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Abstract: Cardiac computed tomography (CT) has rapidly advanced, becoming an in-
valuable tool for diagnosing and prognosticating various cardiovascular diseases. While
echocardiography and cardiac magnetic resonance imaging (CMR) remain the gold stan-
dards for myocardial assessment, modern CT technologies offer enhanced spatial resolution,
making it an essential tool in clinical practice. Cardiac CT has expanded beyond coro-
nary artery disease evaluation, now playing a key role in assessing cardiomyopathies
and structural heart diseases. Innovations like photon-counting CT enable precise esti-
mation of myocardial extracellular volume, facilitating the detection of infiltrative disor-
ders and myocardial fibrosis. Additionally, CT-based myocardial strain analysis allows
for the classification of impaired myocardial contractility, while quantifying cardiac vol-
umes and function remains crucial in cardiomyopathy evaluation. This review explores
the emerging role of cardiac CT in cardiomyopathy phenotyping, emphasizing recent
technological advancements.
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1. Introduction
Cardiac computed tomography (CT) scans have advanced significantly in recent years,

providing both diagnostic and prognostic value across a wide range of cardiovascular
diseases. With high spatial resolution, CT enables detailed plaque characterization, includ-
ing the identification of high-risk features [1]. Beyond evaluating atherosclerotic coronary
plaque and stenosis, cardiac CT has demonstrated strong prognostic capabilities for as-
sessing myocardial infarction risk [2–4]. Functional tools, such as CT-derived fractional
flow reserve (FFRct) and perfusion analysis, have further enhanced its utility in clinical
practice [4]. Additionally, cardiac CT plays a crucial role in pre-procedural planning for
minimally invasive interventions, including transcatheter valve replacement, left atrial
appendage occlusion, lead extraction, and evaluation of valvular pathology [5,6].

Although cardiac magnetic resonance imaging (CMR) and echocardiography remain
gold standards for myocardial assessment [7], cardiac CT has emerged as a widely accessi-
ble alternative with faster acquisition times and compatibility with cardiac devices [7]. For
example, while CMR often requires prolonged imaging sessions, which may be challenging
for some patients, cardiac CT provides rapid, non-invasive information. Its spatial resolu-
tion (sub-mm), compared to CMR and volumetric data acquisition, enables high-fidelity
multiplanar reconstructions that can be manipulated post-scan.
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Cardiac CT is also valuable, though less commonly used, for phenotyping structural
heart diseases and cardiomyopathies. In such cases, when coronary imaging is not the
primary focus, patient preparation is less intensive, with a reduced need for heart rate
control or pre-medication with nitroglycerine. This is due to the enhanced contrast resolu-
tion and spatial definition afforded by advanced CT technologies. These advancements
support applications such as estimating myocardial extracellular volume, myocardial strain,
volumetry, and morphology.

This review highlights the evolving role of cardiac CT in cardiomyopathy phenotyping
and explores the latest advancements in CT-based techniques.

2. Myocardial Morphology and Function
Cardiac CT is a valuable tool for evaluating myocardial function and morphology,

particularly with protocols that use retrospective ECG gating. This technique captures
images throughout the entire cardiac cycle, combining the excellent spatial resolution of
CT with the ability to assess dynamic cardiac function. However, capturing images across
the full cardiac cycle requires a significantly higher radiation dose. Compared to MRI,
CT demonstrates similar accuracy in assessing wall motion abnormalities and one study
even demonstrated that cardiac CT outperformed two-dimensional echocardiography in
reproducibility and accuracy [8]. Despite early studies indicating an overestimation of
ventricular volumes with CT, advancements in technology have significantly improved its
accuracy [9–13].

In addition to being less widely accessible than echocardiography, cardiac CT re-
quires the use of radiographic contrast to clearly define both the right and left ventricular
endocardial borders, ensuring balanced contrast opacification. In contrast, neither echocar-
diography nor CMR requires a contrast agent for endocardial border definition.

Cardiac CT is well-suited for the evaluation of morphologic features, such as wall
thickness and chamber dimensions, given its excellent spatial resolution and volumetric
acquisition. It is worth noting that most CT coronary angiography is performed during
end-systole or mid-diastole, which may result in an overestimation of wall thickness
and underestimate end-diastolic volumes [14]. Additional features, such as atrial wall
thickening, left ventricular thrombus, or non-compaction, can be identified regardless of
the cardiac cycle phase (Figure 1) [15]. Thrombus detection, in particular, is often more
reliable with CT than echocardiography, as it appears as a filling defect in a contrast-
filled chamber. Beyond cardiac morphology, CT can reveal extracardiac findings that may
provide broader diagnostic insights. For instance, bilateral hilar adenopathy, visible on
cardiac CT, may suggest sarcoidosis, expanding the diagnostic perspective beyond cardiac
pathology (Figure 2).
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Figure 1. Cardiac Findings and CT Imaging. Axial reconstruction from a contrast-enhanced car-
diac CT (A) demonstrating irregular left atrial wall thickening (arrowheads) reflecting amyloid
deposition in the setting of cardiac amyloidosis. Multiplanar (HLA, VLA, SAX, 3D) diastolic im-
ages (B) from a contrast-enhanced cardiac CT in a patient with a left ventricular apical thrombus
(arrows). Short-axis end-diastolic image from a contrast-enhanced cardiac CT in a patient with
myocardial non-compaction (C) demonstrating very prominent trabeculation of the mid-apical left
ventricle with an increased ratio of non-compacted to compacted myocardium measuring >> 2.3:1
(double-headed arrows).
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p < 0.001), though it tends to underestimate strain values [22]. Despite this, CT provides a 
feasible method for strain assessment in advanced valve disease, complementing echocar-
diographic findings. 

Figure 2. Sarcoidosis in CT Cardiac Imaging. CMR short-axis delayed-enhanced inversion recovery
image through the LV base (A) from a patient with complete heart block and sarcoidosis with
myocardial involvement. There is nonvascular delayed enhancement in the basilar septum (arrow).
A contrast-enhanced cardiac CT from the same patient demonstrates a correlating area of decreased
myocardial perfusion ((B), arrow). Axial reconstruction from the same CT (C) demonstrates partially
calcified mediastinal and hilar lymphadenopathy (arrowheads) consistent with adenopathy in the
setting of sarcoidosis.

3. Myocardial Strain
Myocardial strain measures the extent of myocardial deformation, encompassing

longitudinal, circumferential, radial, and torsional components [16]. It is a valuable tool
for assessing myocardial contractility, often detecting impairment before left ventricular
ejection fraction (LVEF) declines [17,18]. Strain offers prognostic and diagnostic insights
beyond LVEF, with studies showing that it is superior in predicting major adverse cardiac
events (MACEs); however, most studies have used echocardiography or CMR-derived
strain patterns [17,19,20]. Stain is also a reliable marker for predicting cardiotoxicity in
chemotherapy patients and possibly for the timing of surgery in asymptomatic valve
disease [18,21].
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Traditionally measured via echocardiography or CMR, modern cardiac CT software
can now estimate myocardial strain by analyzing pixel features, anatomic landmarks, and
endocardial and epicardial borders (Figures 3 and 4). However, CT-derived strain is limited
by a lower temporal resolution, which may result in a weaker correlation to either MRI or
Echo-derived strain values, particularly radial and circumferential measures. It is noted that,
currently, neither radial nor circumferential values derived by either MRI or Echo are used in
routine clinical practice due to high variability and low reproducibility; thus, this limitation
with CT is currently more intellectual than clinical. In valvular disease, CT-derived strain
has shown a moderate correlation with echocardiography (r = 0.6, p < 0.001), though it
tends to underestimate strain values [22]. Despite this, CT provides a feasible method for
strain assessment in advanced valve disease, complementing echocardiographic findings.
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Figure 3. Cardiac MR Strain Evaluation. Static horizontal long-axis diastolic (A) and systolic (B)
grid-tagged images from a cardiac MRI. Deformation of the grid as the myocardium contracts can be
used to estimate strain.

Strain patterns also correlate with coronary artery calcium (CAC) scores and stenosis
severity. In a study of CAD-RADS groups, a standardized classification system used to
estimate the severity of coronary artery disease on CT imaging, higher CAC and stenosis
levels were associated with reduced global strain across all directions, likely reflecting
diminished coronary blood flow [23]. These studies suggest the utility of CT-derived
strain in evaluating coronary artery disease, especially when LVEF and chamber volumes
remain normal.

Although data on reference ranges for strain measurements using CT imaging remain
limited, a 2024 established baseline strain values of the four cardiac chambers in healthy
adults, accounting for sex and age differences [23]. Women demonstrated higher global
longitudinal, circumferential, and radial strain values compared to men, underscoring
the need to consider sex-specific differences in clinical practice. These data provide a
foundation for integrating CT strain into routine cardiac assessment.
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4. Myocardial ECV
Traditionally, CMR has been the primary method for measuring myocardial extra-

cellular volume (ECV) measurements. However, CT-guided ECV has proven effective
in identifying diffuse myocardial fibrosis and signs of infiltrative cardiomyopathy and
myocarditis, offering important prognostic insights for both ischemic and non-ischemic
cardiomyopathies [24,25]. Modern CT software platforms can generate semi-automated
ECV maps from non-contrast and contrast-enhanced images, and dual-energy CT tech-
niques offer enhanced image quality, reduced artifacts, and lower levels of radiation
exposure [26,27]). Fully automated models are also being developed to enhance image
resolution and reduce manual editing in ECV measurement [28,29].

ECV estimation requires a dedicated cardiac CT acquisition protocol. While coronary
CT imaging can assess myocardial thickness and fat infiltration, ECV quantification requires
a broader imaging focus. The first human study exploring this approach was conducted in
2005, with 28 post-myocardial infarction patients, using a 16-slice cardiac CT, showing that
CT-based fibrosis assessment was concordant with CMR findings [30]. A 2008 study with
71 patients further confirmed that cardiac CT can reliably identify myocardial fibrosis [30].

Current protocols involve both non-contrast and contrast-enhanced acquisitions, fol-
lowed by a delayed phase approximately 5–10 min later [31]. The contrast volume used is
often at least 1.5 mL/kg, which is higher than for coronary assessments. Iodinated contrast
behaves similarly to gadolinium accumulating in abnormal myocardium with greater
extracellular space, such as in areas of diffuse fibrosis or amyloid deposition (Figure 5),
which allows for more accurate disease detection.

Despite its advantages, CT for ECV measurement has limitations, including a low
signal-to-noise ratio and the need for higher contrast doses. Dual-energy CT can address
some of these issues by reducing contrast requirements and utilizing varying tube potentials
(Figure 6) [26]. This approach was validated in 2020 when Ohta et al. demonstrated a
significant correlation between CT- and CMR-based ECV quantification in 23 patients [32].
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5. Ischemic Evaluation 
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thies is essential for guiding management and prognosis. Identifying ischemia as the un-
derlying cause can significantly impact treatment decisions, particularly regarding revas-
cularization. Cardiac CT offers an accurate, non-invasive alternative to invasive coronary 
angiography, providing anatomical detail and identifying potential targets for interven-
tion [34]. 

Figure 5. Cardiac Amyloid Findings. CMR short-axis delayed-enhanced inversion recovery image
through the LV base (A) from a patient with severe cardiac amyloidosis with diffuse transmural
delayed enhancement. Short axis images through the LV base from a previous cardiac CT with arterial
(B) and 5 min delayed (C) phases. The delayed phase demonstrates diffuse nonvascular enhancement
that correlates well with the findings seen on the subsequent CMR.
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Figure 6. Dual-energy Cardiac CT Imaging. Short-axis reconstructions through the LV base from a
5 min delayed phase of a contrast-enhanced cardiac CT that utilized spectral (dual energy) technique.
Images from the high-energy (A) and low-energy (B) datasets show the increase in iodine conspicuity
from the low-energy data (B). A virtual monoenergetic 50 keV reconstruction (C) demonstrates a
good mix of anatomic information and contrast conspicuity.

For example, one study evaluated the impact of ECV calculation on clinical outcomes
in 70 patients with dilated cardiomyopathy [33]. Elevated ECV, particularly above 32.26%,
was associated with higher rates of MACE based on receiver operating curves. This finding
held true as the only independent predictor of MACE in the multivariate Cox proportional
hazards model, as compared to other variables.

5. Ischemic Evaluation
Distinguishing between ischemic and non-ischemic causes of dilated cardiomy-

opathies is essential for guiding management and prognosis. Identifying ischemia as
the underlying cause can significantly impact treatment decisions, particularly regarding
revascularization. Cardiac CT offers an accurate, non-invasive alternative to invasive
coronary angiography, providing anatomical detail and identifying potential targets for
intervention [34].

Cardiac CT may be used to evaluate coronary artery disease in those with a reduced
LVEF due to its high negative predictive value [35]. During non-contrast-enhanced CT
assessments for coronary disease, the presence of calcified coronary arteries was largely
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used to infer the likelihood of significant coronary artery disease [36]. Advancements in
CT imaging with contemporary CADRADS-2.0 guidelines have enhanced the utility of
CT coronary evaluation, particularly through stenosis quantification and high-risk plaque
feature identification [37].

CT imaging is also useful for assessing myocardial fibrosis and post-myocardial
infarction changes, such as scar tissue and fat deposition. Fat in the myocardium typically
appears in a subendocardial distribution within the affected coronary artery territory,
providing additional diagnostic value [38,39]. In addition, hypoattenuation, often observed
in patients with CAD, can be effectively assessed using CT-based perfusion imaging,
which may be even more sensitive than radionuclide myocardial perfusion imaging [38,39].
However, this method requires longer radiation exposure and contrast (Table 1). A notable
limitation of CT perfusion imaging is its inability to evaluate the reversibility of perfusion
defects, a capability provided by radionuclide imaging.

Table 1. Myocardial Hypoperfusion in CT Cardiac Imaging. Comparison of CT cardiac imaging
modalities versus radionuclide myocardial perfusion imaging.

Assessment Method Key Features Advantages Limitations Additional Insights

CT-Based Perfusion
Imaging

Identifies areas of
hypoattenuation.

More sensitive than
radionuclide imaging.
- Provides stress and

rest images.

Requires longer
radiation times
and contrast.
- Cannot determine

the reversibility of
perfusion defects.

- CT perfusion defects
present in both stress
and rest images,
similar to
radionuclide studies.

- Uncertain for
viability assessment.

CT for Post-MI Scar
Assessment

- Differentiates fat
from myocardium.

- Identifies fibrous
scar tissue and fat
deposition post-MI
(6 months).

Offers additional
diagnostic insights
through fat detection.

- Primarily detects
late-stage myocardial
changes.

- Limited for early
post-MI assessment.

- Fat in myocardium
appears in
subendocardial
distribution within
the affected coronary
artery territory.

Radionuclide
Myocardial
Perfusion Imaging

Assesses myocardial
perfusion and
determines
reversibility of defects.

Can determine
reversibility of
perfusion defects.

Less sensitive
compared to CT-based
imaging.

Provides
comprehensive
viability assessment.

6. Hypertrophic Cardiomyopathy
Cardiac CT is also effective for assessing hypertrophic cardiomyopathy (HCM), in-

cluding asymmetrical ventricular hypertrophy as well as related findings such as systolic
anterior motion of the mitral valve or the presence of an apical pouch in those with the
apical variant [40,41]. Patients with hypertrophic cardiomyopathy (HCM) may present
with chest pain, which can be challenging to attribute solely to the cardiomyopathy or
to potential concomitant coronary artery disease (CAD) [41]. Both conditions can cause
similar symptoms due to impaired blood flow or increased myocardial oxygen demand.
Cardiac CT scanning provides a valuable tool for differentiation by allowing for the precise
evaluation of coronary anatomy to rule out significant CAD while also assessing myocar-
dial hypertrophy, fibrosis, and other structural abnormalities characteristic of HCM. This
comprehensive assessment aids in accurate diagnosis and targeted management [41].
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Restrictive Cardiomyopathy

Restrictive cardiomyopathy (RCM) is a condition characterized by stiff ventricular
walls leading to impaired diastolic function and restrictive filling (Jan). The left ventricle
(LV) typically retains normal or near-normal dimensions, while biatrial enlargement is
a common feature due to chronically elevated filling pressures [42]. Most cases arise
from underlying infiltrative, storage, or fibrotic diseases, though some remain idiopathic.
Cardiac CT provides detailed structural assessment and tissue characterization in RCM,
complementing traditional imaging modalities such as echocardiography and CMR. ECV
mapping with CT has proven useful in detecting myocardial infiltration and fibrosis,
particularly in cardiac amyloidosis, where elevated ECV values correlate with disease
burden [37]. Similarly, dual-energy CT can help differentiate iron overload cardiomyopathy
(e.g., hemochromatosis) by identifying iron deposits that appear as low-attenuation areas
on spectral imaging [43]. In addition to quantifying myocardial fibrosis, CT is effective for
detecting structural abnormalities associated with RCM, such as endomyocardial fibrosis,
intracardiac thrombi, and myocardial calcifications [15]. In lysosomal storage disorders, like
Anderson–Fabry disease, CT may reveal distinctive patterns of left ventricular hypertrophy,
particularly involving the basal inferolateral wall, which can aid in early diagnosis [44]. As
these technologies continue to evolve, CT will likely become an increasingly important tool
for noninvasive myocardial assessment in restrictive cardiomyopathies.

7. Arrhythmogenic Cardiomyopathy
Replacement of the myocardial tissue with fibrofatty tissue is a hallmark finding

in arrhythmogenic right ventricular cardiomyopathy (ARVC). Although standardized
diagnostic cut-offs for ARVC based on right ventricular morphology are limited, cardiac
CT plays a critical role in identifying key structural abnormalities, such as right ventricular
dilation, systolic dysfunction, and focal bulging. These imaging findings, combined with
clinical parameters and electrocardiographic features, provide a more comprehensive
assessment of the disorder.

Recent research has demonstrated a positive correlation between invasive electro-
anatomical mapping and right ventricular tissue heterogeneity detected by cardiac CT
further supporting its utility in diagnosing ARVC [45]. However, it is important to note
that cardiac CT may occasionally overestimate right ventricular diastolic volume, which
may result from variations in respiratory cycle phases or contrast administration during
imaging [46]. Despite these limitations, cardiac CT remains an invaluable tool for the
evaluation and diagnosis of ARVC.

8. Cardiac Ablation Pre-Procedural Planning
Atrial and ventricular arrhythmias are common in patients with cardiomyopathy,

particularly those with ischemic etiologies. Using CMR imaging to identify arrhythmic sub-
strates has been shown to improve periprocedural outcomes [47]. However, challenges such
as long acquisition times, possible unstable arrhythmias, or interference from implanted
cardiac devices can limit CMR use. In contrast, cardiac CT has become valuable for prepro-
cedural planning in ventricular arrhythmia ablation [48]. One study explored the idea that
cardiac CT combined with invasive electrophysiological mapping helps to identify anatom-
ical substrates. Additionally, cardiac CT can assess coronary artery disease and myocardial
fibrosis, providing a comprehensive evaluation during electrophysiological procedures.

9. Conclusions
Cardiac CT offers valuable insights into phenotyping undifferentiated cardiomyopathy,

complementing echocardiography and CMR. While echocardiography and CMR are more
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commonly used to assess ventricular function and tissue characterization, cardiac CT
provides detailed information on myocardial morphology, function, strain patterns, fibrosis,
infiltrative diseases, and peri-operative planning. When appropriate, cardiac CT may play
an expanding role in cardiomyopathy phenotyping algorithms.
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