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Abstract: Background/Objectives: Developing a treatment strategy that effectively pro-
longs the lives of people with brain tumors requires an accurate diagnosis of the condition.
Therefore, improving the preoperative classification of meningiomas is a priority. Machine
learning (ML) has made great strides thanks to the development of convolutional neural
networks (CNNs) and computer-aided tumor detection systems. The deep convolutional
layers automatically extract important and dependable information from the input space, in
contrast to more traditional neural network layers. One recent and promising advancement
in this field is ML. Still, there is a dearth of studies being carried out in this area. Methods:
Therefore, starting with the analysis of magnetic resonance images, we have suggested in
this research work a tried-and-tested and methodical strategy for real-time meningioma
diagnosis by image segmentation using a very deep transfer learning CNN model or DNN
model (VGG-16) with CUDA. Since the VGGNet CNN model has a greater level of accuracy
than other deep CNN models like AlexNet, GoogleNet, etc., we have chosen to employ it.
The VGG network that we have constructed with very small convolutional filters consists of
13 convolutional layers and 3 fully connected layers. Our VGGNet model takes in an sMRI
FLAIR image input. The VGG’s convolutional layers leverage a minimal receptive field,
i.e., 3 × 3, the smallest possible size that still captures up/down and left/right. Moreover,
there are also 1 × 1 convolution filters acting as a linear transformation of the input. This
is followed by a ReLU unit. The convolution stride is fixed at 1 pixel to keep the spatial
resolution preserved after convolution. All the hidden layers in our VGG network also use
ReLU. A dataset consisting of 264 3D FLAIR sMRI image segments from three different
classes (meningioma, tuberculoma, and normal) was employed. The number of epochs in
the Sequential Model was set to 10. The Keras layers that we used were Dense, Dropout,
Flatten, Batch Normalization, and ReLU. Results: According to the simulation findings,
our suggested model successfully classified all of the data in the dataset used, with a 99.0%
overall accuracy. The performance metrics of the implemented model and confusion matrix
for tumor classification indicate the model’s high accuracy in brain tumor classification.
Conclusions: The good outcomes demonstrate the possibility of our suggested method
as a useful diagnostic tool, promoting better understanding, a prognostic tool for clinical
outcomes, and an efficient brain tumor treatment planning tool. It was demonstrated that
several performance metrics we computed using the confusion matrix of the previously
used model were very good. Consequently, we think that the approach we have suggested
is an important way to identify brain tumors.
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1. Introduction
Meningiomas, gliomas, and pituitary tumors are common types of brain tumors.

Roughly forty percent of intracranial tumors are meningiomas. The 2021 5th edition of the
WHO categorization of Central Nervous System cancers (CNS5) builds on the molecular
information in meningiomas to aid guide care, while preserving the prior categorization
system. Meningioma is categorized into three categories (1–3) by the WHO CNS5 according
to molecular profile and histopathological criteria [1]. With three malignancy categories
(CNS WHO grades 1–3) depending on histology or subtype, the WHO grading scheme in
the WHO CNS5 is therefore comparable to the WHO 2016 edition (Table 1) [2].

Table 1. Meningioma subtypes.

Histological Type Histological Malignancy Grade

Meningothelial meningioma 1/2

Fibrous meningioma 1/2

Transitional meningioma 1/2

Psammomatous meningioma 1/2

Angiomatous meningioma 1/2

Microcystic meningioma 1/2

Secretory meningioma 1/2

Lymphoplasmacyte-rich meningioma 1/2

Atypical meningioma (including brain
infiltrative meningiomas) 2

Chordoid meningioma 2

Clear cell meningioma 2

Anaplastic (malignant) meningioma 3

The malignancy grading for meningiomas has been altered to a within-tumor grading,
regardless of classification, and they are now considered a single tumor category with
15 subtypes. Chordoid and clear cell meningiomas are classified as grade 2 because
of their increased propensity to recur. According to the WHO (2016), brain-invasive
meningiomas are classified as an atypical meningioma of CNS WHO grade 2 [2] and are
generally linked to an elevated risk of recurrence. It is debatable whether those with benign
histology and those that have been completely removed behave like grade 2 meningiomas,
and the evaluation of brain invasion is subjective and vulnerable to sampling error [3].
While rhabdoid and papillary meningiomas may exhibit more aggressive behavior, these
characteristics are no longer enough to classify them as grade 3; instead, they will henceforth
be classified as meningiomas in general [4,5].

The subjective evaluation of histological findings is the basis for the malignancy
classification of human meningiomas, which makes this approach less than ideal and prone
to interobserver variance [6]. Meningiomas of CNS WHO grade 1 with an unanticipatedly
early recurrence and meningiomas of CNS WHO grade 2 with a lengthy, slow clinical
course without recurrence serve as examples of this [7,8]. The overlap between WHO grade
1 and grade 2 meningiomas in the 2021 classification is primarily seen in terms of clinical
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behavior and molecular features, rather than strict histological overlap. While most grade
1 meningiomas are slow-growing and benign, some can recur or have a more aggressive
clinical course than expected. This is particularly true for those undergoing subtotal
resection or having a higher proliferation index (MIB-1). While grade 2 meningiomas
are generally atypical with an increased risk of recurrence, some can have a relatively
benign clinical course with slow growth and long periods without recurrence [2]. Moreover,
some grade 1 meningiomas, especially those with certain genetic alterations like the loss
of chromosome 1p or a high MIB-1 index, may behave more like grade 2 tumors. These
features are associated with a higher risk of recurrence and may warrant a more aggressive
management approach. Some grade 2 meningiomas may lack these features and exhibit a
more benign clinical course, making their management a more nuanced decision [9,10]. The
overlap highlights the importance of considering both histological grade and molecular
features when determining the optimal management approach for meningiomas [11].

In order to improve classification and malignancy grading, the WHO CNS5 book
supports molecular biomarkers; however, if conclusive histology of a meningioma sub-
type is available, molecular biomarkers are not necessary for diagnosis [4]. Numerous
genetic abnormalities and driver mutations have been identified by advances in the molec-
ular characterization of meningiomas; Table 2 displays the most notable changes from a
clinicopathological perspective.

Table 2. Clinicopathologically significant genetic changes in meningiomas in humans.

Genetic Alteration Clinicopathological Significance

NF2 mutation
Convexity meningiomas, fibrous, and
transitional subtypes, more often CNS

WHO grade 2/3

TRAF7 mutations Secretory subtype

TERT promotor mutation CNS WHO grade 3

SMARCE1 mutation Clear cell subtype

BAP1 mutation Rhabdoid and papillary subtypes

CDKNA2A/B loss CNS WHO grade 3

H3K27me3 loss Increased risk of recurrence

DNA methylation profiling Methylation classes associated with
increased risk of recurrence

Meningiomas can therefore be classified as either non-NF2-mutated or NF2 (neu-
rofibromatosis type 2) [12]. Convexity meningiomas are more commonly CNS WHO
grades 2 and 3, consist of fibroblastic and transitional phenotypes, and are more frequently
NF2-mutated [12]. Non-NF2 meningiomas include meningothelial and secretory pheno-
types and are more frequently skull-based [12]. According to genetic analysis, TERTp
mutation and homozygous CDKN2A/B loss should be searched for in cases of aggres-
sive atypical meningiomas and meningiomas with borderline grade 2–3 histology. When
found, these findings suggest a grade 3 tumor [4,5]. Aggressive behavior is also associated
with H3K27me3 loss [13]. It has been demonstrated that DNA methylation may classify
meningiomas into methylation groups that more precisely identify patients at high risk of
recurrence than histopathology [14]. As a potential future diagnostic work-up for menin-
giomas, the molecular classification of meningiomas based on copy number variation, point
mutations, methylation, and transcriptomic and proteomic data stands out [15].

Although most meningiomas are benign and asymptomatic, the presence of atypical
meningiomas and, to a lesser extent, anaplastic ones pose a significant health risk to the
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patient. The location, size, and growth rate of these tumors can alter brain functions and
cause adverse neurological effects depending on the areas of the brain tissue affected,
causing symptoms such as headaches, epileptic seizures, visual problems, and coordination
problems, among others. Therefore, early detection, precise identification of the grade
of malignancy, and timely treatment are vital to improve the patient’s prognosis [16]. A
tumor’s prognosis is contingent upon a number of characteristics, including the tumor’s
stage of identification, operability, patient age, growth location, and extent of metastasis.
Each of these variables affects how the patient responds to radiation and chemotherapy,
which in turn affects their chance of survival [1].

The use of magnetic resonance imaging (MRI) is the gold standard for the analysis and
diagnosis of meningiomas [17]. The technique known as magnetic resonance imaging (MRI)
finds radiofrequency pulses and magnetic flux vectors in the hydrogen atom nuclei of a
patient’s water molecules. Since an MRI scan does not use radiation, it is superior to a CT
scan from a diagnostic standpoint. However, MRI segmentation and classification of these
tumors present challenges that can affect diagnostic accuracy and introduce variability
in treatment planning, such as the need for trained personnel, the absence of symptoms,
similarity to other intracranial lesions, and subjectivity in the interpretation of neurological
images [18]. Inexpensive automated methods are imperative because of the enormous
volume of MRI data that needs to be analyzed. Automated cancer identification using
MRI is crucial as working with human life requires a high degree of precision. Therefore,
improving preoperative classification of meningiomas is a prerogative.

Advancements in artificial intelligence (AI) techniques have significantly improved
precision in disease detection and diagnosis. Machine learning (ML), an intersection of
statistics and computer science, is a branch of AI as it enables the extraction of meaningful
patterns from examples, which is a component of human intelligence. Both supervised and
unsupervised ML algorithm approaches can be used to classify brain MR images as normal
or diseased. It is possible to classify multi-class publicly available MRI brain tumor datasets
quickly without compromising fidelity, allowing for real-time tumor identification [19]. It
is also becoming possible to utilize a different strategy that links tumor genetic variation
with radiomic characteristics to engender a link between two fields of study, which could
be helpful for clinical disease management and improving patient benefits [20].

Our paper offers an efficient automated solution to brain MRI data categorization
using ML techniques. Classifying brain MR images is carried out using the supervised
ML approach [21,22]. We have employed FLAIR (Fluid-Attenuated Inversion Recovery)
structural magnetic resonance imaging (sMRI). Using quantitative and qualitative rendering
of different brain subregions, sMRI measures variations in the brain’s water constitution,
which are represented as different shades of gray. These data are then utilized to depict
and characterize the location and size of tumors. For effective skull stripping (three-
dimensional views of brain slices, axial, coronal, and sagittal), FLAIR images guarantee
that surrounding fluids are not magnetized and that signals from CSF (cerebrospinal fluid)
are suppressed [23–25].

The following is a summary of this research work’s major contributions:

• Conventional CT and MRI are reliable for diagnosing meningiomas, with CT demon-
strating an accuracy of around 83% [26]. MRI is highly accurate for diagnosing
meningiomas, offering sensitivities and positive predictive values generally of 82.6%
and above [27]. However, MRI alone may not always differentiate between benign
and malignant meningiomas, requiring further investigation like biopsy for a firm
diagnosis [28]. Also, while generally effective, MRI accuracy can be lower for smaller
lesions or in specific locations like the skull base [27]. Although some researchers
have demonstrated that MRI could provide valuable information for the evaluation
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of meningiomas, the radiological performance of different grades largely overlaps,
which could lead to misdiagnosis and inappropriate treatment strategies. Therefore,
improving the preoperative classification of meningiomas is a prerogative. ML, an
intersection of statistics and computer science, is a branch of artificial intelligence as it
enables the extraction of meaningful patterns from examples, which is a component
of human intelligence. Over the last decade, it has been successfully applied in the
field of radiology, particularly in automatically detecting disease and discriminating
tumors. Recently, some studies demonstrated that ML based on MRI was a promising
tool in grading meningiomas. However, a few radiomics studies combined with
deep learning (DL) features were conducted using a pretrained convolutional neural
network (CNN) [29,30].

• This research proposes a novel approach that significantly advances the application of
DL for medical diagnostics by employing a very deep transfer learning CNN model
(VGG-16) enhanced by CUDA optimization for the accurate and timely real-time
identification of meningiomas.

• We have employed FLAIR (Fluid-Attenuated Inversion Recovery) structural magnetic
resonance imaging (sMRI) in this case. Using quantitative and qualitative rendering of
different brain subregions, sMRI measures variations in the brain’s water constitution,
which are represented as different shades of gray. These data are then utilized to
depict and characterize the location and size of tumors. For effective skull stripping
(three-dimensional views of brain slices, axial, coronal, and sagittal), FLAIR images
guarantee that surrounding fluids are not magnetized and that CSF (cerebrospinal
fluid) is suppressed.

• In the practice of radiology, error is inevitable. In everyday practice, the amount
of evidence collected during the plain film era is thought to be between 3–5% [31].
Interpretative error rates in cross-sectional imaging are reported to be much greater,
ranging from 20–30% [32,33]. The clinical implications of accurate brain tumor grading
classification are significant, as they can inform treatment decisions and improve
patient outcomes. Discussing the method’s integration into clinical workflows has
offered insights into its practical applications and impact on patient care, enhancing
the paper’s relevance to healthcare professionals, thus providing a practical tool for
streamlined medical analysis and decision making.

• A comparison has been made with recent state-of-the-art technique research proposi-
tions in the literature review.

2. Literature Review
Imaging methods are fundamental to the treatment of cancer and are a great aid in the

detection and management of cancers [34,35]. A promising new technique to profile tumors
is radiomics, a quantitative approach to analyzing medical pictures that has the potential
to provide more individualized care. In order to identify intricate patterns in tumor
images that are invisible to the human eye, this method uses mathematical algorithms
and artificial intelligence concepts [36–39]. Radiomic imaging properties may function as
biomarkers to monitor and impact clinical endpoints, much like other big data techniques
like genomes and proteomics [40]. Radiomics has been shown to have potential in a variety
of cancer types. Radiomic models have been applied to the prognostication of distant
metastasis and survival, as well as to the identification of cancer subtypes and molecular
and genetic variants [41].

Because of the subtle differences in diagnosis, risk assessment, and treatment strategy
of meningioma, it is a great oncologic model system for studying the use and development
of radiomics in cancer care today [16,42,43]. Traditionally, the World Health Organization
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(WHO) grading system has guided clinical decision-making for meningiomas [5]. Though
some high-grade meningiomas show indolent behavior and may not recur, this grading
scheme occasionally reveals significant diversity in tumor behavior, with over 20% of low-
grade meningiomas having an early recurrence [44–47]. This has raised interest in treating
patients based on their molecular traits and growth rates [48–51]. Molecular platforms
and testing are not always available, they incur additional costs, and they could only be
able to detect a portion of a heterogeneous tumor in practice [52,53]. On the other hand,
physicians who treat brain tumors have significantly easier access to imaging. Therefore, if
image-based phenotyping can reach high reliability and reflect the biological characteristics
and genetic signature of tumors, it has the potential to completely change the way patients
can receive precision care.

Brain tumor segmentation is the process of dividing MRI scans into separate segments
so that they may be understood more easily. The majority of recent research on CNN
application has concentrated on GBM (Glioblastoma Multiforme) segmentation. Using
the segmentation process, an image is divided into its individual pixels. This makes it
easier to analyze the image and draw conclusions that are insightful. The necrotic core,
edema, and enhancing tumor are among the parts of a tumor that this segmentation process
correlates to. Since this segmentation entails the process of distinguishing sick tissues from
healthy ones, it is essential for precise diagnosis and therapy planning [54]. The initial
step in recommending an appropriate course of treatment based on a patient’s response to
radiation and chemotherapy is segmentation [55].

For many years, radiotherapists have carried out these operations using manual
segmentation. Nonetheless, there is a significant likelihood of variation in the outcomes
amongst observers and even within the same observer. The radiologist’s level of skill may
have an impact on the laborious process [56]. Segmentation techniques that are automated
or semiautomatic have been developed to get around these restrictions. CNNs have
been noted as one of the most effective training algorithms, despite processing enormous
amounts of data at the expense of substantial computational expenses and complexity [55].
The classification of brain tumors is essential for accurate patient diagnosis and care.
However, obtaining appropriate classification is severely hampered by the scarcity of
annotated data and the intricacy of tumor images. To increase the performance of brain
tumor classification tasks, transfer learning has been a viable method in recent years for
utilizing pretrained models on large-scale datasets [57].

In order to improve brain tumor segmentation performance, a research study pre-
sented a novel hybrid strategy that blended convolutional neural networks (CNNs) with
handmade characteristics. The MRI scans used in this investigation were processed to ex-
tract handmade features, such as texture, form, and intensity-based features. Concurrently,
a novel CNN architecture was created and trained to automatically identify the features in
the data. The handcrafted features and the features found by CNN in various pathways
were blended with the suggested hybrid approach to create a new CNN. A range of as-
sessment metrics, including segmentation accuracy, dice score, sensitivity, and specificity,
were utilized in this study to gauge performance using the Brain Tumour Segmentation
(BraTS) challenge dataset [58]. In a separate investigation, the same research team created a
Global CNN (GCNN) that included an additional CNN for MRI Pathways and a CNN for
Confidence Surface (CS) Pathways, which handled CS modalities in conjunction with the
provided ground truth. The aim of this work was to develop a deep convolutional architec-
ture that is capable of efficiently handling different types of tumors, with the addition of
manually created features [59].

In medical imaging, brain tumor segmentation plays a crucial role in detection and
therapy while protecting patient privacy and security. Advances in AI-based medical
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imaging applications are hampered by privacy rules and security issues that often impede
data sharing in traditional centralized techniques. Federated learning (FL) was suggested by
a research group as a means of addressing these issues. By training the segmentation model
on distributed data from several medical institutions without requiring raw data sharing,
the suggested approach allowed collaborative learning. Using the U-Net-based model
architecture, which is well-known for its remarkable abilities in semantic segmentation
tasks, this work highlighted how scalable the suggested method is for widespread use in
medical imaging applications [60].

A specific study has additionally taken into account three classification frameworks.
The first model applies a fundamental CNN methodology, the second divides it into three
categories of brain cancers (glioma, meningioma, and pituitary tumor), and there are two
further models: one is normal, and the other exhibits a high degree of metastasis [61].
According to severity, the brain tumor is categorized into three categories (categories I, II,
and III) in the third model [61].

Based on information from medical imaging tests, a different study team developed
an evolutionary ML algorithm that successfully classifies brain tumor grades. This model,
which is a modified version of the recently published Multimodal Lightweight XGBoost [62],
is called lightweight ensemble combines (weighted average and lightweight combines
multiple XGBoost decision trees).

Different deep transfer learning techniques, such as GoogleNet, InceptionV3, AlexNet,
VGG-16, and VGG-19, have been utilized by another study group to determine footprints;
InceptionV3 has the best accuracy value but the largest time complexity (Figure 1) [63].
Additionally, it has been noted that, when compared to other models of a similar kind, the
GoogleNet model has the steepest learning curve [63].
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Figure 1. Overall observed accuracies of various deep transfer learning methods.

An additional comparable model has been employed for the prediction of brain tumors,
utilizing the transfer learning techniques previously discussed. Additionally, an enhanced
freeze strategy has been employed, which modifies the freeze Conv5-AlexNet layer to
achieve superior outcomes [64].

Rather than the widely utilized FLAIR images, some proposed study methodologies
have used T1-weighted contrast MRI scan images [30]. The application of multi-core
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GPUs, which generate image pixel matrix multiplication quickly and more efficiently even
though it was found to be laborious and time-consuming [65], has represented a significant
advancement in the categorization of brain tumors.

Radiomics-based image-based phenotyping has reinterpreted the role of medical imag-
ing. A classic oncologic example that highlights the value of fusing artificial intelligence
techniques with quantitative imaging data to enable precision therapy is meningioma.

Globally, meningioma radiomics has surged due to new computational techniques
and data accessibility. Research that enhances quality, creates extensive patient datasets,
and conducts prospective trials is necessary to ensure translatability into complicated tasks
like prognostication [66].

3. Methods
3.1. Justification for Choosing VGGNet CNN Model

Since it produces a greater level of accuracy than other deep CNN models like AlexNet,
GoogleNet, etc., the VGGNet CNN (Convolutional Neural Network) model [67] was chosen.
With the aid of three extra 1 × 1 convolutional layers, VGG-16 achieves a 9.4% error rate,
which is an improvement over the 9.9% error rate of the prior VGG-13 model [68,69].
Drawing on earlier research, VGGNet has achieved the best results on one of the most
difficult datasets ever, the Caltech 256 dataset, which had 30,607 photos in 256 different
object categories. This model surpassed numerous others. VGGNet DNN models have
been extensively utilized for image classification in a variety of prediction systems for
malignancies of the lungs, skin, eyes, breasts, prostate, and other tissues within the past
five years [70–73]. The validity of VGG-16 pertains to the fact that it has been used for
transfer learning with pretrained ImageNet weights and to fine tune the MRI images and it
has been used widely and proven to be extremely accurate for other detection models like
pneumonia, histopathology, and other types of cancers.

3.2. Architecture of VGGNet CNN Model

In our work, we used two Keras models in Python version 3.6, called VGG and
Sequential models. VGGNet is a deep learning image pre-processing and classification
CNN model that is an improvement on its predecessor, AlexNet (the first famous CNN) [63].
The VGG network that we have constructed with very small convolutional filters consists
of 13 convolutional layers and 3 fully connected layers (Figure 2).

Input: Our VGGNet model takes in an sMRI FLAIR image input size of 224 × 224.
Convolutional Layers: VGG’s convolutional layers leverage a minimal receptive field,

i.e., 3 × 3, the smallest possible size that still captures up/down and left/right. Moreover,
there are also 1 × 1 convolution filters acting as a linear transformation of the input. This is
followed by a ReLU unit, which has a piecewise linear function that will output the input if
positive; otherwise, the output is zero. The convolution stride is fixed at 1 pixel to keep the
spatial resolution preserved after convolution (stride is the number of pixel shifts over the
input matrix).

Hidden Layers: All the hidden layers in our VGG network also use ReLU. VGG
does not usually leverage Local Response Normalization (LRN) as it increases memory
consumption and training time. Moreover, it makes no improvements in overall accuracy.

Fully-Connected Layers: The VGGNet has three fully connected layers. Out of the
three layers, the first two have 4096 channels each, and the third has 1000 channels, 1 for
each class.

No of Input Images: We have used segments of 264 3D FLAIR sMRI images belonging
to three classes (meningioma, tuberculoma, normal). The reason for using a limited number
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of images is because VGGNet is extremely computationally expensive and takes several
days to train on NVIDIA GPU.

A specially developed MRI technique called FLAIR (Fluid-Attenuated Inversion Recov-
ery) MRI highlights regions of tissue with T2 prolongation while suppressing (darkening)
the signal from cerebrospinal fluid (CSF). This makes it easier to see brain lesions, partic-
ularly in locations near CSF. The goal of FLAIR MRI is to reduce the strong signal from
CSF, which can mask mild aberrations in the brain, particularly in regions close to the brain
surface and the periventricular region (around the ventricles). It effectively nullifies the
CSF signal by using a unique inversion recovery pulse sequence with a long inversion
time (TI). In order to generate strong T2 weighting, which identifies regions of tissue T2
prolongation (bright signal), it also uses a long echo duration (TE) [74].

Fluid-Attenuated Inversion Recovery, or contrast-enhanced FLAIR (CE-FLAIR) has
demonstrated a high degree of accuracy in identifying meningiomas, particularly those
with complete rim enhancement. MRI is a useful tool for meningioma diagnosis, especially
for imaging subtle anomalies and outlining tumor margins. With high sensitivity, specificity,
and accuracy, the presence of full rim enhancement in CE-FLAIR is a reliable diagnostic
of meningioma [75].

No of Epochs: The number of epochs in the Sequential Model was set to 10 (Figure 3).
The Keras layers that we used are Dense, Dropout, Flatten, Batch Normalization,

and ReLU.
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In Keras, Dense layers—also referred to as fully-connected layers—are the essential
building blocks of neural networks. To add complexity, they first apply linear adjustments
to the input data and then apply a non-linear activation function. In deep learning, Dropout
is a regularization approach that helps avoid overfitting. During training, it randomly
deactivates neurons, pushing the network to pick up more resilient properties. In order to
prevent overfitting, the Dropout layer randomly sets input units to 0 at a frequency of rate
at each step during the training period. It functions as an ensemble approach, enhances
generalization, streamlines training, and improves model performance on unknown data.
Input data are reshaped into a one-dimensional array via the Keras “Flatten” layer, enabling
neural network interoperability across convolutional and fully connected layers. Enhancing
the model’s capacity for generalization and stabilizing the training process are the two
main objectives of batch normalization. Additionally, it may lessen the need for meticulous
weight initialization of the model and permit the use of faster learning rates, both of which
may expedite the training process. In neural networks, Rectified Linear Activation, or ReLU,
is a popular activation function. It adds non-linearity, which facilitates the recognition of
intricate patterns.
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3.3. Dataset

The dataset containing MRI scans that we obtained from an anonymous hospital in
India contains 264 images belonging to three classes and we considered 14 of them for
training and the rest for testing. We used segments of 264 3D FLAIR sMRI images belonging
to three classes (meningioma, tuberculoma, normal). The reason for using limited number
of images is because VGGNet is extremely computationally expensive and takes several
days to train on NVIDIA GPU. We considered implementing the model for more than
5000 images in the future for effective generalization of the problem. All the patients
included in this study were aged more than 50 years. The reason for this might be due to
the fact that the incidence of meningiomas is highly age-dependent. Meningiomas are most
common in the fifth to seventh decades of life (40s to 60s). The average age at diagnosis is
around 66 years [76,77].

The first patient is a young, normal healthy patient with no observable pathology.
The second patient has meningioma with numerous metastases and the third patient
has tuberculoma. The total number of parameters is 20,148,803, with 124,419 trainable
parameters and 20,024,384 non-trainable parameters (Figure 2).

3.4. Activation Functions

The functions that we used are as follows.
SoftMax—SoftMax is utilized in convolutional neural networks (CNNs) to convert

the network’s final layer logits into probability distributions, ensuring that the output
values represent normalized class probabilities, making it suitable for multi-class classifica-
tion tasks.

Considering this function, the function values of both classes are determined and
manipulated to add up to unity. This is represented by the undermentioned equation:

f j(z) =
ezj

Σkezk

Cross-entropy loss function—SoftMax is usually paired with the cross-entropy loss
function in the training phase of CNNs. Cross-entropy measures the dissimilarity between
the predicted probabilities and the true distribution of the classes. SoftMax, by producing a
probability distribution, aligns well with the requirements of the cross-entropy loss function.
We exploited this function after utilizing the SoftMax function, whereby our goal was to
foresee our network’s performance and, by functioning to decrease this mean squared
error, we would be practically optimizing our network. This is represented as follows (both
equations are different forms of the same loss function equation):

Li = −log
(

e fyi

Σe f j

)
H(p, q) = −∑

x
p(x)logq(x)

3.5. Optimization Algorithm

In this work, we have also compiled the model using the cost optimization technique
called the ADAM (Adaptive Moment Estimation) optimizer. ADAM is an adaptive learning
rate algorithm designed to improve training speeds in deep neural networks and reach
convergence quickly. It customizes each parameter’s learning rate based on its gradient
history, and this adjustment helps the neural network learn efficiently as a whole. It uses ⊙,
which denotes the Hadamard product (element-wise multiplication), and ⊘, which denotes
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Hadamard division (element-wise division), while ϵ is the smoothing term used to make
sure that division by zero does not take place.

m = β1m − (1 − β1)∇θ J(θ)
s = β2s(1 − β2)∇θ J(θ)⊙∇θ J(θ)

m̂ = m
1−βt

1

ŝ = s
1−βt

2

θ = θ + ηm̂⊘
√

ŝ + ϵ

3.6. DNN Implementation Algorithm

We have used a DNN or deep neural network algorithm for this research, which is
outlined in Figure 4.
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3.7. Evaluation of Model Performance

A model’s performance can be judged using a variety of indicators. These measures
aid in evaluating how well the model handles false positives and false negatives and
predicts the right results. One popular approach for visualizing a model’s performance is a
confusion matrix.

In image processing with a 3 × 3 confusion matrix (Figures 5 and 6), we are evaluating
a model that classifies images into three classes. The matrix displays true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs) for each class, allowing
for the calculation of metrics like accuracy, precision, and recall.
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Here is a breakdown of understanding the 3 × 3 Matrix.
The rows represent actual classes: each row corresponds to the actual class of an image.
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Several performance metrics can be derived from the confusion matrix.
Accuracy refers to the ratio of correctly predicted observations to all observations.

This is mathematically represented by
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Accuracy =
TPA + TPB + TPC

N
Precision refers to the ratio of correctly predicted positive observations to total pre-

dicted positive observations. It is related to the false positive rate and is mathematically
represented by

PrecisionA =
TPA

TPA + FPA

PrecisionB =
TPB

TPB + FPB

PrecisionC =
TPC

TPC + FPC

Recall refers to the ratio of correctly predicted positive observations to the total obser-
vations in the actual class, which is mathematically represented by

RecallA =
TPA

TPA + FNA

RecallB =
TPB

TPB + FNB

RecallC =
TPC

TPC + FNC

The F1 Score refers to the weighted average of precision and recall. It is more useful
than accuracy when the class distribution is unequal, or when false positives and false
negatives have different costs, and it is mathematically represented by

F1A =
2 × PrecisionA × RecallA

PrecisionA + RecallA
=

TPA
TPA + 0.5(FPA + FNA)

Similar expressions are written for classes B and C.
A model’s performance can be assessed using a variety of indicators. A deeper

comprehension of the model’s performance and the identification of areas for advancement
were obtained in the current work by examining these indicators.

3.8. Comparison of the Model with Human Experts

Medical image analysis is complicated, and even if AI algorithms are effective, they
might not always be able to pick up on the finer points and subtleties that human experts
can. Depending on the data they are trained on, AI systems may exhibit bias. For guar-
anteeing that the AI’s classifications are precise and trustworthy, a panel of professionals
can offer an essential layer of validation, fostering confidence in the technology. Such
biases can be recognized and lessened with the use of expert review. A panel of specialists
was employed to examine and validate the outcomes of the AI algorithms, making sure
that the AI’s interpretations matched human expert knowledge, in order to confirm the
correctness of the clinical findings in picture classification. An independent test set of
100 images from 65 patients was used to compare the AI decisions with the decisions made
by human experts. A panel of six experts with significant clinical experience in an academic
radiology center was instructed to make a decision on each test patient using the patient’s
MRI images.

4. Output
The fundamental goal of our present study was to develop a well-fitting model, while

eliminating underfit and overfit issues. We concluded that our model did not induce
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overfitting or underfitting. When comparing training and test data, the model loss should
be lower in the training data. We discovered that deep learning systems, such as Keras,
was advantageous when using neural nets to solve classification tasks.

4.1. Performance Metrics Analysis and Discussion

The performance assessment of the CNN architecture used in the MRI brain tumor
image categorization findings is covered in this part. We were able to obtain quite good and
reliable results for the predicting capacity for the different types of tumors using the very
deep transfer learning CNN that was tested in this work. Our total accuracy is now 99%.
The accuracy was obtained using the confusion matrix. There was a panel of six experts.
The experts involved had significant clinical experience in an academic radiology center.
The analyses were blinded and randomized. Performance was comparable between the
AI system and the human experts. The sensitivities and specificities of the experts were
plotted on a ROC curve of the trained model, and the differences in diagnostic performance,
measured by likelihood ratios, between the model and the human experts were determined
to be statistically similar within a 95% confidence interval. The loss and accuracy of our
model are displayed in Figure 7, which is plotted below. The training accuracy is seen in
Figure 8. These performance charts suggest that the model used did not overfit and that
the validation data retained appropriate generalizability with regard to the trained data.
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Figures 9 and 10 shows the performance metrics and confusion matrix of the imple-
mented model. The matrix was used to evaluate the VGG-16 model’s performance in brain
tumor detection using various metrics to assess its effectiveness. The performance of the
VGG-16 model for brain tumor detection was thoroughly evaluated using a comprehensive
set of metrics derived from a confusion matrix, including sensitivity, specificity, precision,
recall, and the F1 score. The performance of the model is observed to be excellent. The con-
fusion matrix for tumor classification in Figures 9 and 10 indicate the model’s high accuracy
in brain tumor classification. The various performance metrics, which are calculated from
the confusion matrix of the above implemented model, are as shown in Figures 9 and 10.
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The precision score was an important metric used to evaluate the performance of our
model. The level of precision obtained can greatly assist clinicians by providing reliable
predictions, thus reducing the risk of a false positive diagnosis. The recall score reflects the
model’s strong ability to identify all the actual positive cases accurately. A high F1 score
signifies a well-balanced model in terms of recall and precision, indicating that our model
is neither excessively biased towards false positives nor false negatives. This balance is
vital in ensuring a robust and reliable diagnostic model. From the obtained results, it can be
inferred that the strong performance metrics demonstrated by our VGG-16 model suggest
its significant potential for effective and reliable brain tumor detection from MRI scans.
This success opens up avenues for further research into the application of deep learning
architectures for medical diagnostic tasks. Future work could involve refining the model
and validating its effectiveness on a larger, more diverse dataset, thus paving the way for a
reliable, AI-assisted diagnostic tool in neurology.

4.2. Comparison of VGG-16 Model Performance with Other Models

The accuracy of the VGG-16 model was compared to a number of other established
models in order to provide a comprehensive grasp of its competitive position in the field of
brain tumor diagnosis. This comparison with the corresponding accuracies of the models
is explained in Table 3.

Table 3. Comparison of model accuracies.

Model Accuracy

VGG-16 (our model) 99%

EasyDL 96.6%

GoogLeNet 92.54%

GrayNet 95%

ImageNet 91%

CNN 96%

Multivariable Regression and Neural Network 95%

The performance of the VGG-16 model presents strong competition, even though it
does not claim the title of the most accurate model. Our CNN model, which uses a VGG-
16 model with CUDA, performs on par with models like GrayNet and the multivariable
regression and neural network model, but it has better accuracy than the majority of the
other models. The significant potential that the VGG-16 model embodies for the challenge
of brain tumor identification is highlighted by this comparative analysis. In order to match
or surpass the capabilities of the best models in the field, it is still necessary to pursue
more improvements [78–82].

5. Conclusions and Future Work
This research proposes a novel approach that significantly advances the application of

deep learning for medical diagnostics by employing a very deep transfer learning CNN
model (VGG-16) enhanced by CUDA optimization for the accurate and timely real-time
identification of meningiomas.

The different test cases that we have observed are summarized in Table 4.
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Table 4. Test cases with their prediction results.

Test Case No. Prediction Result

1 Meningioma

2 Meningioma

3 Meningioma

4 Meningioma

5 Meningioma

6 Meningioma

7 Normal

8 Normal

9 Normal

10 Normal

Thus, we were successfully able to test 10 random images and classify them as four
“normal” images and six “meningioma” images.

5.1. Integration of Output of This Very Deep Transfer CNN Based Real-Time Meningioma
Detection Methodology Within the Clinico-Radiomics Workflow

Radiomics is a field that extracts and analyzes quantitative features from medical
images to improve clinical decision-making. It goes beyond visual assessment by using
algorithms to identify subtle patterns and characteristics within images that may be diffi-
cult for the human eye to detect. The majority of research utilizing radiomic analysis to
investigate meningiomas relied on magnetic resonance imaging (MRI), utilizing one or
more imaging sequences. Because different MRI imaging sequences have varying tumor
physiology sensitivity, magnetic resonance imaging (MRI) can, in fact, give a superior
anatomical delineation (e.g., spatial position) of the cerebral structures and characterize
the prevalence of different physiopathological processes [21]. Grade prediction and addi-
tional uses are the two main categories into which radiomics applications in meningioma
can be broadly classified. For this reason, deep learning-based AI technology such as
our implemented model offers previously unheard-of improvements in several medical
domains when it comes to automated image analysis. The diagnosis and staging of cancer
(preoperative grading), treatment selection, individual treatment optimization, including
prognosis modeling, and follow-up imaging are typical areas of use for oncological studies.
Numerous imaging modalities can help cancer patients along their path of care [83]. These
radiomic results have begun to change the conventional meningioma treatment workflow
(Figure 11).

Although there are four basic processes in the radiomics workflow (image acquisition,
segmentation, feature extraction, and statistical analysis/model) [38,84,85], each step varies
slightly depending on the study and its goals [39].

The process of radiomics workflow commences with image acquisition, which involves
obtaining and reconstructing the image data [39]. The region of interest (ROI) is identified
and segmented in the second stage, which can be conducted manually, automatically, or
semiautomatically. Meningiomas are typically manually defined by skilled radiologists in
clinical situations. Because many other tumor types lack well-defined borders and internal
heterogeneity, the resulting inter-user variability is unavoidable. While there are other
approaches to reducing variability, segmentation techniques are a common one [85].
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Choosing segmentation software wisely and manually verifying results with vision
can improve the outcome and increase workflow efficiency, particularly when a radiologist
is managing hundreds of cases concurrently. Generally speaking, the human brain is not as
efficient as a computer when it is tired, anxious, or has limited expertise. This might lead to
misdiagnosis or missing a lesion during an MRI. In contrast, artificial intelligence (AI) may
deliver dependable results in a short amount of time, making up for human limitations
and avoiding mistakes in clinical settings. Therefore, in this radiomic workflow stage, our
AI-enabled system can be helpful for novices learning MRI as well as for professionals who
are tired or for negligence brought on by people who have had a lot of screenings. In some
circumstances, alternative strategies like segmenting a fixed-size ROI [86] or applying an
algorithm [87] might also be effective.

Decoding and quantitatively outputting the high-dimension image data is the next
stage of feature extraction [66]. Currently, feature extraction patterns may be easily cate-
gorized as either having human commands or not [63]. The traditional method requires
specialized algorithms that are run by humans. However, the more recent mode, which is
based on deep learning radiomics (DLR) and uses CNNs as an example, like our model in
this workflow stage, can almost entirely carry out the remaining tasks automatically and
without the assistance of humans. Furthermore, compared to conventional approaches,
the number of recovered features from CNNs is many orders of magnitude higher [63].
However, in order to prevent overfitting, feature dimensions must be reduced [66]. Addi-
tionally, several layers inside a single CNN can be used for feature extraction, selection,
and classification [63]. Semantic and agnostic features make up the two categories of
radiomics features. The radiology lexicons that are frequently employed to intuitively
define the lesion, such as size, location, and shape, are indicated by semantic characteristics.
In contrast, agnostic features are quantitative descriptors that are derived theoretically with
the intention of emphasizing lesion heterogeneity [66]. There are three types of agnostic
features: first-, second-, and higher-order features. First-order statistics, which are usually
based on the histogram and show skewness and kurtosis, show the distribution of values of
individual voxels without taking into account spatial correlations. Second-order statistics
characterize statistical correlations, or “texture” features, between voxels that have compa-
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rable (or dissimilar) contrast values. Higher-order statistical features, such as Laplacian
transforms, Minkowski functionals, etc., are repeating or nonrepetitive patterns filtered
through particular grids on the picture [87].

The chosen features can be utilized for a variety of analyses in the last stage of statistical
analysis and modeling, and they are typically included into predictive models to offer
better risk stratification [39]. The process of creating a model involves integrating a number
of analysis techniques, grouping features, and allocating distinct values to each feature
based on the information content that has been predetermined. These analytical techniques
will make use of statistical techniques, ML, and artificial intelligence. A perfect model
will be able to handle sparse data, such as genetic profiles, in addition to handling the
extracted features well [87]. The model’s versatility increases with the number of covariates
it can manage.

In order to accurately classify meningiomas from MR image slices, a deep learning
architecture utilizing CNNs was discussed and put into practice in this study. In the end,
better patient outcomes may result from this research’s ability to provide more accurate
and customized treatment strategies for patients with correctly diagnosed brain tumors.

5.2. Limitations of Our Study

Still, there is always space for improvement, and further research is needed in a
number of areas. One of the study’s methodological flaws is data bias, which is the
predominant representation of data from a single age group (those > 50) and may result in a
lack of diversity in the dataset and restricted generalizability to other datasets and imaging
modalities. The reason for this might be due to the fact that the incidence of meningiomas
is highly age-dependent. Meningiomas are most common in the fifth to seventh decades
of life (40s to 60s). The average age at diagnosis is around 66 years [76,77]. The whole
population should have been included in a dataset that was well-balanced.

We used segments of 264 3D FLAIR sMRI images belonging to three classes (menin-
gioma, tuberculoma, normal). The reason for using a limited number of images is that
VGGNet is extremely computationally expensive and takes several days to train on NVIDIA
GPU. A limited number of images can negatively impact the generalization potential of a
VGG-16 CNN model, especially when training from scratch, leading to underfitting and
poor performance on unseen data. However, transfer learning with a pretrained VGG-16
model can mitigate this issue, allowing for faster training and improved generalization.
We have considered implementing the model for more than 5000 images in the future for
effective generalization of the problem.

Its incapacity to differentiate between various brain tumor subtypes is another draw-
back. Meningiomas are smaller than gliomas, and the former are frequently more noticeable
than the latter. Gliomas, however, can readily pass for meningiomas in MRI because of
characteristics including the broad dural contact, CFS cleft sign, and dural tail sign, which
could lead to confusion in the diagnosis. High-grade glioma invading the dura mater
may also be difficult to distinguish from meningioma, as both lesions show high relative
cerebral blood volume (rCBV) values in perfusion MRI. In these cases, the evaluation of the
time–intensity curve was shown to be a helpful approach. In MR spectroscopy, an elevated
distinct metabolite peak at 3.8 ppm may allow a differentiation between meningiomas,
high-grade gliomas, and intracranial metastases [17].

Correct brain tumor grading classification has important therapeutic ramifications
since it can guide therapy choices and enhance patient outcomes. The ultimate goal
of this project is to accurately detect brain tumors at the medical picture analysis stage
and throughout the planning and execution of robotic surgery by using deep learning
techniques in computer vision.
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Computational Complexity of the Model: Trade-Offs Between Accuracy and
Computational Demands

CNNs’ deep architectures are typically arranged in a pipeline of descriptors that
progresses in representational granularity from edges and corners to motifs, sections,
and, at the end, objects. In order to accomplish this, CNNs rely on fully connected and
Softmax classification modules to deliver the final classification of the input image, as
well as many convolutional and sub-sampling layers that acquire the features and reduce
their dimensionality, respectively. For these reasons, a high computational burden and
memory occupation are common characteristics of CNNs. With more than 138 million
parameters that demand more than 527 MB of storage and more than 13 billion operations
for processing the input image, VGG-16 is computationally and memory intensive [88].

Hence, the computational cost of the VGGNet model is very high. On an NVIDIA GPU,
training takes many days. Therefore, we were motivated to add more input photographs to
the model after implementing it for 264 images in the beginning. The testing and training
data were split into 60% and 40% sets. We used a total of 20,148,803 parameters, of which
124,419 were trainable and 20,024,384 were not, in order to balance the trade-offs between
accuracy and computing needs. Increasing the Imagenet accuracy for a range of parameter
values is something we are excited about.

5.3. Potential Future Research Directions

We intend to continue developing the Inception-V3 model in the future. Moreover,
additional research could be conducted to categorize these images as normal, gliomas,
pituitary tumors, tuberculomas, and meningiomas, and this process would also be able to
determine the extent of metastasis rather than relying solely on a basic prediction system
that distinguishes between normal results and meningiomas. The grade of the tumor can
also be used to classify it. Current developments in this field of study include the application
of more effective methods that need less time complexity and have higher accuracy. Several
layers of CNNs are altered to improve performance. Future research should focus on
exact tumor delineation and characterization, generative AI, massive medical language
models, multimodal data integration, and racial and gender inequities [28,89]. Clinical
results will be optimized by personalized treatment techniques that are adaptive. Like
RNNs (Recurrent Neural Networks), integrated techniques can be used in conjunction with
a SVM (Support Vector Machine) to improve detection. Subsequent research endeavors
ought to concentrate on integrating the auspicious outcomes of ML algorithms into clinical
settings, encompassing the creation of software solutions that are easy to employ for
medical practitioners. In the future, robotic neurosurgery could greatly benefit from the
integration of AI with cutting-edge technologies like neuronavigation and augmented
reality, ushering in a new era of surgical procedures that are safer and more precise.

Terminologies: meningioma, glioma, pituitary, metastasis, cross entropy, deep learning,
convolutional neural networks, transfer learning, radiomics.
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Abbreviations

WHO CNS5

The 2021 World Health Organization Classification of Tumors of the Central Nervous
System, is an update to the previous 2016 classification. It incorporates findings
from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor
Taxonomy (cIMPACT-NOW) and emphasizes the role of genetic and molecular
changes in tumor characteristics. This fifth edition includes new tumor types, revised
nomenclature, and refined grading systems

sMRI
structural Magnetic Resonance Imaging is a non-invasive imaging technique for
examining the anatomy and morphological pathology of the brain,

CUDA

Compute Unified Device Architecture is a parallel computing platform and applica-
tion programming interface (API) developed by NVIDIA for general computing on
Graphical Processing Units (GPUs) with dramatic escalation of computing applica-
tion speeds,

CNN

Convolutional Neural Network is an advanced version of artificial neural networks
(ANNs), primarily designed to extract features from grid-like matrix datasets. This is
particularly useful for visual datasets such as images or videos, where data patterns
play a crucial role,

FLAIR

Fluid-Attenuated Inversion Recovery MRI highlights regions of tissue with T2 pro-
longation while suppressing (darkening) the signal from cerebrospinal fluid (CSF).
This makes it easier to see brain lesions, particularly in locations near CSF. The goal of
FLAIR MRI is to reduce the strong signal from CSF, which can mask mild aberrations
in the brain, particularly in regions close to the brain surface and the periventricu-
lar region (around the ventricles). It effectively nullifies the CSF signal by using a
unique inversion recovery pulse sequence with a long inversion time (TI). In order
to generate strong T2 weighting, which identifies regions of tissue T2 prolongation
(bright signal), it also uses a long echo duration (TE),

CSF
Cerebrospinal Fluid which is a clear, colorless fluid that surrounds the brain and
spinal cord, acting as a cushion and providing nutrients and waste removal,

GBM
Glioblastoma multiforme, also known as glioblastoma, is the most common and
aggressive type of primary brain tumor in adults,

ReLU
Rectified Linear Unit is one of the most popular activation functions for artificial neu-
ral networks, and finds application in biomedical image processing, computer vision
and speech recognition using deep neural nets and computational neuroscience,

DNN

Deep neural networks are a type of artificial neural network with multiple hidden
layers, which makes them more complex and resource-intensive compared to con-
ventional neural networks. They are used for various applications and work best
with GPU-based architectures for faster training times,

ADAM

Adaptive Moment Estimation optimizer is an adaptive learning rate algorithm de-
signed to improve training speeds in deep neural networks and reach convergence
quickly. It customizes each parameter’s learning rate based on its gradient history,
and this adjustment helps the neural network learn efficiently as a whole,

RNN
Recurrent Neural Network is a type of deep learning model specifically designed to
process sequential data like text, speech, or time series,
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SVM

A Support Vector Machine is a supervised machine learning algorithm used for both
classification and regression tasks. It works by finding the optimal hyperplane that
separates data points into different classes, maximizing the margin between them.
SVMs are particularly effective for binary classification and can handle both linear
and non-linear data using kernel functions,

VGG-16

refering to Visual Geometry Group of the University of Oxford, is a convolutional
neural network (CNN) model primarily used for image classification and object
recognition. It’s known for its simplicity and effectiveness, making it a foundational
model in the field of computer vision. The “16” in VGG16 refers to the number of
layers in the network that have learnable parameters, including convolutional and
fully connected layers,

DLR

Deep Learning Radiomics is a fusion of deep learning and radiomics which are
powerful techniques for extracting and analyzing quantitative features from medical
images, enabling precision imaging in various applications. These techniques can
help in diagnosis, prognosis, and treatment planning by identifying patterns and
biomarkers that might not be readily apparent to the human eye.
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