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Abstract: Using a pediatric-focused lens, this review article briefly summarizes the presentation
of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance
imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based
contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional
sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful
for evaluating disease features and monitoring treatment responses in patients by characterizing
lesion involvement in the central nervous system and tracking temporal features with blood–brain
barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and
neuroinflammatory diseases. This work also highlights findings from advanced MRI techniques,
often infrequently employed due to the challenges involved in acquisition, post-processing, and
interpretation, and identifies the need for future studies to extract the unique information, such as al-
terations in neurochemistry, disruptions of structural organization, or atypical functional connectivity,
that may be relevant for the diagnosis and management of disease.

Keywords: demyelination; neuroinflammatory; magnetic resonance imaging; magnetic resonance
spectroscopy; multiple sclerosis; acute demyelinating encephalomyelitis; myelin oligodendrocyte
glycoprotein antibody disease

1. Introduction

Magnetic resonance imaging (MRI) plays an integral role in the identification and
management of medical conditions. Brain and spine MRIs are essential for characterizing
suspected demyelinating and neuroinflammatory diseases and deriving a diagnosis, but
each may also provide information for predicting prognoses and evaluating responses
to therapy. A wide array of clinical and imaging literature describes patient findings
throughout the evolution of signal abnormalities associated with these pathologies over
the course of the disease. However, many existing reviews are limited to case presentations
with neuroimaging of adult patients.

Pediatric presentations of these diseases can be non-specific and follow a course that
differs from adults, especially with respect to MRI features. We sought to conduct an
overview style of review to conceptually summarize the literature without a formal quality
assessment, given the relatively small amount of literature in this area. We compiled
a list of seven pediatric diseases encountered at our institution over the past 5 years,
where neuroimaging was illustrative. We searched PubMed (pubmed.ncbi.nlm.nih.gov)
for each disease with the term “magnetic resonance imaging”. We performed subsequent
analyses with the disease and the specific advanced magnetic resonance imaging modalities.
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We extracted articles with all or a majority of pediatric populations. In a few instances
with advanced resonance imaging in rare conditions, we highlighted general disease
features independent of the population age. Upon reviewing these articles, citations of
conceptual interest from the articles were also incorporated into the bibliography. We also
searched PubMed for each disease with the terms “incidence” and “prevalence”. We also
included published literature review articles to help us condense the salient findings and
provide a resource for readers. This work highlights key aspects from the literature on the
incidence, clinical presentation, and conventional MRI findings for multiple sclerosis (MS),
acute demyelinating encephalomyelitis (ADEM), optic neuritis (ON), neuromyelitis optica
spectrum disorders (NMOSD), myelin oligodendrocyte glycoprotein antibody disease
(MOGAD), autoimmune encephalitis, and febrile-infection-related epilepsy syndrome
(FIRES). Also, insights are shared from the relatively limited usage of advanced MRI
techniques, such as proton magnetic resonance spectroscopy (MRS), magnetization transfer
imaging (MTI), diffusion-weighted imaging (DWI) including diffusion tensor imaging
(DTI), and functional MRI (fMRI), in pediatric populations. These techniques can be added
to a conventional MRI examination to provide distinct yet complementary information to
clarify the disease features.

2. Multiple Sclerosis
2.1. Overview

Pediatric-onset multiple sclerosis (POMS) involves an immune-mediated attack on
the central nervous system (CNS), resulting in inflammation, demyelination, and axonal
damage [1,2]. There are a variety of typical neurological symptoms in children, such as
vision changes accompanied by ON, sensory symptoms, gait impairment, and cognitive
deficits [1,3–5]. The diagnosis of POMS follows the revised McDonald 2017 adult criteria for
MS, which requires two distinct clinical events without encephalopathy lasting at least 24 h
and occurring more than 30 days apart that feature lesions in an MRI disseminated in space
and time [6–8]. Among all demyelinating and neuroinflammatory diseases, MS is one
of the most common [9]. However, POMS is relatively rare [10,11], constituting 3–5% of
all patients with MS [3,5,12–14]. A meta-analysis published in 2020 reported the pooled
global incidence and prevalence estimates for POMS as 0.87 per 100,000 individuals annu-
ally and 8.11 per 100,000 individuals, respectively [15]. POMS has the highest incidence
rates in children between the ages of 13 and 16 and occurs more often in females post-
puberty [5]. Patients with POMS almost exclusively follow a relapsing–remitting course and
tend to have a higher relapse frequency, a higher lesion burden, especially with contrast-
enhancing lesions, and an earlier age at disability milestones compared to adult-onset
MS [3,5,6,11,16–18].

Upon presentation, it can be difficult to distinguish the first demyelinating episode
of POMS from other demyelinating diseases or disease processes (vasculitis, neoplasm,
infection, infarction, etc.). An MRI performed in the clinical setting is sensitive to disease
pathology, which will narrow the diagnostic differential. Interpretation of MRI relies on
identifying characteristics of pathologies via changes in the signal contrast. A conventional
MRI incorporates and exploits the intrinsic properties of water (and other tissues such
as fat) to achieve a signal contrast with different sequences. The sequence nomenclature
(T1-weighted, T2-weighted, etc.) reflects the nature of the property exploited.

2.2. Conventional Neuroimaging

In POMS, conventional MRIs, including T1-weighted, T2-weighted, and fluid-attenuated
inversion recovery (FLAIR) sequences, reveal periventricular lesions in the deep white
matter, juxtacortical lesions, infratentorial lesions, and spinal cord lesions spanning less
than three vertebral segments [19–21]. Abnormalities on T2-weighted and FLAIR sequences
in POMS characteristically appear as focal ovoid-shaped hyperintensities [22]. One char-
acteristic imaging finding of MS is Dawson’s Fingers, described as well-defined ovoid
lesions aligned perpendicular to the long axis of the corpus callosum on sagittal MRI,
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whose presence increases the rate of a second attack [4,20,23]. White matter lesions with
hypointense signals relative to normal-appearing white matter (NAWM) on T1-weighted
sequences are referred to as “black holes” [24]. Exogenous contrast agents with chelated
gadolinium are intravenously injected to reveal any blood–brain barrier disruption in MRI
examinations. Gadolinium contrast agent signal enhancement, which may be present for
approximately 3 weeks in MS lesions, assists in differentiating between active/recent le-
sions from inactive/older lesions [22,25]. Examples of typical brain lesions found in POMS
are illustrated in Figure 1. Critical diagnostic markers indicative of an initial demyelinating
event progressing to MS include the presence of Dawson’s fingers, T1 hypointense lesions
(black holes), contrast-enhancing lesions, or periventricular lesions on the MRI [23,26].
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(d) bordering the right occipital horn, and (e) right hemispheric parietal white matter. The features 
supported the diagnosis of pediatric-onset multiple sclerosis.  
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atric patients have tumefactive lesions [23,27,28]. These lesions are typically large and sol-
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mefactive lesion in a patient with a history of ON. Another imaging variant of MS is Balo’s 
concentric sclerosis, where concentric rings of demyelination alternate with areas of pre-
served myelination, which are often visible on T2-weighted and post-contrast T1-weighed 
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Figure 1. A 14-year-old male with a 3-year history of multiple demyelinating, non-enhancing brain
lesions. A follow-up MRI demonstrated an increase in both size and number of lesions with a
distribution within the brain characteristic of pediatric-onset multiple sclerosis. Non-enhancing
lesions on an axial FLAIR sequence without diffusion restriction are noted with white arrows within
the (a) right hemisphere cerebellar white matter, (b) dorsal right pons, (c) splenium of the corpus
callosum, (d) bordering the right occipital horn, and (e) right hemispheric parietal white matter. The
features supported the diagnosis of pediatric-onset multiple sclerosis.

One imaging variant of MS is tumefactive MS, with estimates that up to 40% of
pediatric patients have tumefactive lesions [23,27,28]. These lesions are typically large and
solitary, exhibiting a mass effect and ring enhancement, which can lead to misdiagnosis
as a brain abscess or a neoplasm [20,27,29]. Figure 2 illustrates the initial presentation
of a tumefactive lesion in a patient with a history of ON. Another imaging variant of
MS is Balo’s concentric sclerosis, where concentric rings of demyelination alternate with
areas of preserved myelination, which are often visible on T2-weighted and post-contrast
T1-weighed images [30]. Gadolinium contrast agent enhancement may demonstrate a
breakdown of the blood–brain barrier within the center of the lesion, contrasting typical MS
with rim enhancement [31]. Baló lesions can present at onset as a solitary lesion or multiple
lesions in white matter but are typically absent in cortical U-fibers [32]. While Balo’s
concentric sclerosis is considered rare, there are several recent pediatric case presentations
in the literature [30–34]. Figures 3 and 4 illustrate imaging and proton MRS obtained in a
patient with Balo’s lesions.
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right upper limb. Row (A) demonstrates initial baseline imaging and Row (B) shows follow-up im-
aging 8 months later. From left to right in each row are FLAIR, T1-weighted pre-contrast, T1-
weighted post-contrast, T2-weighted axial images at the level of a concentric ring lesion (white ar-
row) in the left frontal lobe and a FLAIR image at a superior level illustrating periventricular lesions. 
This appearance is consistent with Balo’s concentric sclerosis. Comparison of corresponding images 
in rows A and B, show many lesions were smaller at follow-up imaging than on the prior baseline 
study. None of the patient’s lesions significantly enhanced after contrast administration at either 
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Figure 2. A 15-year-old female with a history of bilateral optic neuritis presented with stroke-like
symptoms including facial droop and slurred speech. (a) Axial and (b) coronal FLAIR sequences
demonstrated a large hyperintense lesion located in the left middle frontal lobes, precentral gyrus
and the frontal operculum. (c) The lesion exhibits mild diffusion restriction at the periphery. Partial
peripheral enhancement along the medial margin of the lesion was noted on the (d) axial and
(e) coronal post-contrast T1-weighted images. The patient history and imaging features over time
supported a diagnosis of tumefactive multiple sclerosis.
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Figure 3. A 14-year-old male who presented with a history of headaches and vague numbness in
his right upper limb. Row (A) demonstrates initial baseline imaging and Row (B) shows follow-up
imaging 8 months later. From left to right in each row are FLAIR, T1-weighted pre-contrast, T1-
weighted post-contrast, T2-weighted axial images at the level of a concentric ring lesion (white arrow)
in the left frontal lobe and a FLAIR image at a superior level illustrating periventricular lesions. This
appearance is consistent with Balo’s concentric sclerosis. Comparison of corresponding images in
rows A and B, show many lesions were smaller at follow-up imaging than on the prior baseline study.
None of the patient’s lesions significantly enhanced after contrast administration at either timepoint
on T1-weighted imaging.
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In addition to classic white matter lesions, patients with POMS also exhibit pertinent
gray matter findings on MRI. A longitudinal study evaluating regional and whole brain
volumes multiple times over a 2-year period revealed that patients with POMS did not
achieve age-expected primary brain growth and were accompanied by a greater reduction
in the age-expected thalamic volume that is also associated with the T2 lesion volume [35].
Compared to sex- and age-expected trajectories, patients with POMS exhibit a significant
reduction in gray matter development in several cortical regions, the cerebellum, and
subcortical regions, including the thalamus and caudate nucleus [36]. Gray matter at-
rophy in patients with POMS correlates with clinical disability severity [36], consistent
with findings in adults with MS [37,38]. Such longitudinal cohort analyses reveal unique
information missed with an individual review of patient imaging. Group analyses of
quantitative metrics derived from advanced MRI techniques offer the opportunity for new
mechanistic insights.
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2.3. Advanced MRI Techniques

While T1-weighted, with and without a gadolinium contrast agent administered,
T2-weighted, and FLAIR are conventional neuroimaging sequences utilized to distinguish
POMS apart from other diseases, there are advanced MRI techniques available to provide
unique information to improve the specificity of MRI. MRS, MTI, and DTI may afford
additional insight toward characterizing disease pathology. MRS provides novel informa-
tion regarding brain neurochemistry with tissue metabolite profiles. Although research
using MRS in patients with POMS is limited, findings have shown similar patterns to those
observed in adults. Lesions demonstrate decreased N-acetyl aspartate (NAA) and creatine
(Cr) alongside increased choline (Cho), myoinositol (mI), and lipid concentrations [39].
NAA, a neurochemical present in neurons and axons, serves as a marker of integrity and
functioning and declines in correspondence with functional impairments during active
MS phases. Choline concentrations reflect the status of cellular membranes, with increases
observed during active demyelination. Myo-inositol is highly concentrated in astrocytes
and functions as an osmolyte [40,41]. Consistent with demyelination as well as gliosis,
mI concentrations within lesions are elevated in patients with MS [42–45]. MRS can also
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facilitate the assessment of recovered myelination in MS lesions following treatment, as
NAA levels in acute lesions have been found to partially recover in parallel with the im-
provement of the patient’s clinical status [46–48], as illustrated in Figure 4. A study of
adult patients found that MRS can assist in discriminating tumefactive MS lesions from
high-grade glioma based on a comparison of Cho/NAA levels [49].

MTI facilitates quantification of small-scale damage within lesions visible on T2, as
well as in NAWM, and normal appearing gray matter (NAGM) by providing a unique
image contrast based upon detecting signals from macromolecules derived from proteins,
lipids, carbohydrates, and nucleic acids [50,51]. Demyelinating lesions in patients with
POMS are often hypointense on magnetization transfer ratio (MTR) maps [52]. MTI can
also be used to monitor remyelination in patients with POMS over the course of treatment,
as demyelinated lesions have a lower MTR than remyelinated lesions [52,53]. Compared to
adults with adult-onset MS, adults with POMS show a lower MTR value in T2 lesions with
hyperintense signals, NAWM, and NAGM [54]. This difference may be explained by the
longer duration of disease in adults with POMS compared to those with onset later in life
as adults [52,54].

DTI provides a quantitative method for assessing cerebral white matter microstructure
damage by detecting changes in water diffusion, which is quantified by decreased fractional
anisotropy (FA), increased mean diffusivity (MD), and changes in the apparent diffusion
coefficient (ADC) [55–57]. Patients with POMS have lower average FA values and a
widespread increase in MD measurements in the normal-appearing brain compared to
healthy controls [52,55–58]. Patients with POMS also show reduced FA in NAWM and the
corpus callosum, indicating disruption of the myelin architecture, even outside of areas
with clear demyelinating lesions [55,56,59–61]. ADC is elevated in pathological processes
when neuronal tissue damage removes barriers to water diffusion throughout the CNS [62].
Vishwas et al. found elevated mean ADC values throughout the white matter, including
the NAWM of patients with POMS compared to healthy controls, suggesting evidence of
diffuse damage early in the disease course that may be independent of disease duration [55].

Diffusion tensor metrics may afford additional objective and quantitative measures
to monitor the extent of white matter damage and the impact on neurological function in
patients. DTI studies of patients with POMS have been combined with fMRI examinations
to better characterize disruptions in the functional connectivity (FC) of brain networks,
which have implications for cognitive impairment and disability [52,63,64]. fMRI studies
are acquired in one of two approaches: (1) task-dependent fMRIs are performed in coordi-
nation with the patient performing an activity in response to stimuli, such as viewing a
visual checkerboard, responding to a continuous performance task, or performing other
paradigms; (2) a resting state fMRI is acquired while the patient is not performing a specific
task but often stares at a fixed point on a screen without other stimuli. A study of patients
with POMS combining DTI with a resting state fMRI reported lower FA throughout the
cerebral white matter and a higher FC within the intrinsic default mode and frontoparietal
networks upon comparison with healthy controls, suggesting compensatory activation
early within the disease [63].

While there are minimal disruptions in motor FC networks in patients with POMS [65,66],
Rocca et al. found a distributed pattern of FC abnormalities within large-scale neuronal
networks upon conducting resting state fMRI [67]. They found reduced FC in posterior
brain regions of several sensory- and cognitive-related networks with increased FC in
anterior brain regions. In contrast, adults with MS have an unevenly distributed pattern
of FC variations [67,68]. The discrepancies between adult and pediatric findings may be
secondary to disease duration and activity or represent a maturation deficit that renders
certain developing brain regions more vulnerable to disease processes [67]. Longitudinal
studies with appropriate statistical power incorporating DTI and resting state fMRI across
the lifespan for POMS patients are needed to better characterize these maturational changes
and potentially identify features that would be amendable to therapies.



Tomography 2024, 10 2106

While it is beyond the scope of this review, there are also many studies evaluating the
cognitive abilities of patients with POMS and their relationships with imaging outcomes
from structural MRI, diffusion MRI, and fMRI evaluations [52,61,64,69–71].

2.4. Summary of Imaging in Pediatric Patients with POMS

Patients with POMS almost exclusively follow a relapsing–remitting course and tend
to have a higher relapse frequency and a higher lesion burden of contrast-enhancing
lesions on T1-weighted imaging. T2-weighted and FLAIR sequences are sensitive to
detecting lesions in the brainstem, cerebellum, subcortical white matter at the cortex, and
periventricular lesions in deep white matter, especially those termed Dawson’s fingers. The
quantitative nature of advanced MRI techniques holds relevance for future therapeutic
trials as patients with POMS demonstrate metrics that differ from healthy controls, though
their current usage often explores mechanistic features of the demyelinating process and
provides characterization of the patient with temporal features of lesions.

3. Acute Demyelinating Encephalomyelitis
3.1. Overview

ADEM is a typically monophasic, immune-mediated neuroinflammatory condition
most commonly occurring in children between 3.6 and 8 years old following a prior in-
fection or vaccination [72–77], with an incidence of 0.3 to 0.6 per 100,000 population per
year [74,78]. ADEM can occur as a single incident or more rarely (<10%) as the initial de-
myelinating attack that precedes MS or another relapsing demyelinating condition [26,79].
Patients typically present 1–2 weeks post-infection or vaccination with an acute onset of
encephalopathy, polyfocal neurologic deficits, and demyelinating CNS lesions on con-
ventional MRI [80]. Clinical symptoms include encephalopathy, pyramidal long tract
signs, hemiplegia, ON, cranial nerve palsies, hyperreflexia, ataxia, seizures, meningism,
and spasticity, which were preceded by several days of fever, vomiting, headache, and
nausea [19,73–77,80–82]. Despite the severe clinical vignette, most patients with ADEM
experience a significant recovery within weeks, although residual cognitive impairments
or learning disabilities can occur [83,84].

If there are no additional clinical symptoms or MRI lesions at follow-up 3 months
after the initial onset, the diagnosis of ADEM is confirmed [80,85,86]. It is important,
however, to assess for secondary etiologies and risk factors for relapse. For example,
myelin oligodendrocyte glycoprotein (MOG) immunoglobulin-G antibodies (MOG-IgG)
are detected in 50% of pediatric ADEM cases, and those seropositive experience more
relapses than seronegative cases [87].

3.2. Conventional Neuroimaging

Characteristic MRI findings for ADEM include large, bilateral, and poorly demar-
cated hyperintense signals on T2 and FLAIR sequences in the cerebral white matter and
the spinal cord [74,77,79]. Lesions are typically asymmetric, variable in size, and larger
than 2 cm [76,79,88]. They have not been consistently found to display gadolinium con-
trast agent enhancements or exhibit a mass effect [73–75,79,86]. If contrast enhancement
is present, most lesions are simultaneously involved [86]. ADEM frequently affects the
deep gray matter (thalamus and basal ganglia) symmetrically and can have involvement
in the cerebellum and brainstem in about 50% of cases [19,73,74,86]. Figure 5 illustrates
typical brain lesions found in the setting of ADEM involving the pons, cerebral peduncle,
cerebellum, thalamus, and centrum semiovale. Lesions in ADEM tend to be at the same
temporal stage of formation, which is consistent with the typical monophasic trajectory [88].
Unlike MS, ADEM does not exhibit black hole lesions on T1 but may exhibit faint T1 hy-
pointensity [80]. Other features that distinguish the lesions found in patients with ADEM
in contrast to those of MS include the sparing of lesions in periventricular areas, the lesion
borders are not well-defined, the absence of Dawson’s fingers, and the resolution of lesions
in follow-up MRI [80,89–92].
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Figure 5. A 7-year-old male presented with an acute history of fever, ataxia, and dysarthria. Brain
MRI demonstrated multiple hyperintense signals on T2/FLAIR sequences that displayed faint hy-
pointense signals on T1-weighted sequences, without diffusion restriction, abnormal contrast agent
enhancement or mass effect. Lesions are noted with white arrows. (a) Lesions within the pons and
cerebral peduncle are hyperintense on an axial T2-weighted image. (b) Sagittal T1-weighted and
(c) axial FLAIR feature a lesion in the left cerebellar hemisphere. (d,e) Axial FLAIR images demon-
strate bilateral thalamic and left centrum semiovale lesions, respectively. (f) An additional ill-defined,
T2-mildly hyperintense lesion was noted at the T9–10 of the spinal cord. This lesion was without
abnormal enhancement on T1-weighted imaging. These imaging features supported the diagnosis of
acute demyelinating encephalomyelitis (ADEM).

3.3. Advanced MRI Techniques

Pediatric studies using advanced MRI techniques to evaluate lesions in patients with
ADEM often compare the quantitative features with those found in patients with POMS.
MRS has demonstrated decreased NAA and increased Cho, lactate, and lipid concentrations
in pediatric ADEM lesions; however, these findings are non-specific and have also been
associated with MS [81,93–95]. Ben Sira et al. elucidated metabolite differences in ADEM
patients at two distinct timepoints: during the acute phase (the first 12 days) and chronic
phase (after 12 days) [96]. Levels of mI, an inflammatory glial cell marker, were low in
the acute phase and later increased in the chronic phase [96,97], a distinguishing feature
from MS lesions, which maintain elevated mI levels irrespective of the time point [39,45,98].
Therefore, fluctuations in levels of ml can help differentiate between ADEM and initial
presentations of POMS [60,96].

Additionally, DWI is used to describe the pathological evolution of pediatric ADEM,
though there is conflicting evidence surrounding diffusivity patterns in ADEM. Vasogenic
edema, signified by isointense or hyperintense lesions on DWI and hyperintense lesions
on ADC mapping, is observed in 75% of patients [99]. In pediatric ADEM, it has been
found that ADC values from DWI are initially high but decrease over time after symptom
onset [99]. Together, these findings suggest that vasogenic edema may be involved in
early disease pathophysiology and contribute to the overall favorable disease prognosis, as
vasogenic edema is reversible [99]. A study by Chen et al. assessing a 17-year-old pediatric
patient with ADEM with DTI found significantly elevated ADC and radial diffusivity (RD),
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along with reduced FA values in the subacute stage, with biopsy confirmation of active
inflammatory demyelination [100]. RD is a diffusion metric thought to reflect changes
specific to the myelin sheath. Balasubramanya et al. reported a cross-sectional study of
eight patients with ADEM lesions who demonstrated low mean ADC values in the acute
stage yet high ADC values in the subacute stage [81].

While MTR values did not differ in adult patients with ADEM and healthy controls,
normal-appearing brain matter MTRs were significantly higher in patients with ADEM
compared to MS, indicating the utility of MTI in distinguishing the two diseases [101].
Thus, MTI indicates the sparing of the pathologic process in patients with ADEM, which
supports the overall favorable prognosis and recovery of lesions after the initial episode of
ADEM [101].

3.4. Summary of Imaging in Pediatric Patients with ADEM

ADEM can occur as a monophasic, immune-mediated condition in children following
a prior infection or vaccination and demonstrate large, asymmetric lesions with poorly
established borders involving both white and gray matter, including the centrum semiovale,
thalamus, cerebellum, and brainstem. The lesions follow the same time course in evolution,
but do not typically uptake gadolinium contrast agents. Advanced imaging techniques
often quantify lesion properties, support reversible pathophysiology, and discriminate
from POMS.

4. Optic Neuritis
4.1. Overview

ON involves injury to the optic nerve due to inflammatory, infectious, or autoimmune
causes. ON may be part of acquired demyelinating syndromes and a cluster of diseases
with various clinical and radiological features, serologic and plasma biomarkers, and
variable prognosis [102]. ON is rare in pediatric patients compared to adult patients yet
accounts for 25% of pediatric demyelinating diseases [103], with an incidence range of 0.2
to 1.66 per 100,000 person-years in Canada and the United States, respectively [104–106].
ON can occur idiopathically as a clinically isolated syndrome or as a manifestation of
underlying relapsing conditions, such as MS, NMOSD, and MOGAD [103,106]. The av-
erage age of onset in pediatric patients with ON is between 9 and 11 years [103,106]. ON
presents differently in children compared to adults. Pediatric presentation is characterized
by severe visual symptoms, including poor visual acuity, acute or subacute vision loss,
double vision, and color vision deficits [103,106]. Pain with eye movement is seen in almost
every adult with ON but was reported in only approximately half of pediatric patients with
ON [107,108]. Children are more likely to have bilateral ON, and the rate of bilaterality is
age-dependent: 72% of children under 10 years have bilateral presentation, while 70% of
children over 10 years are affected in one eye [109,110]. Pediatric ON is also more likely
to exhibit papillitis over retrobulbar involvement, optic disc edema or hemorrhage, and
pupillary defects compared to adult ON [103,106,111,112]. Despite extreme visual distur-
bance at presentation, pediatric ON has a generally positive visual prognosis, with 70–85%
of eyes returning to 20/20 vision [113].

Imaging features may be able to assist in predicting which patients presenting with
ON may progress to have relapsing demyelinating diseases. Children with ON have a
36% risk of developing MS within two years [112]. Risk factors associated with devel-
oping MS are the presence of bilateral ON and white matter lesions outside of the optic
nerve [111,112,114]. Additional features of optic neuritis may suggest NMOSD or MO-
GAD. Longitudinally extensive optic nerve involvement, bilateral optic nerve involvement,
and chiasmal involvement seen on imaging in pediatric ON is associated with NMOSD
and may suggest an increased risk of demyelinating attacks [115]. This contrasts with
MOGAD-associated ON, which is classically bilateral, longitudinally extensive, associ-
ated with significant edema, more anterior predominant, and involving the optic nerve
sheath [87,116–120].
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4.2. Conventional Neuroimaging

The routine imaging protocol for the optic nerve employs coronal T2-weighted imaging
with fat suppression and pre- and post-contrast axial and coronal T1-weighted imaging
without fat suppression, as illustrated in Figure 6 [121]. Incorporating three-dimensional
sequences minimizes partial volume effects, where tissue boundaries are blurred from
inadequate spatial resolution, though acquisition times can be longer unless acceleration
schemes in sequence software are employed to reduce acquisition times [121]. FLAIR and
diffusion sequences are also helpful. In general, imaging findings indicate unilateral or
bilateral enlargement, abnormal signals, and/or enhancement of the optic nerve [112,122].
The first occurrence of symptoms may be associated with a range of optic nerve swelling
on imaging that may progress to optic nerve atrophy over time [122]. Similarly, during the
acute presentation of ON, imaging may reveal optic nerve enhancement on post-contrast
T1-weighted imaging, which is absent in the chronic phase [122]. The reported prevalence
of optic nerve enhancement in pediatric patients with ON varies greatly, and in two studies,
it ranged from 29 to 81% [123,124]. The wide discrepancy is likely attributed to variations
in patients or differences in imaging protocols and performance quality. Pediatric patients
with ON may also experience white matter lesions external to the optic nerve, a finding
that has been described in 38–54% of cases [111,112].
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Figure 6. A 13-year-old female presenting with bilateral papilledema and imaging findings of optic
neuritis. Coronal T2-weighted image (a) with fat saturation demonstrates bilateral optic nerve edema
and swelling (white arrows). Coronal (b) and axial (c) fat-saturated, post-contrast T1-weighted images
demonstrate abnormal enhancement (white arrows). The authors formally obtained permission to
use clinically generated medical images stored within the Cincinnati Children’s Hospital Medical
Center’s PACS for this figure on 6 December 2024.

4.3. Advanced MRI Techniques

Many advanced neuroimaging techniques exist for imaging the optic nerve, though
they are typically described in adult populations. Future research efforts are needed to im-
plement advanced orbital MRI into evaluations of pediatric ON. Improved visualization will
provide diagnostic benefits along with therapeutic monitoring and prognostication. The
fat-suppressed T1-weighted three-dimensional radial gradient-recalled echo-volumetric
interpolated breath-hold examination (Radial VIBE) is often used to produce images with
better quality than a typical T1, T2, or FLAIR sequence [121]. Additionally, half-Fourier
acquisition single-shot turbo spin echo (HASTE) imaging can be useful for determining
the diameter of the optic nerve [121]. DWI can be helpful in assessing the acuity of the
attack, as most patients with acute ON exhibit DWI hyperintensity of the optic nerve, which
is not as commonly found in chronic ON [122]. Additionally, ADC values are lower in
patients with acute ON compared to those with chronic ON [122]. This can also be helpful
in predicting outcomes, as decreased ADC values at the acute stage of attack correlate with
the thinning of the retinal nerve fiber layer and ganglion cell complex and have implications
for predicting optic nerve atrophy [107].
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4.4. Summary of Imaging in Pediatric Patients with ON

ON can occur as a clinically isolated syndrome or as a manifestation of an underlying
relapsing condition. Children with ON demonstrating bilateral involvement and brain
white matter lesions are at greater risk of relapsing demyelinating disease. There is a need
for improved MRI techniques to better characterize orbital pathology in pediatric patients,
as assessing the disease stage and responses to treatment and prognostication are beneficial,
especially as children may not experience pain and be unable to describe vision changes.

5. Neuromyelitis Optica Spectrum Disorders
5.1. Overview

NMOSD is a neuroinflammatory disease reported to have an incidence of 0.039 to
0.73 per 100,000 person-years for adults and 0.01 and 0.06 per 100,000 person-years for
children [125]. Childhood-onset NMOSD has an average onset age of 10 years [126] and a
lower female:male ratio (3:1) than adult NMOSD (9:1) [127–129]. Immunoglobin G autoan-
tibodies (IgG) against the aquaporin 4 (AQP4) channel in patient serum serve as specific
biomarkers for NMOSD [130,131] and is a diagnostic criterion for formal antibody-positive
NMOSD diagnosis [129]. Aquaporin is a protein molecule expressed in astrocyte foot pro-
cesses to regulate the passage of water across cellular membranes [130]. Until the discovery
of the AQP4-IgG, NMOSD was not considered its own disease entity but a subtype of
MS. Patients with clinical criteria meeting NMOSD diagnosis but with seronegative AQP4
findings are designated antibody-negative NMOSD [129]. Chitnis et al. found that approx-
imately 65% of pediatric NMOSD patients tested positive for the AQP4 antibody [126],
while prior studies reported a wider range of 17–80% [113]. NMOSD is characterized by
attacks of ON and transverse myelitis, owing to various visual, motor, and sensory symp-
toms [132–135]. ON is more often seen in children’s initial presentation, though transverse
myelitis frequently occurs in relapses [135–137]. Other common symptoms in children
include severe and intractable nausea, hiccups, and vomiting due to the involvement of the
area postrema [135,138]. Pediatric patients with NMOSD also experience encephalopathy
at higher rates than their adult counterparts [135]. Acute brainstem syndrome, causing
cranial nerve dysfunction, occurs in 40% of pediatric NMOSD patients [127]. Patients with
NMOSD may also present with seizures, headaches, and ataxia [132,133,135,139]. Early
diagnosis is crucial for NMOSD, as delays in treatment can have severe consequences and
result in disability [132,140].

5.2. Conventional Neuroimaging

Brain lesions are present in approximately 30–40% of pediatric patients with
NMOSD [141–143]. The location of lesions is similar in both pediatric and adult popu-
lations with NMOSD, but disease involvement in the brain is more common in pedi-
atric patients [132]. Lesions often appear in areas where there is high AQP4 expression,
specifically near the third and fourth ventricles in the diencephalon, area postrema, and
brainstem, as illustrated in Figure 7 [132]. Many studies have found brain lesions in the
corpus callosum, subcortical white matter, and periventricular white matter, as well as in
the thalamus and hypothalamus [132,144,145]. Like adults with NMOSD, about 30% of
pediatric patients with NMOSD brain lesions exhibit a distinctive cloud-like pattern of
gadolinium contrast agent enhancement [132,141,144]. A linear, pencil-thin enhancement
of the ependymal surface of the lateral ventricles has also been described as characteristic
of NMOSD [141,146,147]. Corpus callosum lesions in NMOSD are large and irregularly
shaped, following the ependymal line [147]. This contrasts with the smaller, ovoid lesions
(Dawson’s fingers) typically seen in MS [147]. Patients with NMOSD are also less likely
to develop silent lesions, a common finding in MS [147]. Large or tumefactive confluent
lesions in the white matter (>3 cm) without a mass effect are more common in pediatric
than adult patients with NMOSD [113,147,148].

The classic presentation of optic nerve involvement associated with NMOSD on MRI is bi-
lateral inflammation of the posterior optic nerves (optic chiasm and optic tracts) [132,133,144,149],
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as illustrated in Figure 8a–c. A special imaging feature specific to the pediatric presentation
of NMOSD is infraorbital fat gadolinium contrast agent enhancement for patients with
ON [132,150].
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Figure 8. A 10-year-old female presenting with right monocular vision loss. (a) Coronal T2 orbital 
image demonstrates abnormal edema and swelling of the intraorbital right optic nerve (white ar-
row), as well as abnormal enhancement (black arrows) of the (b) prechiasmatic (b,c) intraorbital 
right optic nerve. Six weeks later, the patient presents with new voiding and extremity weakness. 
On (d,e) sagittal T2-weighted images, there are ill-defined cord signal abnormalities (white arrows) 
with associated subtle enhancement (black arrow) of the distal cord on (f) sagittal T1-weighted post 
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bodies (AQP4-IgG) of NMOSD, lesions observed on conventional MRI tend to appear in 
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6. Myelin Oligodendrocyte Glycoprotein Antibody Disease 

Figure 8. A 10-year-old female presenting with right monocular vision loss. (a) Coronal T2 orbital
image demonstrates abnormal edema and swelling of the intraorbital right optic nerve (white arrow),
as well as abnormal enhancement (black arrows) of the (b) prechiasmatic (b,c) intraorbital right
optic nerve. Six weeks later, the patient presents with new voiding and extremity weakness. On
(d,e) sagittal T2-weighted images, there are ill-defined cord signal abnormalities (white arrows)
with associated subtle enhancement (black arrow) of the distal cord on (f) sagittal T1-weighted post
contrast fat saturated spine MR image.

In spinal cord imaging, longitudinally extensive transverse myelitis (LETM), appearing
on T2 images as central hyperintensity over three or more vertebral segments, usually
indicates NMOSD in adults. However, in children, LETM is a less-specific indicator for
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NMOSD, as ON tends to occur more often prior to the age of 30 [132,136,151,152]. An
example of abnormal spinal imaging in a child with NMOSD is illustrated in Figure 8d–f.

5.3. Advanced MRI Techniques

Because NMOSD primarily affects adults, with only 3–5% of patients with NMOSD
being children [132,135], the data on advanced neuroimaging techniques in pediatric cases
are sparse. A review by Kremer et al. describes advanced neuroimaging in adult patients
with NMOSD [153]. There is not sufficient evidence that MRS is sensitive to NMOSD, as
NAA, creatine, and choline levels are reported as within normal levels. DTI for adults with
NMOSD shows that non-lesional damage more often occurs in the connecting tracts around
lesions [154,155]. Spinal lesions in NMOSD showed higher RD than patients with MS,
reflecting more severe tissue damage [155], which correlates with the poor relapse recovery
noted in these patients [155]. Other studies have indicated extensive white matter damage
through DTI, noting significant FA decreases in the pyramidal tract, optic radiation, and
corpus callosum in patients with NMOSD [156]. Abnormalities in the NAGM, especially
the thalamus and putamen, with an increased average FA compared to age- and sex-
matched healthy adults, have also been revealed through DTI [157]. Increased ADC in
NMOSD lesions reflects vasogenic edema during acute inflammation [147]. In the NAGM
of patients with NMOSD, MTI revealed tissue damage upon finding lower MTR histogram
metrics and increased MD on DTI; however, the MTR values in NAWM were within normal
ranges [158].

5.4. Summary of Imaging in Pediatric Patients with NMOSD

NMOSD is a rare autoimmune inflammatory demyelinating disease in children. Pe-
diatric patients present with more brain involvement than adults. Given the distinct
antibodies (AQP4-IgG) of NMOSD, lesions observed on conventional MRI tend to appear
in brain regions with AQP expression. Future investigations with advanced MRI tech-
niques, especially diffusion imaging, in pediatric patients with NMOSD could offer more
information about the extent of disease involvement, and guide management in efforts to
reduce inflammation and demyelination, given the severe consequences if not treated early
with immunotherapy.

6. Myelin Oligodendrocyte Glycoprotein Antibody Disease
6.1. Overview

MOG antibodies have long been recognized in patients with demyelinating syndromes;
however, MOGAD has recently been recognized as a distinct disease entity with a unique
pathology and prognosis [87,159]. MOGAD is rare, with a higher incidence in children
(3.1 per million) than adults (1.3 per million) [117,160]. MOGAD can occur on its own,
or MOG antibodies can be detected in other demyelinating syndromes, such as NMOSD,
but are extremely rare in MS [87]. MOG is a CNS-specific protein and is expressed on
oligodendrocyte surface membranes and on the outer layer of the myelin sheath, ren-
dering it an ideal target for immunogenic antibodies in demyelinating processes [116].
Patients diagnosed with MOGAD are seropositive for an antibody against MOG and
exhibit a variety of symptoms similar to other neuroinflammatory and demyelinating
diseases [116,117,119,161]. Pediatric MOGAD manifests with both monophasic or relaps-
ing courses, typically presenting with ADEM (46%), ON (30%), transverse myelitis (11%), or
an NMOSD-like phenotype with ON and transverse myelitis [117]. Brain involvement, as
in ADEM, is seen more frequently in young children, whereas ON and spinal involvement
is seen more in older children and adult patients [159]. Additionally, cerebral cortical
encephalitis, brainstem, and cerebellar involvement, leading to fever, headache, nausea,
vomiting, seizures, visual impairments, motor deficits, and cognitive impairment, are also
described in the literature [116,117,161].
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6.2. Conventional Neuroimaging

Neuroimaging findings in pediatric patients with MOGAD are heterogeneous through-
out the brain and depend on the clinical manifestation. White matter lesions in children
with MOGAD often follow a large and confluent pattern, “leukodystrophy-like” [118,162].
More specifically, the literature has reported T2 hyperintense lesions in the corpus callosum,
orbital frontal gyrus, thalamus, basal ganglia, cerebellar peduncles, and brainstem adjacent
to the fourth ventricle [117–120]. An example is illustrated in Figure 9.
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Figure 9. A 4-year-old male with recent viral encephalitis presenting with new gait ataxia, finger
tingling, and headache and positive MOG antibody. Axial FLAIR images demonstrate multifocal,
non-enhancing lesions (black arrows) in the (a) cerebellum, (b) left brachium pontis, and (c) deep
gray matter structures, including the left caudate, anterior left putamen and globus pallidus, and the
right greater than left thalami. Additional bilateral hippocampal swelling and signal abnormalities
(white arrows) are shown on (d) coronal T2-weighted images.

In MOGAD-associated ADEM, imaging may reveal large, poorly demarcated T2
hyperintense lesions in the bilateral supratentorial and subcortical and deep white matter
as well as deep gray matter [118,120]. In MOGAD-associated NMOSD, periventricular
lesions are more typically found along the third ventricle as well as in the periaqueductal
grey matter and dorsal brainstem. Confluent white matter lesions in the juxtacortical white
matter and cortical and deep grey matter lesions are found in patients with MOGAD-
associated autoimmune encephalitis [118].

Optic nerve swelling is observed but appears to be poorly demarcated. MOGAD
typically involves the anterior segment of the optic nerve and spares the optic chiasm,
unlike NMOSD, which often involves the chiasm and posterior segment [117–120]. In
the spinal cord, common imaging findings include LETM spanning across three or more
vertebral segments, frequently in the cervical and thoracic spine [117–120].

While imaging features of MOGAD seem non-specific, there are a few distinguishing
factors on MRI. Curvilinear corpus callosal lesions and poorly demarcated lesions are
seen more frequently in young children with MOGAD compared to other demyelinating
diseases [118]. Patients with MS can have low-titer MOG antibodies, which can make it
difficult to differentiate between these two entities, but the presence of Dawson’s Fingers,
inferior temporal lobe lesions, lesions within subcortical U fibers, ovoid lesions perpendic-
ular to the lateral ventricle, and short segment spinal cord lesions are often indicative of
MS rather than MOGAD [117,118,120].

6.3. Advanced MRI Techniques

As for more advanced MRI techniques, DTI and quantitative susceptibility mapping
have been described in the literature; however, this is mostly for adult MOGAD patients.
Automated fiber quantification (AFQ) allows for a more detailed analysis and localization
of abnormalities in white matter tracts using DTI metrics [163]. AFQ technology in pediatric
MOGAD patients has shown widespread FA reductions and RD elevation in white matter
tracts, indicating disruption of white matter microstructure and myelin sheath integrity,
respectively [163]. Potential MOGAD biomarkers significantly associated with an expanded
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disability status scale include the FA of the left cingulum cingulate and the RD of the right
inferior frontal-occipital fasciculus [163]. In a study by Song et. al. DWI was performed
on pediatric patients with MOGAD, but none presented with diffusion restriction [161].
31P-Phosphorus MRS detects adenosine triphosphate (ATP), phosphocreatine, and inor-
ganic phosphate levels and reflects energy metabolism in the brain. Specifically, β-ATP
peaks correspond to intracellular free magnesium (Mg2+) levels [164]. Pediatric patients
with MOGAD exhibit β-ATP peak splitting, resulting in two distinct peaks. MOGAD
patients demonstrate low intracellular Mg2+ levels in white matter areas and more acidic
pH in the brain [164]. Mg2+ plays a critical role in ATP metabolism, and these observations
suggest that oligodendrocytes in the white matter of patients with MOGAD are susceptible
to Mg2+ deficiency [164].

6.4. Summary of Imaging in Pediatric Patients with MOGAD

The pediatric presentation of MOGAD is more common, and the imaging is more
heterogeneous, as patients with other demyelinating diseases are also MOG-IgG positive.
Analogous to ON and NMOSD, the lack of advanced imaging investigations for pediatric
populations with MOGAD needs to be addressed in the future with multisite longitudinal
studies to overcome limitations of small numbers of patients at a single institution and co-
occurrence with other demyelinating diseases. Diffusion imaging sequences are routinely
implemented in clinical settings and would be the most amenable for quantitative analyses
in future therapeutic trials.

7. Autoimmune Encephalitis
7.1. Overview

Autoimmune encephalitis is another antibody-mediated neuroinflammatory condi-
tion with an estimated incidence of 1.54 to 2.2 per million children per year based on two
studies [165,166]. Children with autoimmune encephalitis are previously healthy, with
prodromal symptoms including a fever and headache that precedes a rapid onset of symp-
toms, such as seizures, movement disorders such as ataxia, dystonia, chorea, myoclonus, or
tremors, disturbed sleep, agitation, altered levels of consciousness with some degree of cog-
nitive impairment, and confusion [167]. Children experience neurological manifestations
(seizure or movement disorders) more often than the psychiatric (anxiety or paranoia) and
autonomic symptoms seen in adolescents and adults [167,168]. As opposed to a condition
like MOGAD that involves a single type of antibody, autoimmune encephalitis can involve
many different antibodies, resulting in different subtypes of autoimmune encephalitis. The
most common type is anti-N-Methyl-D-Aspartic receptor (NMDAR) encephalitis, which
is the focus of case studies [169,170]. NMDAR encephalitis is more common in females
in patients older than 12 years [167,169]. In some patients with NMDAR encephalitis,
immunogenic antibodies are triggered by prior herpes simplex viral encephalitis or an
ovarian teratoma [165]. However, children are much less likely to have an associated
teratoma compared to adults [167,168]. Pediatric patients have a good prognosis but slow
recovery, with 85% following a monophasic course [171].

7.2. Conventional Neuroimaging

Demyelination is not a common feature of autoimmune encephalitis and only occurs
in 8.7% of pediatric patients with NMDAR encephalitis [172]. Atypical MRI findings on
T2-weighted and FLAIR sequences are found in less than half (31–40%) of pediatric pa-
tients with autoimmune encephalitis [168,171,173–176]. NMDAR encephalitis imaging
findings are diverse and manifest in all lobes, especially frontal, temporal, and parietal,
and include cortical, subcortical, basal ganglia, and infratentorial T2 hyperintense le-
sions [167,171,175]. T2 hyperintense frontal and occipital lesions are associated with poor
outcomes and residual neuropsychological dysfunction [175]. Meningeal enhancement
may be seen in contrast-enhanced MRI [175]. Imaging may evolve over time, and some
children who have normal initial MRI show brain atrophy, with ventricular enlargement
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at the follow-up examination [176]. Other imaging features that may suggest specific
antibodies associated with autoimmune encephalitis include increased T2/FLAIR signals
in the mesial temporal lobe, which is observed in rarer encephalitides with leucine-rich
glioma-inactivated 1 and contactin-associated protein-like 2 antibodies [171]. Recognition
of imaging findings may guide medical management in supporting the initiation of im-
munotherapy and minimizing procedures and treatments that have low benefits [177].
Figure 10a–h depicts the imaging of a pediatric patient with autoimmune encephalitis who
was found to demonstrate hyperintense signals in the thalamus, hippocampi, and frontal
gyri. Figure 10i,j demonstrates MRS in a patient with autoimmune encephalitis, with an
increase in the lactate and glutamate/glutamine levels and a decrease in the NAA levels.
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lustrated on coronal T2 images featured elevated signal for lactate (1.3 ppm) and glutamate/gluta-
mine (GLX, 2.1–2.5 ppm) accompanied by reduced N-acetyl aspartate (NAA) (2.0 ppm) levels for 
the left thalamic and right hippocampal regions sampled. These features supported the diagnosis 
of autoimmune encephalitis.  
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Figure 10. A 6-year-old male presented with new onset seizures, facial droop, and a family history of
transient ischemic attacks. The initial MRI with (a) axial FLAIR image and (b) diffusion ADC map
demonstrated multifocal areas of abnormal signal bilaterally (white arrows) involving the superior
frontal gyri. Axial FLAIR imaging also revealed (c) a left thalamic lesion, and (d) hippocampal forma-
tions showing increased signal intensity and enlargement without diffusion restriction. Select FLAIR
images from a follow-up study performed a week later showed progression throughout (e) frontal
cortices, (g) thalamus and insular cortices, and (h) hippocampi. The (f) ADC map demonstrated
restriction throughout subcortical white matter. Additional lesions emerged in the parietal lobes,
pons, cerebellar white matter, thalami, and basal ganglia. MRS (i,j) with voxel placement illus-
trated on coronal T2 images featured elevated signal for lactate (1.3 ppm) and glutamate/glutamine
(GLX, 2.1–2.5 ppm) accompanied by reduced N-acetyl aspartate (NAA) (2.0 ppm) levels for the
left thalamic and right hippocampal regions sampled. These features supported the diagnosis of
autoimmune encephalitis.
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7.3. Advanced MRI Techniques

Given the different antibodies, heterogeneous findings have been reported in the liter-
ature, with advanced MRI techniques from a few dedicated pediatric investigations. DWI
appearances may vary in patients with autoimmune encephalitis. Armangue et al. detailed
a pediatric patient with herpes simplex encephalitis followed by NMDAR encephalitis, in
which the initial DWI displayed increased signal and restricted diffusion in the opercular
regions that progressed to encephalomalacia one month later [169]. This finding does not
seem to be universal, as the type of autoimmune encephalitis often affects the presence or
absence of diffusion restriction. Diffusion restriction may occur in response to swelling,
seizure activity, inflammatory infiltration, gliosis, and neuronal loss [178]. Another study
by Kotsenas et al., investigating MRI characteristics in patients with autoimmune voltage-
gated potassium channel complex encephalitis with seizures, found restricted diffusion in
mesial temporal lobe structures such as the hippocampi [177]. A study by Lascano et al.
reported the absence of diffusion restriction in GABAAR autoimmune encephalitis [174].
Finke et al. used DTI to analyze white matter in patients with NMDAR encephalitis and
found an overall reduction in FA, an increase in MD, and RD localized to the cingulum [179].

Cai et al. conducted a resting state fMRI study evaluating adult and pediatric patients
with NMDAR encephalitis [180] and found a reduced amplitude of low-frequency fluctua-
tion values bilaterally in the cerebellum and posterior cingulate gyrus as well as the left
precuneus. Additionally, it was shown that the lingual gyrus, posterior cingulate gyrus,
fusiform gyrus, calcarine, cuneus, and posterior central gyrus displayed increased FC [180].
These findings may contribute to cognitive and emotional deficits observed in patients
following recovery from NMDAR encephalitis.

7.4. Summary of Imaging in Pediatric Patients with Autoimmune Encephalitis

Children with autoimmune encephalitis are previously healthy, with prodromal symp-
toms, including fevers and headaches that precede a rapid onset of neurological symptoms.
Conventional imaging may be absent specific findings for most pediatric patients evaluated
for autoimmune encephalitis. However, some pediatric patients with initially unremark-
able imaging may go on to develop volume loss that is observed in follow-up imaging
examinations. The inability of conventional MRI to display any features in these patients
speaks to the critical need for advanced imaging techniques to reveal occult pathological
processes. The findings of diffusion restriction are non-specific as they represent multiple
processes, but this technique does hold the potential for increasing the sensitivity of the
detection of regional involvement from autoimmune encephalitis with MRI. For those
with imaging findings, increased signal intensity on T2-weighted and FLAIR imaging
throughout the brain reflect the inflammatory processes that occur and are associated with
the immune response.

8. Febrile-Infection-Related Epilepsy Syndrome
8.1. Overview

FIRES is perhaps the most elusive and terribly fatal of the neurologic conditions
detailed in this review. This syndrome occurs mostly in children and is rare, affecting
approximately 1 in 1,000,000 children [181]. Unfortunately, there is not a clear etiology to
FIRES; it is unknown if the etiology is infectious, autoimmune, or a combination of the two,
and biomarkers are largely non-specific [181–183]. However, prior febrile infection is a di-
agnostic requirement for FIRES and may explain its origin to some degree [181–183]. Often,
children are infected with an upper respiratory infection or gastroenteritis before initial
manifestations of FIRES [181–183]. There are two recognized phases: acute and chronic.
The acute phase is often characterized by fever, recurrent seizures, vomiting, liver dysfunc-
tion, arrhythmia, headaches, drowsiness, confusion, and skin rash [181–183]. In the chronic
phase, seizures evolve into status epilepticus, causing neurological, neuropsychological,
and cognitive impairment [181–185].
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8.2. Conventional Neuroimaging

This syndrome exhibits differing neuroimaging findings associated with the phase of
disease. In the acute phase, over half to nearly two-thirds presented with an unremark-
able MRI [186–188]. For those with findings, hyperintense lesions in the temporal lobe,
hippocampi, and insular cortex are more commonly observed [187,188]. Leptomeningeal
enhancement may be found as well [186,188]. Acute presentation with hippocampal hyper-
intensity is illustrated in Figure 11.
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The chronic phase of FIRES is largely characterized by atrophy, which is likely asso-
ciated with the neurocognitive decline observed in the late phase. More specifically, stud-
ies have reported ventriculomegaly, mesial temporal lobe, and cerebellar atrophy 
[187,188]. Other distinguishing neuroimaging features of FIRES include deterioration and 
subsequent sclerosis of the hippocampus (typically within 15 days of seizure onset), fol-
lowed by widespread brain atrophy (typically within a month after onset) [187]. A study 
by Lee et al. also suggests that more extensive focal lesions with increased T2 and FLAIR 
signals within the periventricular white matter during the acute phase may predict an 
overall worse clinical outcome [183]. 
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Figure 11. A 3-year-old male presented with acute onset seizure. Initial MRI demonstrated increased 
signal intensity and diffusion restriction involving both hippocampal formations with subtle signal 
abnormality involving the adjacent amygdala. (a) Axial T2-weighted imaging at the level of the cer-
ebellum. (b) Axial T2-weighted, (c) coronal FLAIR, and (d) axial diffusion-weighted imaging reveal 
hyperintense signal within the hippocampus. (e) Initial coronal T1-weighted imaging. (f) Short echo 
magnetic resonance spectroscopy of the left hippocampus demonstrated reduced N-acetyl aspartate 
(resonance located at 2.0 ppm). In a follow-up study performed 6 months later demonstrated reso-
lution of the noted hippocampal signal findings. However, asymmetric volume loss of the cerebel-
lum with prominent cerebellar sulci ((g) axial T2-weighted) and right hippocampal formation ((h) 
coronal T1-weighted) imaging. These features were consistent with a diagnosis of febrile-infection-
related epilepsy syndrome (FIRES).  
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chronic phase, like autoimmune encephalitis, undetected processes are occurring that re-
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brain using imaging techniques. 
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Figure 11. A 3-year-old male presented with acute onset seizure. Initial MRI demonstrated increased
signal intensity and diffusion restriction involving both hippocampal formations with subtle signal
abnormality involving the adjacent amygdala. (a) Axial T2-weighted imaging at the level of the
cerebellum. (b) Axial T2-weighted, (c) coronal FLAIR, and (d) axial diffusion-weighted imaging reveal
hyperintense signal within the hippocampus. (e) Initial coronal T1-weighted imaging. (f) Short echo
magnetic resonance spectroscopy of the left hippocampus demonstrated reduced N-acetyl aspartate
(resonance located at 2.0 ppm). In a follow-up study performed 6 months later demonstrated
resolution of the noted hippocampal signal findings. However, asymmetric volume loss of the
cerebellum with prominent cerebellar sulci ((g) axial T2-weighted) and right hippocampal formation
((h) coronal T1-weighted) imaging. These features were consistent with a diagnosis of febrile-infection-
related epilepsy syndrome (FIRES).
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The chronic phase of FIRES is largely characterized by atrophy, which is likely associ-
ated with the neurocognitive decline observed in the late phase. More specifically, studies
have reported ventriculomegaly, mesial temporal lobe, and cerebellar atrophy [187,188].
Other distinguishing neuroimaging features of FIRES include deterioration and subse-
quent sclerosis of the hippocampus (typically within 15 days of seizure onset), followed
by widespread brain atrophy (typically within a month after onset) [187]. A study by Lee
et al. also suggests that more extensive focal lesions with increased T2 and FLAIR signals
within the periventricular white matter during the acute phase may predict an overall
worse clinical outcome [183].

8.3. Summary of Imaging in Pediatric Patients with FIRES

The etiology of FIRES is not currently defined; however, prior febrile infections re-
main a requirement for making a diagnosis. Acute-phase conventional imaging may not
demonstrate any abnormalities. However, for pediatric patients with findings, lesions with
hyperintense signals are observed in the hippocampi and insular cortex. In the chronic
phase, like autoimmune encephalitis, undetected processes are occurring that result in
volume loss in the brain, which is an urgent unmet need for research investigation to
develop methods to uncover the etiology and map the extent of involvement within the
brain using imaging techniques.

9. Conclusions

This review provided a broad overview of demyelinating and neuroinflammatory
diseases that present in children. Currently, the most sensitive neuroimaging tools to
help clinicians in diagnosing and characterizing these diseases in the brain and spine are
conventional magnetic resonance imaging sequences that include multiplanar, standard T1-
weighted (with and without contrast), T2-weighted, and FLAIR sequences. A comparative
table summarizing conventional imaging features for these diseases is presented in Table 1.
Patterns have emerged that can assist in narrowing the diagnostic differential. Advanced
MRI-based techniques for POMS and other neuroinflammatory diseases may be helpful in
differentiating these disorders and serve as biomarkers for disease progression. However,
the widespread implementation of these techniques has been limited due to several factors,
including the rarity of patients with these diseases, restrictions imposed on the length
of imaging studies due to the acute morbidity of this patient population, and a lack
of widespread availability of these techniques within the clinical research setting and
accompanying expertise in acquisition and interpretation. As many of these advanced
MRI techniques become standardized across scanner vendors and institutions, it will be
imperative for clinicians, neuroradiologists, and imaging researchers to implement multisite
investigations to identify imaging biomarkers in patients with demyelinating diseases and
other neuroinflammatory conditions with the goal of obtaining objective biomarkers for
therapeutic trials.

Table 1. Comparative summary of Conventional MRI features of pediatric-onset multiple sclerosis
and pediatric neuroinflammatory diseases.

Disease Presentation Locations of Involvement Enhancement Comments

Pediatric-onset
Multiple Sclerosis

Two distinct events;
Relapsing

Periventricular lesions in deep white
matter, Juxtacortical (subcortical white
matter) lesions, infratentorial lesions
that are focal, ovoid-shaped lesions.

Spinal cord lesions spanning less than
3 vertebral segments.

Active lesions show
enhancement

Small, ovoid lesions perpendicular
to long axis of corpus callosum
(Dawson’s fingers); Lesions in

subcortical U-fibers; Silent lesions;
Black holes (T1 hypointense

lesions); Variable age of lesions

ADEM

Typically,
Monophasic

following infection
or vaccination

Centrum semiovale, thalamus, basal
ganglia, cerebellum, brainstem;

bilateral involvement; spinal cord
involvement

Inconsistent lesion
enhancement: if

present, most
lesions show
enhancement

Asymmetric white matter, but
symmetric deep gray matter

lesions with borders not
well-defined; variable sizes, larger
than 2 cm; Similar age of lesions



Tomography 2024, 10 2119

Table 1. Cont.

Disease Presentation Locations of Involvement Enhancement Comments

ON

Acute Phase
Enlargement, swelling of the optic

nerve; >70% bilateral involvement in
children < 10 years

Optic nerve
enhancement

May also be featured in other
diseases

Chronic phase Atrophy of the optic nerve Absent optic nerve
enhancement

NMOSD

At presentation:
>60% unremarkable N/A N/A N/A

At presentation:
<40% with findings

Corpus callosum, subcortical white
matter, periventricular white matter,

area postrema, brainstem, near the 3rd
and 4th ventricles, thalamus and

hypothalamus; Spinal cord transverse
myelitis

Cloud-like pattern;
Linear, pencil-thin
of the ependymal
surface of lateral

ventricles

Corpus callosum lesions-large,
irregularly shaped; Tumefactive,

confluent lesions->3 cm

NMOSD with ON At presentation:
<40% with findings

Bilateral, longitudinally extensive
posterior optic nerves (optic chiasm,

optic tracts); spinal cord—central over
three or more vertebral segments

Infraorbital fat
enhancement

Initial presentation with ON;
relapses with transverse myelitis

MOGAD

MOGAD

Corpus callosum, orbital frontal gyrus,
thalamus, basal ganglia, cerebellar
peduncles, brainstem; Spinal cord

-longitudinally extensive transverse
myelitis

Less common; 25%
spinal

Large, confluent,
leukodystrophy-like lesions;

curvilinear corpus callosal lesions,
lesions with borders not

well-defined in young children

MOGAD-
associated ADEM

Bilateral supratentorial, subcortical white
matter, deep white matter, deep gray
matter (thalamus)

MOGAD-
associated NMOSD

Periventricular lesions, periaqueductal
grey matter, dorsal brainstem

MOGAD-
associated ON

Swelling of the anterior optic nerve,
optic nerve sheath; bilateral involvement

MOGAD-
associated AE

Confluent subcortical white matter,
cortical and deep grey matter lesions

AE

At presentation:
>60% unremarkable N/A N/A

Depends on Antibody
At presentation:

<40% with findings
NMDAR: all lobes, cortical, subcortical,

basal ganglia, infratentorial Meningeal

FIRES

Acute phase: 2/3
unremarkable N/A N/A

Acute phase: 1/3
with findings

temporal lobe, hippocampi, insular
cortex: increased T2 and FLAIR signal Leptomeningeal

Chronic phase ventriculomegaly, mesial temporal
lobe, cerebellum: atrophy
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