not only a
single model for all images (Regression), but also two models for male images and female images
separately (Regression-S). For Regression-S, we show the average MAE on both the whole test dataset
and the male and female test data in months. The best performance is shown in bold.

Model
Param.

No.
(M)

Input
Res.
(px)

Sex
(Y/N)

RSNA MAE (↓) External MAE (↓)

Center Multi-
Crop Center Multi-

Crop

RSNA Challenge winner >24 5002 Y - 4.2 - -
Ensemble-VGG 16 >138 6002 Y - - 8.8 -

Inception-V3

Regression 25 5002 N 6.1 5.7 8.1 8.0

4.6 4.2 7.2 7.5
Regression-S 25 5002 - M: 4.4 M: 4.0 M: 7.4 M: 7.5

F: 4.7 F: 5.0 F: 6.9 F: 7.4

Ensemble 25 5002 Y 4.8 4.4 7.1 7.0
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Table 1. Cont.

Model
Param.

No.
(M)

Input
Res.
(px)

Sex
(Y/N)

RSNA MAE (↓) External MAE (↓)

Center Multi-
Crop Center Multi-

Crop

ResNet50

Regression 24 5002 N 6.8 6.7 8.6 8.4

5.0 4.5 7.6 7.7
Regression-S 24 5002 - M: 4.6 M: 4.3 M: 7.7 M: 7.7

F: 5.3 F: 4.7 F: 7.4 F: 7.6

Ensemble 24 5002 Y 4.3 4.2 7.1 7.2

EfficientNet-B5

Regression 28 4562 N 6.6 5.7 8.1 8.0

5.4 4.9 7.2 7.1
Regression-S 30 4562 - M: 4.9 M: 4.5 M: 7.5 M: 7.1

F: 5.8 F: 5.3 F: 6.7 F: 6.9

Ensemble 30 4562 Y 5.5 4.9 7.4 7.2

TinyViT

Regression 21 5002 N 6.0 5.6 8.4 7.8

4.6 4.4 7.0 7.1
Regression-S 21 5122 - M: 4.5 M: 4.5 M: 7.2 M: 7.2

F: 4.7 F: 4.3 F: 6.7 F: 6.8

Ensemble 21 5122 Y 4.9 4.7 6.9 7.0

BAE-ViT 21 5122 Y 4.4 4.1 6.7 6.9

We found that using separate sex-specific models led to better performance than using
a single model. The regression model for males always had a lower MAE than that of
females on the RSNA test dataset, but the opposite was true on the external test dataset.
This suggests that distribution shifts exist between the training and test datasets. Compared
to the ensemble model, the average performance of separate models was slightly better
when using Inception-V3, EfficientNet-B5, or TinyViT as the image encoder. A possible
reason is that simply concatenating image and sex features is inefficient, so performance
depends on the architecture of the image encoder. For example, when using ResNet50, the
ensemble model achieved the best MAE on the RSNA dataset.

Our proposed BAE-ViT achieved the best performance on both the RSNA and external
datasets with the multi-crop test method. When using only the center crop of test images,
BAE-ViT was only 0.1 worse in MAE than the ensemble model with ResNet50 on the
RSNA dataset. However, it performs much better on the external dataset, showing better
generalization. This demonstrates that the interaction between image and sex information
by using attention in transformer blocks is more efficient than the ensemble model.

3.2. Visualization of Heatmaps

We generate heatmaps for different age groups using ScoreCAM in Figure 3. Com-
pared to CNNs, that have coarser receptive fields, ViTs can focus on key local regions due
to the global attention of transformer blocks. Note that some models fail to attend to the
correct region for images with a bone age less than 100 months, e.g., the ensemble model
with Inception-V3 as the image encoder also attends to the border of images with a bone
age of 34.2 (first column), 87.5 (sixth column), and 89.9 (second column). This may be due
to a lack of training samples in this age group. Moreover, since sex information was used
in all models, there is no obvious difference between the heatmaps for males and females.
Notably, our proposed BAE-ViT additionally attends to the radius and ulna, which will be
the focus of future research.



Tomography 2024, 10 2065

Figure 3. Heatmaps of our proposed BAE-ViT and ensemble models using CNNs or TinyViT as the
image encoder by ScoreCAM. The left four columns are male with bone ages of 34.2, 89.9, 149.1, and
202.3 months, respectively. The right four columns are female with bone ages of 75.0, 87.5, 118.2, and
162.0 months, respectively. Heatmaps tend to highlight joints within the fingers and hand.

3.3. Performance of Models in Different Age Groups

Our BAE-ViT achieves the highest performance on the RSNA test dataset, with an
average MAE of 4.1 s using the multi-crop test. The male MAE is 4.4 months and the
female MAE is 3.9. Its predictions show a high agreement with the labels Figure 4a, with
a mean bias of −0.66 and a standard deviation of 5.40 months (Figure 4b), slightly better
than the ensemble model with ResNet50 (mean bias of −0.7 and standard deviation of
5.50 months). Based on a Wilcoxon signed-rank test, the statistical results showed no
significant differences between model predictions and labels (p-values of ResNet50 and
BAE-ViT are 0.2 and 0.4, respectively). Overall, BAE-ViT is accurate and reliable.

3.4. Training Techniques for Ensemble Models

We can train the ensemble model either from scratch or using a two-phase method,
where we first pretrain the image encoder, and then train the model with the weights of
the image encoder fixed or variable. This should intuitively lead to better performance.
However, the results in Table 2 show that training from scratch yields a lower MAE than
the two-phase method for different models as the image encoder. We investigate the curves
of both training and test error, as shown in Figure 5. Although pretrained weights can
accelerate the convergence rate, they lead to overfitting. Hence, the model is more sensitive
to training hyperparameters.
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Table 2. MAE scores in months for ensemble models with different image encoders, comparing
end-to-end and two-phase training with fixed and non-fixed weights.

Models End-to-End
Pretrained on ImageNet-1k Pretrained on RSNA data

Fixed Non-Fixed Fixed Non-Fixed

Inception-V3 4.8 9.5 5.2 5.3 4.9
ResNet50 4.5 9.7 5.1 5.8 5.2
TinyViT 4.9 9.4 5.8 5.2 5.8

Figure 4. Performance comparison between our proposed BAE-ViT model and the ResNet50 ensemble
model. (a) Correlation between actual and predicted bone ages, demonstrating high correlation for
both models. (b) Mean bias and standard deviation of bias for the models, with dot-dashed lines
representing mean bias and dashed lines indicating the standard deviation. The mean bias, defined as
the signed average error, indicates whether the model’s predictions are consistently higher or lower
than the true values. Both models exhibit mean bias values close to zero (−0.66 for BAE-ViT and
−0.70 for ResNet50), suggesting no significant overestimation or underestimation. BAE-ViT shows a
slightly lower mean bias and standard deviation (5.40) compared to the ResNet50 ensemble model
(5.50 standard deviation), indicating its superior accuracy and consistency in predictions.

For two-phase methods with a fixed image encoder, it is noteworthy that pretraining
the image encoder on ImageNet-1k results in an MAE exceeding 4.0 months compared
to pretraining on RSNA data. This discrepancy is likely due to the domain gap between
ImageNet-1k and bone images. In contrast, for two-phase methods with a variable im-
age encoder, the final MAE is closer between pretraining on the ImageNet-1k and RSNA
datasets, indicating a reduced impact of the pretraining domain on the model’s perfor-
mance given the variable image encoder weights. Moreover, fixing the pretrained weights
of the image encoder is generally less efficient. Therefore, even after pretraining, the
image encoder needs to adjust the weights for better interaction with the sex branch to
improve accuracy.

3.5. Robustness of Models over Bad Examples

We evaluate the robustness of BAE-ViT and different ensemble models over 44 selected
images from different patients deemed to be of poor quality, e.g., containing multiple hands,
the right hand, or bad positioning. Radiographers often need to retake poor-quality images,
expending more resources. However, our proposed BAE-ViT shows better robustness on
these bad examples than ensemble models, with only a 9.9 month MAE. Therefore, one can
improve efficiency by avoiding image reacquisition even in the presence of low-quality data.
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Figure 5. ResNet50 training and testing loss comparison. This figure presents the loss curves for
a ResNet50 model under different training conditions. Lighter solid lines show the training loss,
and darker dashed lines represent the testing loss. The graph compares end-to-end training with
pretraining on ImageNet-1k and RSNA datasets. The lower testing loss across all methods could
imply a limited diversity in the testing dataset compared to the training dataset.

3.6. Sensitivity to Demographic Label Perturbation

The label perturbation experiment revealed a substantial performance degradation
when incorrect biological sex labels were provided. Specifically, the mean absolute er-
ror (MAE) increased dramatically from 4.1 months to 20.9 months with center cropping
and from 4.2 months to 21.5 months with multi-cropping. These results underscore the
sensitivity of the model to accurate demographic information.

4. Discussion

We have designed a new architecture to combine different types of data more efficiently
in bone age regression. Due to their inherent architectural limitations, CNNs struggle
to process multimodal data directly. Traditional methods include converting the sex
information to an additional channel of the input image, which is highly inefficient, or using
an ensemble model to concatenate image features from CNNs and sex features from another
branch, which does not allow non-visual features to interact with vision features. However,
by leveraging properties of vision transformers, our multimodal BAE-ViT facilitates the
encoding of non-visual attributes within its transformer blocks, thereby enabling intricate
interactions between image-based and non-visual information. This capability paves the
way for the integration of additional data modalities, such as demographic distributions,
into a unified network architecture. Such an approach holds promise for enhancing both
the performance and interpretability of the model.

4.1. Model Comparison

Several recent studies have presented advancements in bone age estimation techniques.
For instance, a study [40] utilized CNNs combined with the Tanner–Whitehouse method to
extract phalangeal and carpal bone features for predicting bone age. This study employed
an Extreme Learning Machine (ELM) algorithm [41], achieving an MAE of 6.1 months on the
RSNA dataset, but did not incorporate sex information. Another study [42] implemented a
CNN model to estimate bone age from metacarpal and carpal bones, reporting MAEs of
5.6 and 6.0 months on a private dataset of 3871 children. A further study [43] leveraged
the YOLOv5 network to extract region-of-interest (ROI) patches, incorporating biological
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sex information by passing it through linear and softmax layers to align with the patch
dimensions. This information was then used to modulate ROI patches through a Swin
Transformer network, achieving an MAE of 4.6 months on the RSNA dataset.

In contrast, our proposed method utilizes entire X-ray scans and introduces a novel
approach by converting non-visual information (e.g., biological sex) into a token. This token
undergoes attention computation with visual tokens, allowing for a generalized application
to other data formats (e.g., demographic, audio, image, text) through tokenization. Our
approach achieved an MAE of 4.1 months on the RSNA dataset. Furthermore, we generate
heatmaps by using ScoreCAM to better understand the behavior of CNNs and ViTs in
Figure 3. We also investigate different training techniques for ensemble models, and observe
that pretraining the image encoder leads to overfitting, and hence worse performance.
Additionally, we evaluate BAE-ViT and ensemble models on challenging examples and
find that our proposed model is more robust to distortions in images in Table 3.

Table 3. Evaluation of BAE-ViT against various ensemble models using different image encoders on
challenging examples with image distortions, measured by MAE. The table compares performance
under center-crop and multi-crop test conditions. The lowest MAE, indicating the best performance,
is in bold, underscoring the robustness of the proposed BAE-ViT model to image distortions.

Test Method Center-Crop Multi-Crop

Inception-V3 10.7 10.5
ResNet50 10.6 10.8

EfficientNet-B5 11.3 11.2
TinyViT 10.3 10.5
BAE-ViT 9.9 10.1

4.2. Limitations

This work is not without limitations. First, we only evaluated models for one task,
using a publicly available dataset. It would be interesting to see if our proposed BAE-ViT
can also outperform the other models on similar datasets that contain both image and
sex information, such as the UTKFace dataset [44], that is popular in age regression tasks.
However, the RSNA dataset is one of the largest bone age regression datasets and has been
widely studied in the literature. Our work is therefore still useful and can serve as a strong
baseline for comparison in the future. Second, we only evaluate the robustness of models
on a few challenging examples. There are more types of distortions in bone images in
practice, and it is important to investigate if our proposed model is still resistant to them.
Third, the ensemble models we studied primarily focus on combining different types of
input data. However, ensemble learning also encompasses integrating multiple models
with varying architectures that process the same inputs. Models with heterogeneous
architectures may possess distinct strengths in handling different aspects of the input data,
potentially leading to improved overall performance. This approach has been shown to be
effective, as demonstrated in the RSNA Challenge [45], and is widely adopted in medical
imaging. Therefore, it is crucial to investigate whether our proposed BAE-ViT can maintain
its superior performance when integrated into an ensemble framework with heterogeneous
models. It is notable that the ensemble method can also be applied to our proposed model.

4.3. Clinical Implementation

Potential challenges when implementing this model in a real clinical setting include
the requirement for high computational power and integration with existing hospital
systems. Although TinyViT is a knowledge distillation model with high performance and
fewer parameters, it still requires a GPU for inference. There currently exist hundreds of
FDA-approved AI software tools in radiology. Some tools utilize local inference, others
utilize cloud providers. The allocation and availability of GPU resources does not appear
to be preventing the utilization of AI in radiology. BAE-ViT does not have excessively
large computational needs. Integration into hospital systems: Additional work would be
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needed to fully integrate any AI solution into radiology practice. This was not a major focus
of our work. There exist several solutions that provide AI orchestration across various
vendor platforms, for example, NVIDIA Clara, but many other competitors already exist in
the field.

In the present study, our primary target has been on the regression analysis of bone
age, utilizing a limited set of two distinct types of input data. Expanding the diversity of
input data sources is anticipated to more comprehensively elucidate the advantages of
ViT architectures over CNNs in the field of medical imaging. In conclusion, leveraging
self-supervised pretraining techniques on large-scale public datasets has been shown to
potentially improve the performance of ViT models [22]. From a clinical perspective,
enhancing the interpretability of these machine learning models by providing detailed
insights in the intermediate computational stages and robustness analysis could bolster
radiologists’ confidence in the automated system.

4.4. Impact of Demographic Label Integrity

The label perturbation experiment underscores the critical role of accurate demo-
graphic data in our model’s performance. The significant performance drop observed with
incorrect labels is likely attributable to the early fusion approach employed in our model.
In this design, the biological sex attribute is first converted into a unified token, which later
contributes to the feature learning phase (Shown in Figure 1c). This integration allows the
model to observe specific correlations between visual features and sex attributes, enabling
it to learn both shared and distinct features. However, incorrect labels disrupt this process,
impairing feature extraction and leading to erroneous predictions.

In real-world healthcare scenarios, such mismatches in demographic labels are rare, as
robust data validation protocols and regulatory standards typically minimize such errors.
Nevertheless, our findings underscore the importance of maintaining data integrity in
automated systems. Addressing these vulnerabilities further could involve incorporating
mechanisms to detect and mitigate the impact of label inconsistencies, enhancing both
robustness and reliability in clinical applications.

5. Conclusions

In this study, we designed a vision transformer model for bone age estimation, named
BAE-ViT, which enables interactions between image and sex information via a tokeniza-
tion method within transformer blocks. BAE-ViT demonstrated superior performance by
achieving a lower mean absolute error (MAE) compared to traditional models and exhib-
ited greater robustness when handling degraded or poor-quality images. This highlights
the model’s potential in improving bone age estimation accuracy and its applicability in
challenging imaging conditions.
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