
Academic Editor: Emilio Quaia

Received: 29 December 2024

Revised: 20 February 2025

Accepted: 24 February 2025

Published: 26 February 2025

Citation: Wang, S.; Sun, X.; Li, Y.; Wei,

Z.; Guo, L.; Li, Y.; Chen, P.; Li, X.

ADMM-TransNet: ADMM-Based

Sparse-View CT Reconstruction

Method Combining Convolution and

Transformer Network. Tomography

2025, 11, 23. https://doi.org/

10.3390/tomography11030023

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

ADMM-TransNet: ADMM-Based Sparse-View CT
Reconstruction Method Combining Convolution and
Transformer Network
Sukai Wang 1,2, Xueqin Sun 2,3, Yu Li 2,3, Zhiqing Wei 2,3, Lina Guo 2,3 , Yihong Li 4, Ping Chen 2,3 and Xuan Li 2,3,*

1 School of Computer Science and Technology, North University of China, Taiyuan 030051, China;
wangsukai@nuc.edu.cn

2 Shanxi Key Laboratory of Intelligent Detection Technology and Equipment, North University of China,
Taiyuan 030051, China; sunxueqin@nuc.edu.cn (X.S.); 20240154@nuc.edu.cn (Y.L.);
b20230507@st.nuc.edu.cn (Z.W.); guolina@nuc.edu.cn (L.G.); chenping@nuc.edu.cn (P.C.)

3 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
4 Department of Mathematics, North University of China, Taiyuan 030051, China; 20230007@nuc.edu.cn
* Correspondence: lixuan@nuc.edu.cn

Abstract: Background: X-ray computed tomography (CT) imaging technology provides
high-precision anatomical visualization of patients and has become a standard modal-
ity in clinical diagnostics. A widely adopted strategy to mitigate radiation exposure is
sparse-view scanning. However, traditional iterative approaches require manual design of
regularization priors and laborious parameter tuning, while deep learning methods either
heavily depend on large datasets or fail to capture global image correlations. Methods:
Therefore, this paper proposes a combination of model-driven and data-driven methods,
using the ADMM iterative algorithm framework to constrain the network to reduce its
dependence on data samples and introducing the CNN and Transformer model to increase
the ability to learn the global and local representation of images, further improving the
accuracy of the reconstructed image. Results: The quantitative and qualitative results show
the effectiveness of our method for sparse-view reconstruction compared with the current
most advanced reconstruction algorithms, achieving a PSNR of 42.036 dB, SSIM of 0.979,
and MAE of 0.011 at 32 views. Conclusions: The proposed algorithm has effective capability
in sparse-view CT reconstruction. Compared with other deep learning algorithms, the
proposed algorithm has better generalization and higher reconstruction accuracy.

Keywords: sparse-view CT; CT reconstruction; ADMM; CNN; transformer

1. Introduction
X-ray computed tomography (CT) provides high-precision volumetric imaging of

anatomical structures within the human body and has established itself as a cornerstone in
clinical diagnostics, offering non-invasive diagnostic capabilities with an exquisite spatial
resolution [1]. However, the high radiation dose associated with CT scanning increases the
risk of cancer in humans [2]. Radiation exposure to the human body follows the principle of
a “dose–effect relationship”, meaning that the potential harm is directly related to the dose
of radiation received. To minimize this risk, an As Low As Reasonably Achievable (ALARA)
principle should be strictly adhered to. Under the premise of ensuring high-quality imaging,
various technical measures should be employed to reduce radiation hazards to the lowest
possible levels. One commonly adopted solution to reduce the radiation dose is to minimize
the scanning angle by employing sparse-view scanning [3]. Nevertheless, the projection
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data obtained through sparse-view scanning is incomplete, and directly solving the inverse
problem of the imaging model (e.g., using the filtered back projection (FBP) method [4])
leads to severe streaking artifacts in the reconstructed images. Consequently, the image
quality often fails to meet the requirements for clinical diagnosis.

For the problem of sparse-view CT reconstruction, iterative reconstruction algorithms
are commonly used (e.g., algebraic reconstruction technique (ART) [5], simultaneous al-
gebraic reconstruction technique (SART) [6], and expectation maximization (EM) [7]).
Compared to analytical reconstruction algorithms, iterative methods can improve recon-
struction quality to a certain extent; however, satisfactory results remain challenging to
achieve when the projection data are incomplete [8]. In recent years, regularized image
reconstruction algorithms have been increasingly applied to address the issue of CT re-
construction with incomplete projection data. Regularized reconstruction methods based
on a compressed-sensing (CS) theory leverage the sparse prior information of images [9],
enabling accurate CT reconstruction from sparse-view data. However, regularized iterative
reconstruction methods typically require the design of various regularization terms and
the formulation of appropriate prior assumptions for different types of CT images. Addi-
tionally, these methods often involve cumbersome manual parameter tuning, making the
adjustment process labor-intensive and highly challenging.

In recent years, with the development of deep learning technology [10,11], deep
learning-based methods have been widely applied to CT reconstruction tasks [12]. By
adopting data-driven modeling approaches, adaptive training of relevant parameters can be
achieved. In particular, convolutional neural networks (CNNs) and Transformer networks
have extensive applications and advantages in the field of CT imaging. Generally, deep
learning-based CT reconstruction methods can be broadly categorized into image-domain-
based reconstruction methods, domain-transformation-based reconstruction methods, and
model-based plug-and-play reconstruction methods.

Image-domain-based methods leverage the powerful advantages of deep learning
technology in computer vision applications, which have already been demonstrated in
areas such as image denoising and high-resolution image reconstruction [13–15]. By
employing well-established deep model networks as post-processing steps for images,
these methods achieve high-quality reconstruction results. The U-net network [16] was
initially one of the algorithms using convolution for semantic segmentation tasks and
achieved excellent results in image segmentation. Subsequently, Jin et al. [17] applied
the U-net network for CT reconstruction, combining the FBP (Filtered Back Projection)
reconstruction algorithm with the U-net network, which can effectively eliminate the streak
artifacts produced via FBP reconstruction. Zhang et al. [18] learned the initializer of the
conjugate gradient algorithm, and the proposed network effectively reduced image noise
while also reducing the number of training parameters and improving the network-training
speed. Kang et al. [19] proposed an unsupervised model and designed a cycle-consistent
adversarial denoising network, which has a better effect on noise suppression and detail
preservation. Zhang [20] trained a Transformer-based neural network and decomposed
the noisy low-dose CT image into high frequency and low frequency to extract content
features and enhance low-dose CT image quality. Employing deep learning algorithms
as a post-processing step for images can reduce computational costs to a certain extent.
However, the features extracted by deep networks are highly influenced by the initial
traditional reconstruction results. Especially when the projection data are incomplete and
contains obvious noise, the initially reconstructed images contain relatively complex and
obvious noise, which is difficult to eliminate even through deep network models. Moreover,
the information lost during the initial reconstruction is also difficult to accurately recover
through post-processing. Therefore, the above post-processing methods are more suitable
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for processing CT images with high reconstruction quality, low noise, and a small gap from
the high-quality reconstruction results.

Domain transform methods refer to methods that directly map detector data to CT
images. The networks can effectively extract implicit relationships within the data, which
allows for the extraction and utilization of prior knowledge embedded within the data
without the need to establish complex mathematical models for the distribution of the data.
Zhu et al. [21] proposed the manifold-based reconstruction network AUTOMAP, defining
image reconstruction as a data-driven supervised learning task that learns the mapping
relationship between sensor and image domains. Compared to traditional reconstruction
methods, both reconstruction artifacts and noise are reduced. He et al. [22] encoded the
prior knowledge of transforming real object–projection geometric relationships into virtual
relationships (depicted by under-sampled imaging geometry models) through feature
extraction and representation learning. By combining under-sampling modeling strategies
with prior information, this neural network is able to achieve rapid and accurate CT image
reconstruction. For 3D CT reconstruction, Shen et al. [23] proposed the single-projection
reconstruction algorithm, which enables 3D reconstruction from a single projection. Based
on this method, Li et al. [24] trained an improved autoencoder network to learn shared
structural features within three-dimensional volumes from two-dimensional projections,
enabling the reconstruction of three-dimensional volumes from a single projection at
any perspective to a specific perspective, reducing computational load while improving
reconstruction accuracy. Sun et al. [25] used a deep network to parameterize a nonlinear
mapping function from orthogonal projections to CT volumes for 3D reconstruction, further
enhancing the reconstruction accuracy. Unlike traditional reconstruction algorithms, the
aforementioned algorithm does not perform reconstruction through the mathematical
inversion of the projection-imaging process. Instead, it reconstructs the target by utilizing
the structural features extracted from the projections. However, the main limitation of the
direct mapping from raw data to images is its severe dependence on large amounts of data
and the high computational cost, especially the huge GPU memory requirement, which
makes it difficult to be applied in practical systems.

The model-based plug-and-play reconstruction method integrates deep network mod-
els with iterative reconstruction algorithms. In the iterative process, the model incorporates
a deep neural network as a prior term. Wu et al. [9] introduced an unsupervised K-sparse
autoencoder (KSAE) as a prior term in the iterative model and trained it using the fi-
delity between the reconstructed image and the manifold as the optimization objective,
demonstrating certain advantages in noise reduction and detail reconstruction in low-dose
CT reconstruction; Gao [26] used a Markov Random Field-Texture (MRF-T) method to
enhance the reconstruction details of local tissues in low-dose images by incorporating
tissue textures extracted from full-dose images as prior knowledge; Han et al. [27] designed
a deep network structure in the differential back-projection domain to perform Hilbert-
related ill-posed deconvolution, effectively removing cone-beam artifacts by utilizing a
data-driven inversion approach. Wu et al. [28] developed a unified optimized mathemati-
cal model that incorporates projection data and image prior knowledge into an analytical
iterative framework, which is significantly effective in artifact removal. Zhang et al. [29]
proposed a Deep Residual Iterative Minimization Network (DREAM-Net) based on a novel
iterative reconstruction framework. Unlike conventional deep iterative reconstruction
frameworks, DREAM-Net leverages deep neural networks for constraints in the projection
domain, residual space, and image domain simultaneously. The model-based plug-and-
play reconstruction method can be trained with a relatively small dataset and achieve good
reconstruction quality. However, due to the lack of feedforward paths in the neural network
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in the algorithm, the computational cost is relatively high and it can only be applied to
high-precision reconstruction scenarios with low requirements for reconstruction time.

Beyond conventional deep learning-based reconstruction techniques, current research
encompasses projection-domain-based algorithms and dual-domain reconstruction frame-
works that operate transversely across both image and projection domains. Notably,
projection-domain reconstruction methods typically employ neural networks to refine
incomplete projection data through task-specific feature enhancement, followed by image
reconstruction from the augmented projections. Lee [30] completed missing projection
information in the sinogram using a U-Net architecture, outperforming common interpola-
tion methods and providing complete projection data for analytical reconstruction methods.
Dual-domain reconstruction algorithms combine reconstruction methods from both the pro-
jection domain and the image domain, thereby further enhancing reconstruction accuracy.
Li et al. [31] proposed a multi-domain joint learning framework that incorporates training
modules in the projection domain, image domain, and residual domain, ensuring data con-
sistency while significantly improving the detail information in the reconstructed images.

Deep learning-based sparse-view CT reconstruction algorithms have achieved some
promising advancements, but these methods all have certain limitations. Image-domain-
based methods as a step in post-processing can reduce some computational costs. However,
when the projection data are highly incomplete, they can lead to excessive smoothing of
the image. The main limitation of the domain transform method is its severe dependence
on large amounts of data and the high computational cost. Furthermore, the networks are
overly reliant on data-driven approaches, resulting in poor generalizability. In comparison,
the model-based plug-and-play reconstruction method can be trained with smaller datasets
and achieve good reconstruction quality, but the computational cost is high and can only
be applied to high-precision reconstruction scenarios with lower requirements for recon-
struction time. These algorithms, by expanding the iterative algorithm framework into
distinct network layers, offer enhanced interpretability. Furthermore, being constrained by
the optimization algorithm framework, they can effectively prevent overfitting, thereby
possessing stronger generalization capabilities. However, most existing iterative unfolding
methods are based on CNNs, which overlook the non-local correlations between images. To
address this issue, this paper proposes a CT reconstruction algorithm that combines CNN
and Transformer, expanding the receptive field range through self-attention mechanisms
to enhance the model’s ability to learn global image representations. Additionally, the
algorithm incorporates multi-head transposed attention model and gated feed-forward
network to reduce computational complexity and to enhance the complementary image
details between network layers.

The structure of the remainder of this paper is as outlined below: Section 2 details the
implementation specifics of ADMM-TransNet. Section 3 presents experiments on simulated
datasets, and conducts noise robustness and ablation experiments on the proposed method.
Section 4 concludes with summaries and outlines future work.

2. Materials and Methods
In this work, we propose an ADMM-based iterative unfolding network for CT recon-

struction that autonomously learns regularization priors and hyperparameters through
a data-driven paradigm, thereby eliminating the necessity for manual prior design and
reducing computational burden associated with parameter optimization while enhancing
reconstruction fidelity. Furthermore, to address the limitation of CNN models in capturing
non-local correlations within images, we propose ADMM-TransNet, the algorithm that
integrates CNN and Transformer. By leveraging the ADMM iterative framework, this
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approach enhances the extraction of both local and global image features, preserves image
details more effectively, and improves the accuracy of the reconstructed images.

2.1. Total Variation (TV) Method

The CT projection can be expressed mathematically in the form of a linear equation:

Ax = y (1)

In this context, A = {aij} denotes the system matrix, x signifies the image vector to be
determined, and y corresponds to the measured projection data acquired from detectors
across multiple views. The objective of the reconstruction process is to deduce the unknown
vector x utilizing the system matrix A and the projection data y.

Given a complete set of projections that are largely free from noise, Equation (1) can
be inverted analytically using the FBP method, applicable to both fan-beam and cone-beam
geometries. However, in scenarios where data are undersampled, Equation (1) admits an
infinite number of solutions. The ART method and its variants can converge to the solution
that is closest to an initial estimate. To achieve a plausible approximate solution, numerous
optimization models incorporating regularization have been suggested. For the sake of
brevity, the regularization reconstruction model can be formulated as follows:

x = arg min
x

E(x) = arg min
x

1
2
||Ax − y||22 + λR(x) (2)

where the notation || · ||22 refers to the L2 norm. The initial term ensures data fidelity, aligning
the reconstructed image vector x with the measured projection data y. The subsequent
term serves as a regularization component, with λ being the regularization parameter that
modulates the trade-off between the fidelity term and the regularization term.

In CT imaging, the image gradient approaches zero in homogeneous regions and
becomes non-zero at the boundaries, resulting in a sparse gradient distribution. To capi-
talize on this sparsity, the L1 norm is applied to the gradient of the image, leading to the
concept of Total Variation (TV) regularization. Employing the concept of anisotropic TV,
the regularization term in Equation (2) can be articulated as follows:

R(x) = ||x||TV = ∑
j

∣∣∣∣Djx
∣∣∣∣

1 (3)

Dj denotes the differential operator along the j-th direction. In two-dimensional (2D)
scenarios, D1 and D2 correspond to the difference operators for the horizontal and vertical
directions, respectively.

2.2. ADMM Algorithm for Optimized Model

The CT reconstruction model employing sparse regularization can be depicted as
follows:

x = arg min
x

1
2
∥Ax − y∥2

2 + λ∥Dx∥1 (4)

Utilizing the Alternating Direction Method of Multipliers (ADMM) optimization
technique, the objective function is effectively partitioned into several manageable sub-
problems that are addressed sequentially. With the introduction of an auxiliary variable z,
Equation (4) can be reformulated as follows:

x = arg min
x

1
2
∥Ax − y∥2

2 + λ∥z∥1 s.t. z =Dx (5)
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In order to separate the variables x, z, and α, Equation (5) can be broken down into
three distinct sub-problems:

min
x

1
2∥Ax − y∥2

2+ <α, Dx − z> + ρ
2∥Dx − z∥2

2

min
z

λ∥z∥1+ <α, Dx − z> + ρ
2∥Dx − z∥2

2

min
α

< α, Dx − z >

(6)

The sub-problems associated with variables x and α can be iteratively solved using
the gradient descent method. Regarding the z sub-problem, it can be directly resolved
through the soft-thresholding approach [32]. The solution to the z sub-problem is given by
the following:

z = max{|Dx +
α

ρ
| − λ

ρ
, 0} × sgn(Dx +

α

ρ
) (7)

The sub-problems for x and α are addressed using the gradient descent method, with
β defined as α/ρ. The optimization steps of the ADMM algorithm are as follows:

x(n) = x(n−1) − ηρDT(Dx(n−1) + β(n−1) − z(n−1))− ηAT(Ax(n−1) − y)
z(n) = max{|Dx(n−1) + β(n−1)| − λ

ρ , 0} × sgn(Dx(n−1) + β(n−1))

β(n) = β(n−1) + γ(Dx(n) − z(n))
(8)

In the prior term, D and DT represent the different operators for the horizontal and
vertical directions, respectively. To streamline the iterative process, the parameters in
Equation (7) are consolidated by defining a new parameter that encapsulates the product
of several parameters, which are adaptively learned throughout the iterations. Specifically,
let θ = η×ρ and ψ = λ/ρ. The resulting iterative model is as follows:

x(n) = x(n−1) − θDT(Dx(n−1) + β(n−1) − z(n−1))− ηAT(Ax(n−1) − y)

z(n) = max
{∣∣∣Dx(n−1) + β(n−1)

∣∣∣−ψ, 0
}
× sgn(Dx(n−1) + β(n−1))

β(n) = β(n−1) + γ(Dx(n) − z(n))

(9)

2.3. Proposed ADMM-TransNet Network

Inspired by the modular structure of the ADMM algorithm and the plug-and-play
strategy [33] that combines model-based inversion algorithms with advanced denoising
algorithms, the network integrates an improved Transformer network and CNN into the
reconstruction formula, using the network as a substitute for the prior term. The proposed
ADMM-TransNet network embeds CNN-based modules (MDTA and GDFN) within the
Transformer module under the framework of the ADMM algorithm, achieving a com-
plementary integration of global and local information in images, thereby enhancing the
overall performance of CT image reconstruction. Through model training, we obtain a
sparsity variation that is more suitable for the training-sample images. By combining
the Transformer with CNN, the network’s ability to learn both local and global features
is enhanced, allowing for the reconstruction of higher quality CT images. The overall
network structure is shown in Figure 1. The overall network structure is derived from
the ADMM optimization Equation (9), with Figure 1 illustrating a deep network model
of N layers (with n iterations), where each layer represents one iteration of the ADMM
optimization algorithm. During the ADMM iteration process, three modules represent
different optimization sub-problems, corresponding to the x(n) layer, z(n) layer, and β(n)
layer, respectively. The prior information D and DT are embedded into the reconstruc-
tion formula using an improved Transformer network. The nth iteration of the ADMM
algorithm corresponds to the nth layer of the network depth, where the projection data
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obtained from the measurements sequentially pass through the x(n) layer, z(n) layer, and
β(n) layer. Ultimately, the x(n) layer outputs the final reconstructed image.
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Utilizing the Transformer model to incorporate prior information in the ADMM
algorithm enhances the reconstruction model’s ability to capture global features, while the
CNN layers within the Transformer retain the capability to represent local image features.
The integration of the Transformer model generally overcomes the limitations of CNN
receptive fields; however, it is computationally intensive and may not be suitable for
high-resolution image reconstruction tasks.

The pioneering work of applying the Transformer in the field of image processing is
the Vision Transformer (ViT) model [34] published by Google. This work demonstrated
that the Transformer could be directly applied to the domain of image processing. Sub-
sequently, the Transformer model has achieved promising results in image classification,
image detection, and image segmentation [35–37], marking a transition from convolution-
based feature extractors to attention-based models. However, in the field of medical
imaging, Transformer-based models have not been extensively studied, primarily due to
the quadratic increase in computational complexity of the Self-Attention (SA) model with
spatial resolution, making it challenging to apply in high-resolution medical images. To
reduce computational demands, researchers have applied SA within a window size of 8 × 8
around each pixel [13] or by dividing the input image into non-overlapping blocks of size
48 × 48 and computing SA independently on each small sub-image [38]. However, these
methods limit the spatial scope of SA, contradicting the goal of capturing global feature
information. Therefore, this paper proposes modifications to the Transformer model by
incorporating the Multi-Dconv head transposed attention and gated-Dconv feed-forward
network modules [39] to reduce overall complexity.

The Transformer model, as shown in Figure 2, assumes a spatial dimension of H × W
and a channel count of C for the input image I ∈ RH×W×3. During the encoding process,
the dimensions are progressively reduced, while the number of channels is expanded. Ini-
tially, a convolutional operation is performed to obtain low-level feature embeddings with
dimension F0 ∈ RH×W×C. These shallow features are then processed through a four-layer
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encoder–decoder-structured Transformer module to yield deep features Fd ∈ RH×W×2C,
with a gradual reduction in dimensions and an expansion in the number of channels.
During decoding, the input features Fl ∈ R

H
8 ×W

8 ×8C, and the image is restored layer by
layer to a high-resolution image. Upsampling and downsampling within the network are
carried out using pixel-unshuffle and pixel-shuffle [40], respectively. To enhance the image
recovery process, features from the encoder are connected to those of the decoder through
skip connections. Following the connection, the operation is a 1 × 1 convolution to reduce
the channel count.
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The MDTA module has linear computational complexity, with the key feature being
the computation of SA over the image channels rather than individual image pixels. It
introduces deep convolution to emphasize local features before calculating feature co-
variance to generate global features. Initially, the tensor Y ∈ RH′×W ′×C′

, after passing
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through a normalization layer, is processed by a 1 × 1 convolution to aggregate pixel-wise
cross-channel context, followed by a 3 × 3 depthwise convolution to encode channel-wise
spatial context, resulting in the projections for query (Q), key (K), and value (V):

Q = WQ
d Wp

QY (10)

K = Wd
KWK

p Y (11)

V = Wd
VWV

p Y (12)

Wp
(·) denotes a 1 × 1 convolution, and Wd

(·) represents a 3 × 3 depthwise convolution.
Through reshaping and matrix multiplication operations, a transposed attention map A
with dimension RC′×C′

is generated. The process can be expressed as follows:

X′ = Wp Attention(Q′, K′, V′) + X (13)

Attention(Q′, K′, V′) = V′So f tmax(K′ × Q′/α) (14)

α is a learnable scaling parameter.
The GDFN module is an improvement based on the traditional feed-forward network

(FN). The structure of the GDFN is shown in the figure. The gating mechanism of the GDFN
is beneficial for directing the network to focus on details that complement other levels. This
gating mechanism is reflected in the network’s computation process as the element-wise
product of two parallel linear transformation paths, where one path controls the output of
the other through a GELU nonlinear activation [27]. Like the MDTA module, depthwise
convolution is used to encode information from spatially adjacent pixel positions. For
X ∈ RH′×W ′×C′

, the GDFN module can be expressed as follows:

X′ = W0
p Gating(X) + X (15)

Gating(X) = ((ϕ(Wd
1W1

p(LN(X)) · ((W2
d W2

p(LN(X)) (16)

The activation function GELU is denoted by φ.
In the ADMM-TransNet network, the parameters involved in the Transformer model

are denoted as ΘT, and the parameters in the reconstruction model are denoted as ΘP = {θ, η,
ψ, γ}. The set of training parameters is represented as Θ = {ΘT} ∪ {ΘP}. All parameters are
optimized within the same framework using the Mean Squared Error (MSE) loss function
to minimize the global loss function E(Θ):

E(Θ) =
1
N

N

∑
i=1

∥∥∥xi(Θ)− xgt
i

∥∥∥2

2
(17)

where xgt corresponds to the ground truth of the image, and N is the number of image pairs
used for training the network.

3. Experimental Steps
3.1. Traning Details

The ADMM-TransNet network uses the Adam algorithm [41] to optimize the loss
function. During the training process of the network, the initial values of the parameters in
the ADMM-TransNet iterative model are set as ΘP = {θ = 2−5, η = 2−5, ψ = 2−7, γ = −10−5}.
The initial learning rate of ΘD is set to 10−4 and gradually decreases to 3 × 10−6, while the
initial learning rate of Θp is set to 10−8 and slowly decreases to 3 × 10−10. ADMM-TransNet
adopts a four-layer encoder–decoder architecture. From the first layer to the fourth layer,
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the number of Transformer Blocks is set to {4, 6, 6, 8}, and the number of attention heads in
MDTA is {1, 4, 4, 8}. The number of channels is {48, 96, 96, 192}, and in the GDFN module,
γ is set to 8/3. During training, if the validation loss remains unchanged for five epochs,
the learning rate is reduced to half of its original value. The number of ADMM iterations
(stages) is set to 20, and the initial value of x(0) is set to the reconstruction result from the
FBP algorithm. The training environment for this experiment is TensorFlow with a single
Nvidia Tesla V100 32GB GPU, developed by NVIDIA Corporation in Santa Clara, CA, USA.

3.2. Dataset

To assess the performance of the ADMM-TransNet network, we employ the open-
access dataset authorized by the “2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand
Challenge” [42]. In total, 560 CT images from 10 cases were selected, 8 cases (448 CT
images) were used for training, 1 case (56 CT images) for validation, and 1 case (56 CT
images) for testing. The original projections in the dataset were obtained from helical
trajectory CT scans and cannot be directly used for fan-beam CT image reconstruction;
hence, the sparse view projections used in the experiments were simulated from the ground
truth images. The ground truth reference images were acquired from the original data of
conventional dose CT (NDCT) at 100 kV and downsampled to a size of 256 × 256. We
performed forward projections of fan-beam scanning from the NDCT images for 32, 64,
and 128 degree views. The specific simulated parameters are listed in Table 1.

Table 1. Data acquisition parameters.

Parameters Value

1 distance from the X-ray source to the flat-panel detector 1320.5 mm

2 distance from the X-ray source to the rotation center of
the object 1050.5 mm

3 number of detectors 512
4 detector pixel size 0.127 mm
5 reconstruction size 256 × 256

3.3. Comparison Methods

Random projections were selected from the test dataset to conduct a comprehen-
sive evaluation of the proposed reconstruction method. Six different methods were com-
pared with the algorithm presented in this paper: FBP [4], ADMM [43], FBPConvNet [17],
LEARN [44], ADMM-Svnet [45], and Trans-CT [20]. Among them, FBP and ADMM al-
gorithms are two traditional CT reconstruction methods. The FBP algorithm is a widely
used classical analytical reconstruction method, included in the paper to demonstrate
that direct reconstruction under sparse view can lead to severe artifacts. ADMM is an
iterative CT reconstruction method that employs ADMM to solve a CT model with con-
strained TV minimization. ADMM parameters: µ = 210, β = 27; Condition of convergence:
number of iterations = 500. FBPConvNet, LEARN, ADMM-SVnet, and Trans-CT are deep
learning-based CT reconstruction methods that have gained popularity in recent years.
FBPConvNet is a CNN-based post-processing method for sparse-view CT, with a kernel
size = 3; the initial learning rate was set to 10−4 and gradually decreased to 10−6, with the
initial network input set to the FBP result. EARN is an iterative unfolding network based
on CNN, using a one-step gradient descent method to solve a CT model with constrained
minimization. The number of filters was set to 48; the kernel size was set to 5; the number
of iterations was set to 50, and the initial network input was set to 0. The initial learning
rate was set to 10−4 and gradually decreased to 10−6. ADMM-SVnet is our previous work,
employing a CNN-based ADMM iterative unfolding network, with ADMM iteration stages
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set to 20, filter size = 3 × 3, number of filters = 32, and initial values for the iterative model
parameters η = 2−5, ψ = 2−7, φ = 2−7, γ = −10−5. Trans-CT is a Transformer-based low-
dose CT post-processing method, with the initial learning rate set to 10−4 and gradually
decreased to 10−5.

4. Results
4.1. Simulation Data Research

In this work, we conducted a quantitative comparison of CT reconstruction results
from different views (projections = 32, 64, 128) on the test dataset, with the results presented
in Table 2. The MAE, PSNR, and SSIM values of the FBP reconstruction were the worst,
indicating the poorest reconstruction quality. The performance metrics of ADMM were
also unacceptable. Deep learning methods showed significantly better performance than
traditional methods. ADMM-SVnet and LEARN demonstrated better performance than
FBPConvnet and Trans-CT. Our proposed method achieves superior performance across all
view counts, achieving a PSNR of 44.633 dB, SSIM of 0.996, and MAE of 0.006 at 128 views.
Even under the most demanding 32-view condition, it consistently delivers robust and
reliable metrics.

Table 2. Quantitative results with different methods.

Views 128 64 32

Metric PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE

FBP 26.140 0.808 0.044 22.067 0.612 0.074 18.935 0.539 0.126
ADMM 33.751 0.929 0.021 30.883 0.915 0.027 29.753 0.907 0.038

FBPConvNet 39.854 0.952 0.020 34.243 0.938 0.028 30.648 0.916 0.035
LEARN 42.972 0.975 0.009 39.943 0.977 0.012 36.935 0.938 0.019

Trans-CT 40.877 0.966 0.011 35.855 0.941 0.019 32.430 0.922 0.023
ADMM-SVnet 43.229 0.995 0.007 42.974 0.989 0.008 40.212 0.972 0.013

Ours 44.633 0.996 0.006 43.726 0.992 0.007 42.036 0.979 0.011

In Figures 3–8, we provide qualitative comparisons of CT reconstruction results across
various sparse-view settings. The qualitative assessments align with the quantitative
analyses, demonstrating that traditional CT reconstruction algorithms fail to generate
satisfactory outcomes, as they are unable to accurately recover fundamental image struc-
tures. Conversely, deep learning-based methods have yielded significantly improved
reconstruction results.

Specifically, Figure 3 illustrates the CT reconstruction results at 32 views. The FBP
reconstruction exhibits excessive artifacts, disrupting image structures with streak-like
artifacts. ADMM, a traditional regularized iterative reconstruction method, enhances image
quality relative to FBP but fails to reveal organ structures adequately. FBPconvnet effectively
mitigates most artifacts caused by sparse views yet struggles to recover detailed features,
leading to overly smooth reconstructions. LEARN reconstruction yields comparatively
superior results, revealing many detailed features. However, Trans-CT, while comparable
to LEARN, still smooths out some fine details. ADMM-SVnet demonstrates a good overall
reconstruction effect, preserving more image details. In contrast, ADMM-TransNet provides
the best reconstruction results, being closest to the ground truth image and displaying the
most detailed information. Figure 4 presents horizontal profiles at 32 views, where grayscale
curves facilitate a more accurate comparison of the differences between algorithms. As
shown in the figure, the image reconstructed by ADMM-TransNet is closer to the true
value image.
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Figures 4 and 5 illustrate the reconstruction results at 64 views for various algorithms
along with their corresponding horizontal profiles. As the number of projections increases,
the quality of the reconstruction results improves significantly. However, FBP reconstruc-
tion continues to exhibit noticeable streak artifacts, and detailed information remains
indistinct. While ADMM shows some improvement in edge reconstruction, the details are
still challenging to discern. The FBPConvNet algorithm struggles with reconstructing low-
contrast minute details. Additionally, LEARN, Trans-CT, and ADMM-SVnet demonstrate a
loss of image features, with Trans-CT being particularly over-smoothed in detail represen-
tation. In contrast, our proposed reconstruction algorithm captures more detailed features,
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as evidenced by the grayscale curves in Figure 5, which show that images reconstructed by
our method are closer to the ground truth.
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Figure 8. The intensity profiles along the yellow solid line in CT reconstructed images (from 128
views using (b) FBP, (c) ADMM (d) FBPConvNet, (e) LEARN, (f) Trans-CT (g) ADMM-SVnet, and (h)
Ours).

Ultimately, experiments were conducted using projection data at 128 views, with
the results presented in Figures 7 and 8. It is evident that traditional algorithms, such as
FBP and ADMM, continue to suffer from artifacts and oversmoothing issues, leading to
unsatisfactory reconstruction outcomes. Among the deep learning algorithms, FBPConvNet
exhibited limitations in capturing subtle details due to excessive smoothing. Conversely,
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the other four deep learning algorithms successfully reproduced fine image details. As
illustrated in Figure 8, the grayscale curve comparison further highlights the performance
differences among the algorithms. Specifically, the grayscale curves generated by the
ADMM-TransNet algorithm demonstrate the highest consistency with ground truth images,
thereby outperforming other methods in terms of reconstruction accuracy.

In summary, across datasets with 32, 64, and 128 views, the ADMM-TransNet recon-
struction network introduced in this chapter effectively reconstructs fine image features
often missed by other algorithms. The ADMM-TransNet algorithm significantly enhances
the quality of reconstructed images, providing clearer details and edge information, thus
achieving superior reconstruction results.

4.2. Model Structure Selection

We evaluated the impact of key parameters in the ADMM-TransNet network on the
evaluation metrics RMSE and SSIM, which include the size of the convolutional filters in
the Transformer block, the depth of the Transformer network (Levels), and the number of
ADMM iterations (stage). To assess the influence of the filter size in the Transformer block
on reconstruction performance, this chapter set the filter size of the Transformer block as a
variable, with the depth of the Transformer network (Levels) fixed at 4 (with the number
of Transformer blocks set to 4, 6, 6, and 8 for Levels 1 to 4, respectively; the number of
attention heads in the MDTA module set to 1, 4, 4, and 8; and the number of channels set to
48, 96, 96, and 192, respectively), and the number of ADMM iterations (stage) fixed at 10;
to evaluate the impact of the depth of the Transformer network (Levels) on the network,
this chapter set the filter size of the Transformer block to 3 and the number of ADMM
iterations (stage) fixed at 10 in the experiments, with other parameters varying with the
depth of the Transformer (Levels) detailed in Table 3. To assess the influence of the number
of ADMM iterations (stage) on the reconstruction results, the depth of the Transformer
network (Levels) was fixed at 4 in the experiments (with the number of Transformer blocks
set to 4, 6, 6, and 8 for Levels 1 to 4, respectively; the number of attention heads in the
MDTA module set to 1, 4, 4, and 8; and the number of channels set to 48, 96, 96, and 192,
respectively), and the filter size of the Transformer block was 3. The experiments were
conducted by optimizing the model on a training dataset with 32-view projections and
then evaluating the performance on the corresponding test set, with the results shown in
Figure 9.

Table 3. Model structure in ADMM-TransNet.

Levels Transformer
Blocks

Attention Heads in
MDTA Channels

3
L1 4 1 48
L2 6 4 96
L3 8 8 192

4

L1 4 1 48
L2 6 4 96
L3 6 4 96
L4 8 8 192

5

L1 4 1 48
L2 6 4 96
L3 6 4 96
L4 6 4 96
L5 8 8 192
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(1) Impact of Filter Size in Transformer Block on Reconstruction Performance

We set the filter size in the Transformer block to 3 × 3, 5 × 5, and 7 × 7 to test the
impact of different filter sizes on reconstruction performance. As can be seen from Figure 9,
the RMSE performance gradually improves with the decrease in filter size but eventually
tends to converge as the number of training epochs increases. The SSIM performance
initially increases with the increase in filter size and also tends to converge with more
training epochs. The smaller the size of the filter is, the better the performance of the model
will be under the same number of iterations. Therefore, based on the above results, the
final filter size in the Transformer block is set to 3 × 3.

(2) Impact of Transformer Network Depth (Levels) on Reconstruction Performance
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To explore the impact of the depth of the Transformer network on reconstruction
performance, this chapter sets the depth of the Transformer network to 3, 4, and 5 levels.
The specific parameter settings involved in the Transformer network are listed in Tables 2–4.
As shown in Figure 9, quantitative results improve with the increase in depth. However,
deeper networks may lead to significant computational costs; therefore, to balance the
network-training time and reconstruction performance, we set the depth of the Transformer
network to 4.

Table 4. Robustness analysis results for different noise levels.

Photon
Number 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107

RMSE 0.011 0.008 0.008 0.008 0.008
PSNR 39.868 41.395 41.701 42.062 42.262
SSIM 0.979 0.986 0.987 0.987 0.988

(3) Impact of ADMM Iteration Count (Stage) on Reconstruction Performance

Lastly, we assessed the impact of the number of ADMM iterations (stage) on the
network performance, as shown in Figure 9. We set the iteration count to 10, 20, and 30.
It can be observed that both RMSE and SSIM performance gradually improve with an
increase in the number of iterations. The change is more pronounced when the iteration
count increases from 10 to 20, and while there is still an improvement from 20 to 30,
the difference is not significant. Moreover, with the increase in ADMM iteration count,
computational costs and processing time also gradually increase. Based on these results, to
balance reconstruction performance and time costs, the number of ADMM iterations in the
network is ultimately set to 20.

4.3. Noise Robustness Analysis

To verify the robustness of the proposed method against noise, we conducted recon-
struction experiments on noise-corrupted projections within a dataset of 32 views. The
noise was added according to the following formula [46]:

noisei = Poisson
{

I0e−yi
}
+ Normal(0, σe

2) (18)

I0 is the blank scan factor, and yi is the line integral of the attenuation coefficients
along the ith ray. In our experiment, the blank scan factor I0 was set to 1 × 107, 5 × 106,
1 × 106, 5 × 105, and 1 × 105. σe

2 is the variance in the electronic background noise.
Figure 10 demonstrates the reconstruction results of our method under various noise

levels, and to further validate the aforementioned results, Figure 11 illustrates the absolute
residuals between the reconstructed images and the ground truth images at different noise
levels. To make the noise more apparent, the noise values were magnified by a factor of 2.
It can be observed from the figures that the differences between the reconstructed results
and the ground truth images are minimal. Table 4 presents the test results of the evaluation
metrics RMSE, PSNR, and SSIM under different noise levels. These experimental results
indicate that our algorithm can handle a wide range of noise levels and can accurately
perform reconstruction across varying noise levels.
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4.4. Ablation Experimental Study

To verify the effectiveness of the MDTA and GDFN module introduced in ADMM-
TransNet, we conducted a series of ablation experiments on the proposed network using a
dataset with 32 view projections, with the quantitative analysis of the experimental results
presented in Table 5. The results indicate that the introduction of the MDTA module led to
an improvement in the reconstruction results, with increases of 0.885 in PSNR and 0.019
in SSIM, respectively. That is, incorporating local information through deep convolution
into the MDTA enhances the PSNR of the reconstruction results, thereby improving the
robustness of the algorithm. The incorporation of the GDFN, compared to the traditional
feedforward FN, resulted in improvements of 0.504 in PSNR and 0.013 in SSIM, endowing
the proposed network with stronger noise resistance capabilities. Overall, the introduced
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MDTA module and GDFN module have contributed to the improvement of the network’s
reconstruction performance.

Table 5. Quantitative evaluations for the ablation study.

Reconstruction
networks

MDTA MSA
√ √

GDFN FN
√ √

PSNR 40.852 41.737 41.356 42.036
SSIM 0.950 0.969 0.963 0.979

4.5. Model Analysis

It is well known that Transformer-based methods face challenges in clinical applica-
tion due to their extended training durations. To systematically evaluate computational
efficiency, we conducted a comparative analysis of different model architectures as pre-
sented in Table 6. The baseline model was derived from the classic Vision Transformer
(ViT) model [34], whose encoder architecture comprises alternating layers of multi-head
self-attention (MSA) and Multilayer Perceptron (MLP). Specifically, this study evaluates the
impact of the MDTA module and GDFN module on computational complexity and param-
eter quantity through component-wise comparisons. FLOPs (Floating-Point Operations)
and inference time were calculated for 256 × 256 image processing, with ADMM network
iterations set to 10 and the model employing a 4-layer encoder–decoder structure. The
experimental results in Table 6 demonstrate that our proposed architectural innovations
achieve substantial performance improvements while maintaining computational efficiency.

Table 6. Comparison results of trainable parameters and FLOPs.

Network Cmoponent FLOPs (G) Params.
(M)

Time
(s)

Baseline MSA + MLP 283.7 632.84 8.81
Multi-head attention MDTA + FN 85.3 25.02 1.86

Feed-forward network MTA + GDFN 86.3 25.12 1.86
Ours MDTA + GDFN 87.7 25.31 1.87

5. Discussion and Conclusions
In this study, we tackle the challenges associated with traditional sparse-view iter-

ative models, which include difficulties in setting prior assumptions and the laborious
manual parameter-tuning process. Additionally, deep neural networks exhibit a strong
dependence on large datasets. To address these issues, we propose a CT reconstruction
algorithm that integrates data-driven and model-driven approaches within an ADMM
iterative framework. This algorithm leverages deep learning strategies to optimize prior
terms and related hyperparameters in a supervised manner, thereby eliminating the need
for manual design of prior information and reducing the burden of parameter tuning. Fur-
thermore, by incorporating iterative model constraints, the proposed method mitigates the
network’s reliance on extensive data samples, thus enhancing the robustness of sparse-view
reconstruction algorithms. To improve upon CNN-based reconstruction algorithms that
often overlook non-local feature correlations in images, we introduce a CT reconstruction
algorithm that combines Transformers and CNNs. By utilizing the self-attention mecha-
nism of the Transformer network model, we enhance the network’s ability to capture global
image features. The introduction of the MDTA module and GDFN module optimizes the
Transformer’s feature extraction process and computational efficiency, effectively reducing
computational complexity while improving the fine structure and texture details of the
reconstructed images. Finally, experimental results demonstrate the effectiveness of the
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proposed algorithm in terms of visual quality and quantitative metrics, showing that the
CT reconstruction images obtained have more complete detail information and are robust
against noise.

This study presents a deep learning-based framework for sparse-view CT reconstruc-
tion, addressing two critical challenges in conventional regularized reconstruction: optimal
design of prior information and systematic selection of hyperparameters, while enhancing
the model’s generalizability and representational capacity. Although the proposed method
demonstrates improvements over existing approaches, several limitations require atten-
tion to enhance clinical applicability. Specifically, the current CT reconstruction network
necessitates fixed scanning geometries and radiation dose levels during training, requir-
ing separate network training for each parameter configuration. Future research should
focus on developing modular architectures that enable simultaneous adaptation to variable
scanning parameters and dose levels, coupled with establishing rigorous theoretical conver-
gence guarantees for learned iterative reconstruction. Particular emphasis should be placed
on investigating the interaction between data fidelity terms and neural-network-derived
regularizers within the variational framework. These methodological advancements could
bridge the critical gap between data-driven reconstruction techniques and clinical require-
ments while preserving interpretability essential for medical applications.
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