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Abstract: Objectives: We evaluated the noise reduction effects of deep learning reconstruction (DLR)
and hybrid iterative reconstruction (HIR) in brain computed tomography (CT). Methods: CT images
of a 16 cm dosimetry phantom, a head phantom, and the brains of 11 patients were reconstructed
using filtered backprojection (FBP) and various levels of DLR and HIR. The slice thickness was 5,
2.5,1.25, and 0.625 mm. Phantom imaging was also conducted at various tube currents. The noise
reduction ratio was calculated using FBP as the reference. For patient imaging, overall image quality
was visually compared between DLR and HIR images that exhibited similar noise reduction ratios.
Results: The noise reduction ratio increased with increasing levels of DLR and HIR in phantom and
patient imaging. For DLR, noise reduction was more pronounced with decreasing slice thickness,
while such thickness dependence was less evident for HIR. Although the noise reduction effects of
DLR were similar between the head phantom and patients, they differed for the dosimetry phantom.
Variations between imaging objects were small for HIR. The noise reduction ratio was low at low
tube currents for the dosimetry phantom using DLR; otherwise, the influence of the tube current was
small. In terms of visual image quality, DLR outperformed HIR in 1.25 mm thick images but not in
thicker images. Conclusions: The degree of noise reduction using DLR depends on the slice thickness,
tube current, and imaging object in addition to the level of DLR, which should be considered in the
clinical use of DLR. DLR may be particularly beneficial for thin-slice imaging.

Keywords: computed tomography; brain; deep learning reconstruction; hybrid iterative reconstruction;

image noise

1. Introduction

Computed tomography (CT) reveals the anatomy and pathology of patients noninva-
sively and plays an essential role in modern medicine. However, the potential detriments
of radiation exposure are a significant concern in CT clinical practice. Brain CT is frequently
used in various situations such as stroke and trauma. Although the radiation dose is gen-
erally lower in brain CT than in body CT, epidemiological studies have demonstrated an
increased incidence of brain tumors in children who underwent brain CT [1-4]. Therefore,
optimization in brain CT, reducing radiation dose while preserving image quality and
diagnostic performance, is a crucial issue in clinical radiology.

In CT, patients are exposed to X-rays generated by an X-ray tube. X-ray photons that
pass through the patient are detected by the detector positioned opposite the X-ray tube
and are used to reconstruct tomographic images. In larger patients, the proportion of X-rays
that reach the detector decreases, which may increase image noise and impair diagnostic
performance; thus, increased radiation exposure is required to keep image quality constant.
Automatic exposure control modulates the strength of radiation exposure, primarily by
modulating the tube current according to the degree of X-ray attenuation in the patient,
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and is used as a tool for optimization in CT [5-7]. Automatic exposure control has been
shown to achieve appropriate dose modulation according to the head size in pediatric [8]
and adult [9] brain CT.

Noise reduction reconstruction is another key technology for optimization in CT
and includes model-based iterative reconstruction and hybrid iterative reconstruction
(HIR) [10-13]. These techniques enable to decrease image noise compared to filtered
backprojection (FBP), the conventional reconstruction method, and to provide diagnostic-
quality images even with reduced radiation exposure. Although a long computation
time prevents the widespread use of model-based iterative reconstruction, HIR offers fast
processing and is widely adopted in clinical practice.

Recently, deep learning reconstruction (DLR) methods have been developed for noise
reduction reconstruction based on artificial intelligence technology, and their application
is expanding [14,15]. HIR affects image texture and may create artificial image features,
termed as plastic, blotchy, or oil-painting appearance, which is considered a significant
drawback of HIR [11,16-18]. Many reports have demonstrated the superiority of DLR over
HIR in CT [14,19], including brain CT [20-27].

The standard deviation (SD) of the Hounsfield unit is commonly used as an index
of noise magnitude in CT images reconstructed using FBP, and the signal-to-noise ratio
and contrast-to-noise ratio are calculated using the SD as the indicator of image noise.
Although these metrics do not fully represent noise properties in non-FBP images [11,28],
they are often used for quantitative comparisons between brain CT images reconstructed
using HIR and DLR [20-27,29]. A lower SD is regarded as one of the proofs showing
the superiority of DLR over HIR [20-22,25,27]. Notably, the degree of noise reduction
can be adjusted in HIR and DLR, according to the operator’s choice of reconstruction
setting. In previous clinical studies on brain CT, the influence of the level selection was
not evaluated extensively, and the number of the reconstruction levels studied was one
for both HIR and DLR [20-23,25], two for HIR and one for DLR [26], or one for HIR and
three for DLR [24,27,29]. Although a lower SD was shown for DLR than HIR, using a
higher level of HIR should allow further noise reduction despite possibly compromising
diagnostic acceptability due to the alterations of image texture. When comparing HIR and
DLR, the effects of the level selection should be considered. Additionally, a previous study
demonstrated that decreasing slice thickness increased noise in the same manner for HIR
and FBP, but the noise increase was less for DLR [30], indicating the need to compare HIR
and DLR for each slice thickness. In previous brain CT studies comparing HIR and DLR,
thin-slice images of 0.5 [22,25] or 0.625 mm [23,24,26] thickness were evaluated, suggesting
the potential of thin-slice brain CT imaging. However, the slice thickness examined was
one in most studies, whereas 5 and 0.625 mm images were assessed in one study [26].

Before implementing DLR in our clinical practice, we imaged a 16 cm dosimetry
phantom and the head of an anthropomorphic phantom to simulate brain CT. To determine
optimal reconstruction settings, we reconstructed images using various levels of DLR
and HIR and examined the degree of noise reduction relative to slice thickness and tube
current. Moreover, we reconstructed brain CT images in patients using various levels of
DLR and HIR to evaluate noise reduction and visual image quality. The primary aim of
this study was to investigate the noise reduction properties of DLR and HIR, focusing on
reconstruction parameter selection.

2. Materials and Methods
2.1. Instruments and Imaging Parameters

CT images of phantoms and patients were acquired in the axial mode on a 64-detector-
row CT scanner (Revolution Frontier; GE Healthcare, Milwaukee, WI, USA). The scan
parameter included a tube voltage of 120 kV, a rotation time of 0.5 s (phantom imaging)
or 1.0 s (patient imaging), and a beam width of 20 mm. The tube current settings are
presented in subsequent sections. The slice thickness was 5, 2.5, 1.25, and 0.625 mm. A
16 cm dosimetry phantom and an anthropomorphic whole-body phantom (PBU-60; Kyoto
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Kagaku, Kyoto, Japan) were used in phantom imaging. The 16 cm dosimetry phantom is
designed to simulate brain CT. The head portion of the anthropomorphic was used as a
head phantom.

2.2. Various Levels of Noise Reduction in Phantom Imaging

CT images of the 16 cm dosimetry phantom and head phantom were obtained using
various levels of noise reduction reconstruction methods. The tube current was fixed at
320 mA. Image reconstruction was performed using FBP, DLR (TrueFidelity; GE Healthcare),
and HIR (adaptive statistical iterative reconstruction-V, ASiR-V; GE Healthcare). The levels
of DLR used were low (DLR-L), medium (DLR-M), and high (DLR-H). The blending
percentages of HIR used were from 10% (HIR10) to 100% (HIR100) with 10% increments.
Higher blending percentages lead to greater noise reduction.

In analyzing the dosimetry phantom images, four circular regions of interest (ROlIs,
766.6 mm? each) were placed on a 5 mm thick image reconstructed with FBP and then
applied to other images using Image]J software (version 1.54g; National Institutes of Health,
Bethesda, MD, USA) (Figure 1a). The SD of the Hounsfield unit was obtained for each
ROI, and the mean SD across the four ROIs was defined as the image noise. For the head
phantom, elliptical ROIs (527.4 mm? each) representing the right and left lenticular nuclei
were placed (Figure 1b). The SD was obtained for each ROI, and the right and left values
were averaged to determine the image noise. Noise reduction ratios for various levels of
DLR and HIR were calculated using the image noise for the FBP image of the corresponding
thickness as the reference as follows:

noise reduction ratio = (Nggp — Ngir or Nprr)/Nggp x 100

where Nppp is the image noise for the FBP image, and Nyjr and Npyr are those for the
corresponding HIR and DLR images, respectively.

(a)

Figure 1. ROIs displayed on the 5 mm thick FBP images of the dosimetry phantom (a) and head
phantom (b).
2.3. Various Tube Currents in Phantom Imaging

The 16 cm dosimetry phantom and head phantom were imaged at various tube
currents (10, 20, 40, 80, 160, 320, and 640 mA). Images were reconstructed using FBP,
DLR-M, and HIR50. Noise reduction ratios were determined in the same manner as in the
analysis for various levels of noise reduction reconstruction.

2.4. Image Noise in Patient Imaging

Image noises in CT images created using various levels of noise reduction reconstruc-
tion were assessed in patient imaging. Eleven patients (seven men and four women), aged
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54.1 £ 10.0 years (mean + SD), who underwent plain CT of the brain for clinical indications
and had normal findings, were included in the study. Image reconstruction was performed
using various methods to reconsider our routine reconstruction protocols following the
installation of the CT scanner with DLR capability. The study protocol was approved by
the Kitasato University Medical Ethics Organization (B23-167), and the need for informed
consent was waived.

The patient’s head was imaged according to our routine clinical protocol. The tube
current was modulated using inbuilt automatic exposure control software (Auto mA and
Smart mA) with a noise index of 3.6, maximum mA of 350 mA, and minimum mA of 50 mA.
Organ dose modulation was applied over the orbit to reduce radiation dose to the eye lens.
This function selectively reduces radiation exposure from the anterior direction and does
not change posterior exposure [31,32]. Image reconstruction was performed using FBP,
three levels of DLR, and ten levels of HIR, similar to the phantom experiments. In image
analysis, ROIs were manually drawn in bilateral lenticular nuclei (right 166.5 4 26.6 mm?,
left 158.5 + 29.3 mm?), avoiding calcifications in the globus pallidus, and centrum semio-
vales (right 449.6 & 136.0 mm?, left 432.6 + 98.5 mm?) (Figure 2). The SD was obtained for
each ROI, and the mean of the right and left values was defined as the image noises for the
lenticular nucleus and centrum semiovale. Noise reduction ratios were calculated using
the image noise for the FBP images as the reference.

(a) (b)

/1\

Figure 2. ROIs in the lenticular nuclei (a) and centrum semiovales (b) displayed on the 5 mm thick
FBP images of the head of a 70-year-old male patient.

2.5. Visual Assessment of Patient Images

The qualities of brain CT images in the 11 patients were evaluated visually and
independently by two board-certified diagnostic radiologists. The overall qualities of
the DLR-M images and two sets of HIR images were compared for each slice thickness.
The mean noise reduction ratio across the 11 patients increased with increasing blending
percentage for HIR. Two HIR image sets with consecutive blending percentages were
selected for evaluation so that the mean noise reduction ratio in the lenticular nucleus
for the DLR-M image set was between those for the two HIR image sets. These selected
HIR images with lower and higher blending percentages were termed HIR-L and HIR-H
images, respectively. Two of the three image sets (DLR-M, HIR-L, and HIR-H sets) were
displayed randomly on the left and right panels of the picture archiving and communication
system (PACS) viewer. The observer compared overall image quality, considering the
recognizability of normal anatomical structures, homogeneity within each structure, the
visual noise level, and the sharpness of the border of each structure. This instruction was
given to the observer in writing, without sample images or training sessions. The observers
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recorded their judgments using the following options: the left set is superior, equal, and the
right set is superior. All slices of each image set were used for comparison. The center and
width of the display window were set at 40 and 80 Hounsfield unit, respectively. Pairwise
comparisons were made for three combinations (DLR-M vs. HIR-L, DLR-M vs. HIR-H, and
HIR-L vs. HIR-H), with the observers blinded to the reconstruction method used.

2.6. Statistical Analysis

The results of visual assessment in patient imaging were examined using the exact
binomial test with Bonferroni correction with R software (version 4.2.1, R Foundation for
Statistical Computing, Vienna, Austria). A p value less than 0.05 was deemed statistically
significant.

3. Results
3.1. Various Levels of Noise Reduction in Phantom Imaging

The 16 cm dosimetry phantom and head phantom were imaged, and CT images of
different slice thicknesses were reconstructed using FBP and various levels of DLR and HIR

to determine noise reduction ratios. The image noise increased with decreasing thickness
when using FBP (Table 1).

Table 1. FBP image noise in phantom experiments for various levels of noise reduction reconstruction.

Image Noise

Phantom
5 mm 2.5 mm 1.25 mm 0.625 mm
Dosimetry 3.98 5.60 7.88 11.25
Head 5.41 7.39 11.34 12.39

Using HIR, the noise reduction ratio increased with increasing blending percentages
for both the dosimetry phantom (Figure 3a) and head phantom (Figure 3b). At a given
blending percentage, the noise reduction ratio was similar among 5, 2.5, and 1.25 mm thick
images and higher for 0.625 mm thick images. The difference in noise reduction ratios
between 5 and 0.625 mm thick images ranged from 1.5% (HIR10) to 12.9% (HIR100) for the
dosimetry phantom and from 1.0% (HIR10) to 8.6% (HIR100) for the head phantom. Using
identical reconstruction parameters (same blending percentage and slice thickness), the
noise reduction ratio was mildly higher for the head phantom than the dosimetry phantom,
with a maximum difference of 7.0% (HIR100, 1.25 mm).

Using DLR, the noise reduction ratio was highest for DLR-H, followed by DLR-M and
DLR-L (Figure 3). It differed largely depending on slice thickness, showing larger thickness
dependence than HIR. The noise reduction ratio increased with decreasing slice thickness,
and this tendency was more pronounced for the dosimetry phantom than for the head
phantom. Using the same level of DLR, the difference in noise reduction ratio between the
5 and 0.625 mm thick images was 35.3%, 33.6%, and 31.8% for DLR-L, DLR-M, and DLR-H,
respectively, in the dosimetry phantom, and was 20.9%, 18.8%, and 17.1% for DLR-L,
DLR-M, and DLR-H, respectively, in the head phantom. Using identical reconstruction
parameters, the noise reduction ratios for the 5, 2.5, and 1.25 mm thick images were higher
for the head phantom than for the dosimetry phantom. This phantom-dependent difference
was more pronounced for DLR than for HIR, ranging from 15.3% (DLR-L, 2.5 mm) to 23.3%
(DLR-H, 5 mm). It was relatively small for the 0.625 mm thick images.
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Figure 3. Noise reduction ratios using various levels of noise reduction reconstruction for the
dosimetry phantom (a) and head phantom (b). The 5, 2.5, 1.25, and 0.625 mm thick images were
reconstructed using various levels of DLR and HIR. D and H indicate DLR and HIR, respectively.

The blending percentage of HIR that resulted in a noise reduction ratio closest to that
of DLR-M varied depending on the slice thickness and phantom. It was 30%, 40%, 70%,
and 80% for the 5, 2.5, 1.25, and 0.625 mm thick images, respectively, using the dosimetry
phantom, and was 60%, 70%, 90%, and 80%, respectively, using the head phantom.

3.2. Various Tube Currents in Phantom Imaging

The 16 cm dosimetry phantom and head phantom were imaged using various tube
currents. Images of different slice thicknesses were reconstructed using FBP, DLR-M, and
HIR50, and the effects of the tube current on the noise reduction ratio were evaluated. The
image noise decreased with increasing tube current when using FBP (Table 2).
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Table 2. FBP image noise in phantom experiments using various tube currents.
Tube Image Noise
Current Dosimetry Phantom Head Phantom

(mA) 5 mm 2.5mm 125mm  0.625mm 5 mm 2.5mm 125mm  0.625mm
10 23.69 34.59 47.24 66.52 31.21 42.18 56.72 57.83
20 16.12 23.49 34.10 47.70 21.27 28.32 38.51 39.91
40 11.16 16.10 23.26 34.45 15.73 20.73 28.82 30.19
80 7.73 11.05 15.82 23.43 10.71 14.63 20.81 21.93
160 5.57 7.82 11.04 16.32 7.26 10.10 15.44 16.98
320 3.98 5.60 7.88 11.25 541 7.39 11.34 12.39
640 2.82 3.89 5.37 7.78 3.73 5.12 7.92 8.78

Using HIR, the tube current had minimal effect on the noise reduction ratio, regardless
of the phantom or slice thickness (Figure 4a,b).
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Figure 4. Noise reduction ratios using various tube currents. The 5, 2.5, 1.25, and 0.625 mm thick
images of the dosimetry phantom (a,c) and head phantom (b,d) were reconstructed using HIR50 (a,b)
or DLR-M (c,d).

Using DLR, the noise reduction ratio for the dosimetry phantom was low at low
tube currents, especially at 40 mA, regardless of the slice thickness (Figure 4c). The ratio
remained nearly constant at tube currents of 160 mA or higher. For the head phantom, the
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effects of the tube current were less pronounced; the noise reduction ratio was low at 40 mA,
regardless of the slice thickness, and was similar at the other tube currents (Figure 4d).

3.3. Image Noise in Patient Imaging

In brain CT of the patients, the volume CT dose index (CTDIvol) and dose-length prod-
uct (DLP) were 41.3 + 6.2 mGy and 599.2 £ 116.9 mGy-cm, respectively. They were lower
than the Japanese diagnostic reference levels (CTDIvol, 77 mGy; DLP, 1350 mGy-cm) [33].
The tube currents at the levels of the lenticular nucleus and centrum semiovale were
235.2 + 43.7 mA and 229.5 & 34.4 mA, respectively.

Brain CT images of different slice thicknesses were reconstructed using FBP and
various levels of DLR and HIR, and the noise reduction ratios were evaluated. The image
noise increased with decreasing thickness when using FBP (Table 3).

Table 3. FBP image noise in patient imaging.

Image Noise

Region
5mm 2.5 mm 1.25 mm 0.625 mm
Lenticular Nucleus 4.71 £0.29 6.56 +0.40 9.57 £ 0.57 10.41 £ 0.70
Centrum Semiovale 4.07 £ 0.16 5.80 = 0.19 8.50 £+ 0.39 10.47 £0.71

Values are mean =+ SD.

The difference in the noise reduction ratio between the lenticular nucleus and centrum
semiovale was minimal using both HIR and DLR (Figure 5). The noise reduction ratio for
the centrum semiovale minus that for the lenticular nucleus using the same reconstruction
parameters ranged from 0.0% (HIR10, 5 mm) to 3.0% (HIR100, 2.5 mm) for HIR and from
—1.0% (DLR-L, 1.25 mm) to 4.4% (DLR-L, 0.625 mm) for DLR.

Using HIR, the noise reduction ratio for the lenticular nucleus did not differ sub-
stantially from those for the dosimetry phantom and head phantom. The noise reduction
ratio for the lenticular nucleus minus that for the phantom using the same reconstruction
parameters ranged from —1.6% (HIR100, 0.625 mm) to 3.2% (HIR100, 1.25 mm) for the
dosimetry phantom and from —5.0% (HIR100, 2.5 mm) to —0.4% (HIR10, 0.625 mm) for
the head phantom.
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Figure 5. Cont.
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Figure 5. Noise reduction ratios for the lenticular nucleus (a) and centrum semiovale (b) in patient
imaging. The 5, 2.5, 1.25, and 0.625 mm thick images were reconstructed using various levels of DLR
and HIR. D and H indicate DLR and HIR, respectively. The error bar indicates the SD.

Using DLR, the noise reduction ratios on the 5, 2.5, and 1.25 mm thick images were
higher for the lenticular nucleus than for the dosimetry phantom using the same reconstruc-
tion parameters, and the difference ranged from 11.7% (DLR-L, 2.5 mm) to 18.5% (DLR-H,
5 mm). The difference was small on the 0.625 mm thick images. The noise reduction ratio
was slightly lower for the lenticular nucleus than for the head phantom using the same
reconstruction parameters, with the difference ranging from 1.5% (DLR-L, 1.25 mm) to 4.8%
(DLR-H, 5 mm).

3.4. Visual Assessment of Patient Images

Based on the mean noise reduction ratio for the lenticular nucleus in the 11 patients, the
following HIR images were selected for visual comparison with DLR-M images: 5 mm thick
HIR60 and HIR70 images, 2.5 mm thick HIR60 and HIR70 images, 1.25 mm thick HIR90
and HIR100 images, and 0.625 mm thick HIR80 and HIR90 images. For example, HIR60 and
HIR70 were designated as HIR-L and HIR-H, respectively, for 5 mm thick images.

For 1.25 mm thick images, both observers judged DLR-M to be superior to HIR-L
and HIR-H in all patients (p < 0.01; Table 4, Figure 6). For 0.625 mm thick images, one
observer judged DLR-M to be significantly superior to HIR-L and HIR-H (p < 0.05 for
both). The other observer judged DLR-M to be significantly superior to HIR-L (p < 0.05);
however, the superiority of DLR-M over HIR-H was not statistically significant. For
5 mm thick images, both observers’ judgments were similar between DLR-M and HIR-L,
indicating selecting HIR-L allows HIR to provide image quality comparable to DLR-M. For
2.5 mm thick images, one observer tended to judge DLR-M as superior to HIR; however, the
difference between DLR-M and HIR-H was not statistically significant. The other observers’
judgment was almost identical between DLR-M and HIR-L. Overall, significant differences
were not indicated between DLR-M and HIR for 2.5 mm thick images.
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Table 4. Visual assessment of patient images.

Number of Judgments

Comparison 5 mm 2.5 mm 1.25 mm 0.625 mm
Ob #1 Ob #2 Ob #1 Ob #2 Ob #1 Ob #2 Ob #1 Ob #2
DLR-M > HIR-L 1 1 gb 1 112 112 9b 7b
DLR-M = HIR-L 10 10 3 10 0 0 2 4
DLR-M < HIR-L 0 0 0 0 0 0 0 0
DLR-M > HIR-H 6 4 6 5 112 112 6 gb
DLR-M = HIR-H 5 7 5 5 0 0 5 3
DLR-M < HIR-H 0 0 0 1 0 0 0 0
HIR-L > HIR-H 5 2 2 3 gb gb 0 7b
HIR-L = HIR-H 5 8 7 8 3 2 5 4
HIR-L < HIR-H 1 1 2 0 0 0 6 0

Ob #1, observer 1; Ob #2, observer 2; ?, p < 0.01; b p <0.05.

Figure 6. Brain CT images of 1.25 mm thickness ((a) DLR-M; (b) HIR-L; (c) HIR-H) and 5 mm
thickness ((d) DLR-M; (e) HIR-L; (f) HIR-H) in a 38-year-old male patient.

4. Discussion

DLR has been reported to produce less noisy brain CT images compared to
HIR [20-22,25,27]. However, the degree of noise reduction can be adjusted in both HIR and
DLR depending on the selection of the noise reduction level. Therefore, the results of image
noise comparison should vary according to the selection. In this study, we reconstructed
brain CT images using various levels of DLR and HIR and evaluated noise reduction
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effects. The SD in the ROI was used as the indicator of image noise. Although the SD and
SD-based metrics (signal-to-noise ratio and contrast-to-noise ratio) do not fully represent
noise properties in non-FBP images [11,28], they have often been used in previous brain
CT studies comparing HIR and DLR [20-27,29], as well as for quality control in routine
clinical practice. Understanding how reconstruction conditions affect the SD can provide
valuable insights.

Although the effects of the slice thickness on noise reduction in the dosimetry phantom,
head phantom, and patients were small using HIR, the noise reduction ratio increased
significantly with decreasing slice thickness using DLR. The noise in FBP images increases
with decreasing thickness, and DLR mitigates this increase, which is consistent with a
previous study [30]. Thin-slice DLR images have been reported to outperform both thin-
and thick-slice HIR images [26,34-36], which may be partly due to the predominant noise
reduction in thin-slice images using DLR. As a result of the dependence of the noise
reduction ratio on the slice thickness for DLR, the blending percentage of HIR that yielded
a noise reduction ratio closest to that of DLR-M varied depending on the slice thickness.
When introducing DLR into clinical practice, the reconstruction conditions should be
determined for each slice thickness taking into account the dependence of noise reduction
on the slice thickness.

Phantom experiments were conducted to assess the impact of the tube current on
noise reduction. Using HIR, the noise reduction ratio for the dosimetry phantom and
head phantom remained nearly unchanged regardless of the tube current. In contrast to
HIR, the noise reduction ratio for the dosimetry phantom varied with the tube current
using DLR. It was low at low tube currents and remained nearly constant at 160 mA or
higher. For the head phantom, the effect of the tube current was less pronounced. A dip
at 40 mA was observed in the relationship of the noise reduction ratio against the tube
current for both the dosimetry phantom and head phantom. We repeated the experiments
assessing the tube current dependence and obtained similar results. The influence of
electronic noise increases at a lower tube current due to a decrease in true signal. On
a GE scanner, low count correction is applied during image reconstruction to depress
image noise deriving from electronic noise. The effect of this correction may be similar
between FBP and HIR but different between FBP and DLR, presumably causing the curious
changes in the noise reduction ratio at low currents. The tube current dependence for DLR
was consistent across different slice thicknesses. Regarding the increased noise reduction
ratio for thinner slices using DLR, thinner slices are noisier, and it may be hypothesized
that the thickness dependence is due to the dependence of the noise reduction ratio on
the noise magnitude, with noisier images showing greater noise reduction. However,
the results of the experiments using various tube currents contradict this hypothesis. A
reduction in the tube current increased image noise but did not increase the noise reduction
ratio. The findings suggest that the slice thickness directly affects the noise reduction ratio,
independent of the noise level.

Using HIR, differences in the noise reduction ratio were small among the dosimetry
phantom, head phantom, and patients. This suggests that noise reduction in patient
imaging can be predicted using a phantom with simple geometry. ASiR-V, HIR on a GE
scanner, allows the level selection from ten options, which is a merit of this technique.
The noise reduction ratio increased gradually with the elevation of the level. Detailed
optimization of the level is advisable when using ASiR-V. In contrast to HIR, the noise
reduction ratio using DLR varied significantly between the dosimetry phantom and head
phantom. Additionally, the effects of the slice thickness and tube current on the noise
reduction ratio differed between the two phantoms. Notably, the degree of noise reduction
using DLR depends on the imaging object. However, differences in the noise reduction
ratio between the head phantom and patients were small, indicating that the degree of
noise reduction in patient brain CT can be reasonably predicted using a head phantom.

The overall quality of clinical brain CT images with normal findings was compared
between HIR and DLR. The selection of the noise reduction level for each reconstruction
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method should influence the results of such comparison. In this study, DLR-M was selected
for visual assessment, and the blending percentages of HIR were selected to achieve
noise reduction similar to DLR-M, based on the SD. For preliminary assessment, only
two observers and a small number of normal CT examinations were employed. Considering
the small scale of the assessment, a pairwise comparison of overall quality was conducted
instead of grading each item (noise, sharpness, contrast, diagnostic acceptability, etc.) for
each image set. We expected better reproducibility for pairwise comparison than grading.
Although visual quality was comparable for thick-slice images (5 and 2.5 mm), DLR tended
to be superior for thin-slice images (1.25 and 0.625 mm). For thin-slice images, the noise
reduction was large using DLR, and a high blending percentage was required for HIR
to achieve a similar degree of noise reduction. A high blending percentage resulted in
a so-called plastic appearance and degraded visual image quality, despite similar SD. If
the image noise is acceptable, decreasing slice thickness is expected to improve the clarity
of the normal structures and lesions due to depressing the partial volume effect. DLR
may be superior to HIR for thin-slice imaging, as indicated in previous studies [26,34-36],
potentially improving diagnostic performance.

There are limitations to this study. First, only one CT scanner with built-in HIR
and DLR was used. The characteristics of HIR and DLR may differ depending on the
manufacturer; reconstruction methods provided by other manufacturers should be studied
in the future. Second, the SD was used as a quantitative indicator of noise. A more
detailed assessment considering alterations in image texture would be beneficial. Third, in
the visual assessment of patient images, only overall image quality was assessed by only
two observers on a small number of patients with normal findings. A larger-scale evaluation
of lesion detectability and conspicuity remains to be carried out. Finally, although HIR
image sets with SDs similar to DLR-M image sets were selected for visual comparison with
DLR-M images, the best HIR and DLR image sets may be selected visually among various
HIR and DLR image sets, respectively, for future comparison between HIR and DLR.

5. Conclusions

Noise reduction properties in brain CT were evaluated using various levels of DLR
and HIR. In HIR, the degree of noise reduction was primarily determined by the blending
percentage, with limited influence of the slice thickness, tube current, or imaging object.
DLR exhibited more complex behavior, and the degree of noise reduction was affected not
only by the level of DLR but also by the slice thickness, tube current, and imaging object.
The head phantom appeared to be better than the dosimetry phantom in predicting noise
reduction in patients. These characteristics of DLR should be considered in its clinical use
and comparing it to HIR. DLR may be particularly beneficial for thin-slice imaging.
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