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Abstract

Objectives: To evaluate the agreement between AI-CAD-guided mammographic and
MRI measurements of tumor size and T stage in breast cancer patients being consid-
ered for neoadjuvant chemotherapy (NAC). Methods: This retrospective study included
144 women (mean age, 52 ± 11 years) with invasive breast cancer who subsequently re-
ceived NAC and underwent both AI-CAD mammography (score ≥ 10) and pre-treatment
MRI. Tumor sizes from AI-CAD contours were compared with MRI using Pearson correla-
tion, intraclass correlation coefficients (ICCs), and Bland–Altman analysis. Concordance
was defined as a ±0.5 cm difference. The contour showing the highest agreement was
used to compare T stage with MRI using weighted kappa. Results: The mean AI-CAD
abnormality score was 86.3 ± 22.2. Tumor sizes on mammography were 3.0 ± 1.2 cm
(inner), 3.8 ± 1.5 cm (middle), and 4.8 ± 2.2 cm (outer), while the MRI-measured tumor
size was 4.0 ± 1.9 cm. The middle contour showed the strongest correlation with MRI
(r = 0.897; ICC = 0.866), the smallest mean difference (–0.19 cm; limits of agreement, –1.87
to 1.49), and the highest concordance (61.1%). Agreement was higher in mass-only lesions
than in NME-involved lesions (ICC = 0.883 vs. 0.775; concordance, 70.9% vs. 46.6%).
T stage comparison using the middle contour showed substantial agreement with MRI
(κ = 0.743 [95% CI, 0.634–0.852]; agreement, 88.2%), with higher concordance in mass-only
lesions (93.0%) than NME-involved lesions (81.0%) and more frequent understaging in the
latter (17.2% vs. 2.3%). Conclusions: AI-CAD-guided mammographic assessment using
the middle contour demonstrated good agreement with MRI for tumor size and T stage,
indicating its value as a supportive tool for clinical staging in MRI-limited settings.

Keywords: breast neoplasms; neoadjuvant therapy; artificial intelligence; mammography;
neoplasm staging

1. Introduction
Breast cancer is among the most prevalent malignancies in women, accounting for

nearly 12% of all cancer cases globally [1,2]. Accurate assessment of tumor size and extent
is a key factor in breast cancer evaluation, guiding therapeutic decisions and offering
prognostic insight into overall survival [3,4]. This assessment also plays a significant role
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in determining whether patients should undergo upfront surgery or receive neoadjuvant
chemotherapy (NAC) prior to surgery.

NAC is commonly indicated for patients with locally advanced breast cancer (T2 or
greater, node-positive disease), as well as for those with triple-negative or HER2-positive
subtypes, or when downstaging is necessary to enable breast-conserving surgery [5]. In-
flammatory breast cancer and cases where the extent of residual disease may influence
subsequent treatment decisions are also appropriate candidates for NAC [6]. By reducing
tumor burden before surgery, NAC facilitates surgical planning and provides important
prognostic information [7,8].

In this context, breast magnetic resonance imaging (MRI) is widely regarded as
the most accurate imaging modality for evaluating tumor extent and treatment re-
sponse, and is, therefore, a reasonable comparative modality for evaluating other imaging
approaches [9–11]. MRI findings often play a decisive role in determining whether patients
should be considered for NAC, especially when assessing tumor size and clinical T stage.

Mammography, a fundamental imaging modality for breast cancer diagnosis, has
long served as the standard screening tool [12]. The incorporation of artificial intelligence-
based computer-aided detection (AI-CAD) into mammographic interpretation has led to
significant advancements. AI-CAD has been shown to improve cancer detection rates
by 0.7–1.6 per 1000 screened women and increase the positive predictive value (PPV) by
0.1–1.9% when used as a supplementary reader, with minimal increases in recall rates
(0.16–0.30%) [13]. Large multi-center studies have demonstrated that commercially avail-
able AI-CAD systems achieve comparable or even superior sensitivity and specificity
compared to single or double readings by radiologists [14,15]. Moreover, AI-CAD enhances
reading efficiency, reduces inter-reader variability, and decreases radiologists’ workload.
In dual reading settings, AI-CAD has shown performance sufficient to replace one reader,
with additional readings needed in only 4–6% of cases [13,15,16].

Although AI-CAD systems have been extensively evaluated for cancer detection
in screening settings, few studies have explored their diagnostic potential beyond
detection—particularly in the context of tumor size estimation or clinical staging. To
our knowledge, no prior study has quantitatively examined the agreement between AI-
CAD-based lesion size on mammography and MRI measurements in breast cancer patients
being considered for NAC. Given the clinical importance of tumor size in staging and
treatment planning, along with the widespread availability of mammography even in
resource-limited settings, such an investigation may support broader diagnostic applica-
tions of AI-CAD and offer supportive information in situations where MRI is unavailable
or limited.

Therefore, the aim of this study was to evaluate the agreement between AI-CAD-
guided mammographic and MRI measurements of tumor size and clinical T stage, in order
to determine whether AI-CAD mammography can provide supportive information for
clinical staging in breast cancer patients being considered for NAC.

2. Materials and Methods
2.1. Study Population and Clinical Data Collection

We identified 203 consecutive patients diagnosed with invasive breast cancer who sub-
sequently underwent NAC between May and December 2024 at our tertiary referral center.
Among them, 54 patients were excluded for the following reasons: mammography not
processed with AI-CAD or AI-CAD output was unavailable (n = 25), treatment for recurrent
breast cancer (n = 10), incomplete or suboptimal pre-treatment breast MRI (n = 5), augmen-
tation mammoplasty for cosmetic purposes (n = 5), diagnosis based on vacuum-assisted
biopsy (n = 3), and T4 tumors (n = 6), which were excluded because their classification is
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based on chest wall or skin invasion rather than tumor size. After exclusions, 149 patients
with both pre-treatment mammography and breast MRI were initially included. Of these,
5 patients with occult breast cancer—defined as an AI-CAD abnormality score < 10 (which
was presented as “low”) and interpreted as a test-negative result—were further excluded.
Consequently, a total of 144 patients (mean age, 52 ± 11 years) were included in the final
analysis to evaluate the agreement between AI-CAD-guided mammographic and MRI-
based tumor size and T stage assessments, which were performed prior to NAC initiation
and used to inform clinical staging (Figure 1).

Figure 1. Patient selection flowchart for an AI-based mammography study. NAC = neoadjuvant
chemotherapy; AI-CAD = artificial intelligence-based computer-aided detection; VAB = vacuum-
assisted biopsy.

Clinical data were retrieved from electronic medical records and included age,
menopausal status (premenopausal or postmenopausal), family history of cancer (none,
breast cancer, or other cancer), and BRCA1/2 mutation status (yes, no, or unknown [not
tested]).

2.2. Pathologic and Biomarker Assessment

The histologic type (invasive ductal, invasive lobular, or others), histologic grade (I–II
or III), hormone receptor (HR) status—including estrogen receptor (ER) and progesterone
receptor (PR)—HER2 expression, and Ki-67 expression were determined from the initial
pathology reports of core biopsies obtained before NAC. HR status was defined as positive
if tumor cells showed ER and/or PR expression, with a cut-off of an Allred score ≥ 3 [17].
HER2 positivity was defined as an immunohistochemistry (IHC) score of 3+ or 2+ with
a positive silver fluorescence in situ hybridization (SISH) result, in accordance with the
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2018 ASCO/CAP guidelines [18]. Ki-67 expression was categorized as high (≥20%) or low
(<20%) based on the 2013 St. Gallen consensus [19].

Based on ER, PR, and HER2 status, tumors were further classified into molecular
subtypes: HR+/HER2–, HR+/HER2+, HR–/HER2+, and HR–/HER2– (triple-negative
breast cancer, TNBC).

2.3. MRI Acquisition and Interpretation

Breast MRI was performed using 3T scanners (Verio and Vida, Siemens Healthcare,
Erlangen, Germany) with patients in a prone position using a dedicated breast coil. The
protocol included axial T2-weighted imaging, diffusion-weighted imaging (DWI), and T1-
weighted dynamic contrast-enhanced (DCE) imaging. DCE-MRI was obtained before and
after intravenous injection of a gadolinium-based contrast agent (Gadovist, 0.1 mmol/kg).
The Verio scanner acquired images at 10, 70, 130, 190, 250, and 310 s using a 3D volu-
metric interpolated breath-hold examination (VIBE) sequence, while the Vida scanner
acquired images at 10, 93, 176, 259, 342, and 425 s using a 3D fast low-angle shot (FLASH)
sequence. All DCE sequences were acquired with fat suppression. DICOM data from
DCE-MRI were processed using syngo.via VB80 (Siemens Healthcare, Erlangen, Germany)
to generate maximum intensity projection (MIP) images and subtracted images for all
post-contrast phases.

An experienced breast radiologist (B.J.K., with 19 years of experience) independently
reviewed all pre-treatment breast MRI scans in a blinded manner. The radiologist was
informed only of the laterality (right or left) of the breast cancer but were blinded to detailed
pathological findings, including histologic subtype, biomarker status, and the use of neoad-
juvant chemotherapy. Background parenchymal enhancement (BPE) was first assessed and
categorized as minimal, mild, moderate, or marked. Lesions were then classified based on
their morphological appearance into one of the following categories: mass, non-mass en-
hancement (NME), or mass with NME. For each case, tumor size assessment was performed
with reference to three MRI sequences: axial T2-weighted imaging, early-phase subtracted
T1-weighted DCE imaging, and MIP images [20]. The greatest tumor dimension among
the three sequences was measured using electronic calipers. When multiple lesions were
present, the most suspicious lesion was used for size measurement. Based on the recorded
size, MRI-based T staging was subsequently determined by a medical oncologist (K.S.).

2.4. AI-Based Mammographic Analysis

Bilateral mammograms were obtained using a dedicated digital mammography sys-
tem (Selenia Dimensions; Hologic, Marlborough, MA, USA), including standard cranio-
caudal (CC) and mediolateral oblique (MLO) views. All images were analyzed using a
commercially available AI-CAD program (Lunit INSIGHT MMG; https://insight.lunit.io,
version 1.1.8.2, accessed on 23 June 2025), which has been validated in multiple interna-
tional studies [21–25]. The system provides breast parenchymal composition (categorized
as A to D: fatty, scattered, heterogeneously dense, or extremely dense) and a corresponding
breast density score (0–10) for all cases. It also provides abnormality scores (0–100) for each
breast, along with grayscale contour maps and the type of abnormality (mass, calcification,
or mass with calcification), if present. An abnormality score ≥ 10 was considered positive,
and patients with scores < 10 (n = 5) were excluded as described in the inclusion criteria.

Lunit INSIGHT MMG (Lunit, Seoul, Republic of Korea) is an AI-CAD software for
breast cancer detection in mammography, developed using deep convolutional neural
networks (CNNs) [23]. It employs ResNet-34, a widely used CNN architecture, as the
backbone network [26]. The algorithm was trained on more than 200,000 mammographic

https://insight.lunit.io
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cases collected from Korea, the United States, and the United Kingdom, and has received
regulatory approval from the Korean Ministry of Food and Drug Safety.

For each case, the lesion with the highest abnormality score was selected from the
more suspicious side (in bilateral cases, n = 4) and from the projection view (CC or MLO)
with the higher score. Two board-certified breast radiologists (G.E.P. and H.S.M., with 9
and 14 years of experience, respectively), who were blinded to MRI findings, evaluated
lesion size by consensus based on AI-generated contours. When a lesion was detected, the
AI-CAD system generated up to three concentric contours according to abnormality score
thresholds: inner (≥90), middle (50–89), and outer (10–49). Each contour represented a
distinct level of algorithm-predicted probability of malignancy. Tumor size was measured
along the longest axis between the edges of each contour line, excluding line thickness
to avoid overestimation. When fewer than three contours were present, the following
approach was applied: if only one contour was present, the same value was assigned to
all three contours; if two contours were present, the middle value was interpolated as the
average of the inner and outer contours. Pixel spacing (0.1670 mm/pixel) was validated
in 20 randomly selected cases and was used to convert all sizes measured by radiologists
using AI-CAD contours from pixels to centimeters. Tumor sizes derived from each contour
were used to assign three separate mammography-based T stages per case (K.S.). Tumor
laterality was shared with MRI reviewers to ensure consistency in lesion matching across
modalities. As a result, a total of 144 representative lesions from 144 patients were included
in the final analysis.

2.5. Statistical Analysis

Descriptive statistics were used to summarize clinicopathologic and imaging character-
istics. Continuous variables were reported as mean ± standard deviation, and categorical
variables as counts and percentages.

Pearson correlation coefficients were calculated to assess linear agreement between AI-
CAD-guided and MRI tumor sizes. Intraclass correlation coefficients (ICCs) were computed
using a two-way random effects model (ICC[2,1]) to evaluate absolute agreement. ICC
values were interpreted as follows: <0.50, poor; 0.50–0.75, moderate; 0.75–0.90, good; >0.90,
excellent [27]. Bland–Altman analysis was also performed to assess mean differences and
95% limits of agreement (LoA). Concordance between tumor sizes obtained from each
modality was defined as a difference within ±0.5 cm, reflecting a clinically acceptable
threshold that is widely used in breast imaging and supported by prior studies [20,28–30].

For T staging, AI-CAD-guided stages derived from different contour levels were
compared with MRI-based stages. The best-performing contour was used for the final
comparison. Quadratic weighted kappa statistics, appropriate for ordinal data, were used
to assess agreement, with interpretation as follows: <0.00, poor; 0.00–0.20, slight; 0.21–0.40,
fair; 0.41–0.60, moderate; 0.61–0.80, substantial; 0.81–1.00, almost perfect [31]. Rates of
agreement, understaging (AI-CAD-guided T stage < MRI T stage), and overestaging (AI-
CAD-guided T stage > MRI T stage) were also calculated.

All statistical analyses were performed using SPSS (version 28.0; IBM Corp., Armonk,
NY, USA), with significance set at p < 0.05.

3. Results
3.1. Baseline Clinicopathologic and MRI Characteristics

A total of 144 representative lesions from 144 patients (mean age, 51.7 ± 10.8 years)
were included in the final analysis (Table 1). Of these, 86.1% were aged 40 years or older. A
family history of breast cancer was reported in 13.9% of patients, and BRCA1/2 mutations
were confirmed in 4.2%.
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Table 1. Baseline clinicopathologic and MRI characteristics of the study population.

Category Variable Value n (%)

Demographics Age (years) Mean ± SD 51.7 ± 10.8
<40 years 20 (13.9%)
≥40 years 124 (86.1%)

Menopausal state Premenopause 76 (52.8%)
Postmenopause 68 (47.2%)

Family history of cancer None 80 (55.6%)
Breast cancer 20 (13.9%)
Other cancer 44 (30.6%)

BRCA1/2 mutation status No 44 (30.6%)
Yes 6 (4.2%)
Unknown 94 (65.3%)

Pathology Histologic type Invasive ductal 134 (93.1%)
Invasive lobular 5 (3.5%)
Others 5 (3.5%)

Histologic grade I–II 80 (55.6%)
III 63 (43.8%)
Unknown 1 (0.7%)

Estrogen receptor No 63 (43.8%)
Yes 81 (56.2%)

Progesterone receptor No 87 (60.4%)
Yes 57 (39.6%)

HER2 receptor No 79 (54.9%)
Yes 65 (45.1%)

Molecular subtype HR+/HER2– 35 (24.3%)
HR+/HER2+ 22 (15.3%)
HR–/HER2+ 43 (29.9%)
HR–/HER2–
(TNBC) 44 (30.6%)

Ki-67 expression <20% 23 (16.0%)
≥20% 121 (84.0%)

MRI
Characteristics MRI BPE Minimal 58 (40.3%)

Mild 51 (35.4%)
Moderate 19 (13.2%)
Marked 16 (11.1%)

MRI lesion type Mass only 86 (59.7%)
NME only 14 (9.7%)
Mass with NME 44 (30.6%)

MRI tumor size (cm) Mean ± SD (range) 4.0 ± 1.9 (1.7–10.8)
MRI-based T stage T1 9 (6.2%)

T2 100 (69.4%)
T3 35 (24.3%)

MRI = magnetic resonance imaging; SD = standard deviation; HER2 = human epidermal growth factor receptor 2;
HR = hormone receptor; TNBC = triple-negative breast cancer; BPE = background parenchymal enhancement;
NME = non-mass enhancement.

Most tumors were invasive ductal carcinoma (93.1%), while invasive lobular and other
histologic types each accounted for 3.5%. High-grade tumors (grade III) were observed
in 43.8% of cases. ER and PR positivity were identified in 56.2% and 39.6% of patients,
respectively, and HER2 positivity was observed in 45.1% of cases based on IHC/SISH.
According to HR and HER2 status, the most common molecular subtype was HR–/HER2–
(TNBC, 30.6%), followed by HR–/HER2+ (29.9%), HR+/HER2– (24.3%), and HR+/HER2+
(15.3%). High Ki-67 expression (≥20%) was found in 84.0% of tumors.

Regarding MRI characteristics, minimal and mild BPE were the most frequently
observed patterns (40.3% and 35.4%, respectively). In terms of lesion type, mass lesions
only were present in 59.7% of patients, mass with NME in 30.6%, and NME only in 9.7%.
The mean tumor size on MRI was 4.0 ± 1.9 cm (range, 1.7–10.8 cm). Based on the MRI-
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derived T stage, T2 was the most prevalent (100/144, 69.4%), followed by T3 (35/144,
24.3%) and T1 (9/144, 6.2%).

3.2. AI-CAD-Guided Mammographic Tumor Assessment

Among the 144 cases, the most common breast composition was heterogeneously
dense (66.0%), followed by scattered (18.1%) and extremely dense (15.3%). The mean breast
density score (0–10) was 6.9 ± 1.6 (Table 2).

Table 2. AI-CAD-guided mammographic lesion assessment.

Category Variable Value n (%)

Breast Density Breast composition Fatty 1 (0.7%)
Scattered 26 (18.1%)
Heterogeneously dense 95 (66.0%)
Extremely dense 22 (15.3%)

Breast density score (0–10) Mean ± SD (range) 6.9 ± 1.6 (3–10)
AI Abnormality
Detection Abnormality score (0–100) Mean ± SD (range) 86.3 ± 22.2 (10–99)

Abnormality type Mass 58 (40.3%)
Calcification 23 (16.0%)
Mass with calcification 63 (43.8%)

Detection view CC 58 (40.3%)
MLO 86 (59.7%)

Number of abnormality contours 1 15 (10.4%)
2 31 (21.5%)
3 98 (68.1%)

Contour-based Tumor
Size (cm) Inner size Mean ± SD (range) 3.0 ± 1.2 (1.2–7.9)

Middle size Mean ± SD (range) 3.8 ± 1.5 (1.2–9.2)
Outer size Mean ± SD (range) 4.8 ± 2.2 (1.2–13.5)

AI-CAD-guided T stage Inner T stage T1 34 (23.6%)
T2 100 (69.4%)
T3 10 (6.9%)

Middle T stage T1 5 (3.5%)
T2 115 (79.9%)
T3 24 (16.7%)

Outer T stage T1 2 (1.4%)
T2 95 (66.0%)
T3 47 (32.6%)

AI-CAD = artificial intelligence-based computer-aided detection; SD = standard deviation; CC = craniocaudal;
MLO = mediolateral oblique.

For the AI-CAD-detected lesion, the mean abnormality score (0–100) was 86.3 ± 22.2
(Figure 2). The most frequently detected abnormality type was mass with calcification
(43.8%), followed by mass (40.3%) and calcification alone (16.0%). The MLO view was more
frequently selected for analysis (59.7%) compared to the CC view (40.3%). In terms of the
number of abnormality contours, three contours were identified in the majority of cases
(68.1%).

The mean tumor sizes derived from the inner, middle, and outer contours were
3.0 ± 1.2 cm, 3.8 ± 1.5 cm, and 4.8 ± 2.2 cm, respectively. Based on AI-CAD-guided
mammographic T staging, T2 was the most frequent stage across all three contours (inner:
69.4%; middle: 79.9%; outer: 66.0%). The proportion of T3 classification increased with
contour size, whereas T1 classification was more common in the inner contour than in the
middle or outer contours.
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Figure 2. AI-CAD mammography and MRI findings in a 48-year-old woman with invasive ductal
carcinoma, grade II (HR+/HER2+, Ki-67 index 34%). (A) AI-CAD mammography shows hetero-
geneously dense breasts (category C, density score 8/10) and a high abnormality score (95) on the
right mediolateral oblique view. The lesion was classified as calcification. Tumor size along the inner,
middle, and outer contours was 2.0, 3.5, and 4.9 cm, respectively (T1, T2, T2). (B,C) Contrast-enhanced
MRI reveals a heterogeneously enhancing mass with non-mass enhancement in the corresponding
area. The lesion measured 3.3 cm on axial and 3.7 cm on sagittal views; the maximal diameter
(3.7 cm) was used for T2 staging. Arrows indicate the lesion; yellow lines represent caliper-based
measurements. AI-CAD = artificial intelligence-based computer-aided detection; HR = hormone
receptor; HER2 = human epidermal growth factor receptor 2.

3.3. Agreement Between MRI and AI-CAD-Guided Mammographic Tumor Size Measurements

Pearson correlation analysis revealed strong linear associations between MRI-
measured tumor size and AI-CAD-guided measurements from all contour levels (inner:
r = 0.783, p < 0.001; middle: r = 0.897, p < 0.001; outer: r = 0.922, p < 0.001) (Figure 3).

ICC analysis demonstrated good agreement for the middle and outer contours
(ICC = 0.866 [95% CI, 0.815–0.902] and 0.847 [95% CI, 0.446–0.936], respectively), whereas
the inner contour showed only moderate agreement (ICC = 0.602 [95% CI, 0.153–0.794])
(Table 3). When analyzed by MRI lesion type, ICCs were consistently higher in mass-only
lesions compared to NME-involved lesions, which included both NME-only lesions and
masses with associated non-mass enhancement. The highest agreement was observed in
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mass-only lesions using the middle contour (ICC = 0.883 [95% CI, 0.827–0.922]), whereas the
lowest was found in NME-involved lesions using the inner contour (ICC = 0.443 [95% CI,
0.000–0.729]).

 
(A) (B) (C) 

Figure 3. Scatter plots showing Pearson correlations between MRI and AI-CAD-guided tumor
measurements based on (A) inner, (B) middle, and (C) outer contours (r = 0.783, 0.897, and 0.922; all
p < 0.001). AI-CAD = artificial intelligence-based computer-aided detection.

Table 3. ICC, Bland–Altman, and concordance analysis of tumor sizes by MRI lesion type and
AI-CAD-guided contours.

MRI
Lesion
Type

AI-CAD-
Guided ICC (95% CI)

Mean Diff.
(AI–MRI)

(cm)

SD of Diff.
(cm)

Lower LoA
(cm)

Upper LoA
(cm)

Within ±
0.5 cm,
n (%)

Total Inner 0.602 (0.153,
0.794) −1.01 1.18 −3.34 1.31 58 (40.3%)

(n = 144) Middle 0.866 (0.815,
0.902) −0.19 0.85 −1.87 1.49 88 (61.1%)

Outer 0.847 (0.446,
0.936) 0.79 0.88 −0.95 2.52 46 (31.9%)

Mass only Inner 0.714 (0.246,
0.870) −0.54 0.62 −1.77 0.68 47 (54.7%)

(n = 86) Middle 0.883 (0.827,
0.922) 0.07 0.50 −0.91 1.06 61 (70.9%)

Outer 0.775 (0.133,
0.916) 0.60 0.54 −0.45 1.65 35 (40.7%)

NME-
involved * Inner 0.443 (0.000,

0.729) −1.71 1.45 −4.56 1.14 11 (19.0%)

(n = 58) Middle 0.780 (0.580,
0.880) −0.57 1.10 −2.73 1.58 27 (46.6%)

Outer 0.783 (0.301,
0.911) 1.07 1.18 −1.25 3.38 11 (19.0%)

* NME-involved includes both NME-only lesions and masses with associated NME. ICC = intraclass correlation
coefficient; MRI = magnetic resonance imaging; AI-CAD = artificial intelligence-based computer-aided detection;
CI = confidence interval; Diff. = difference; SD = standard deviation; LoA = limits of agreement; NME = non-mass
enhancement.

Bland–Altman analysis supported these findings (Figure 4). The mean difference
ranged from –1.01 to 0.79 cm across all contours. The middle contour showed the smallest
mean difference relative to MRI across lesion types: –0.19 cm (LoA, –1.87 to 1.49) in total
cases, 0.07 cm (LoA, –0.92 to 1.07) in mass-only lesions, and –0.57 cm (LoA, –2.73 to 1.58) in
NME-involved lesions. Across all contours, NME-involved lesions showed consistently
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greater mean differences than mass-only lesions, with mean differences ranging from –1.71
to 1.07 cm.

(A) (B) (C) 

Figure 4. Bland–Altman plots comparing MRI and AI-CAD-guided tumor size based on (A) inner,
(B) middle, and (C) outer contours. The middle contour showed the smallest mean difference
(−0.19 cm; 95% limits of agreement –1.87 to 1.49 cm). AI-CAD = artificial intelligence-based computer-
aided detection.

Concordance analysis ranged from 31.9% to 61.1%, with the highest rate observed for
the middle contour (61.1%, 88/144). In mass-only lesions, the concordance rates were 70.9%
(61/86) for the middle contour, 54.7% (47/86) for the inner contour, and 40.7% (35/86)
for the outer contour. In NME-involved lesions, the middle contour also showed the
highest concordance rate at 46.6% (27/58), while the inner and outer contours both showed
identical rates of 19.0% (11/58 each).

Overall, the middle contour demonstrated the most consistent agreement with MRI
tumor size measurements. Based on these results, the middle contour was used for AI-
CAD-guided mammographic T stage comparisons in the following Section 3.4.

3.4. Concordance Between MRI and AI-CAD-Guided Mammographic T Staging

As shown in Table 4, the confusion matrix for all cases demonstrated a quadratic
weighted κ of 0.743 [95% CI, 0.634–0.852], indicating substantial agreement between MRI
and AI-CAD-guided mammographic T staging (middle contour), with an overall agreement
rate of 88.2% (127 of 144 cases) (Figure 5). Subgroup analysis showed higher concordance
in mass-only lesions (κ = 0.725 [95% CI, 0.579–0.871]; agreement, 93.0%) compared to NME-
involved lesions (κ = 0.624 [95% CI, 0.423–0.825]; agreement, 81.0%), with understaging
occurring more frequently in the NME-involved group (17.2% vs. 2.3%). Confusion
matrices for each subgroup are presented in Supplementary Table S1.

Table 4. Confusion matrix for all cases and concordance metrics between MRI and AI-CAD-guided T
staging: overall and subgroup analysis.

AI-Based T Stage
(Middle Contour)

MRI
T stage T1 T2 T3 Total Metrics Total

(n = 144)
Mass only

(n = 86)
NME-involved *

(n = 58)

T1 5 4 0 9
Quadratic

weighted κ

(95% CI)

0.743
(0.634, 0.852)

0.725
(0.579, 0.871)

0.624
(0.423, 0.825)

T2 0 99 1 100 Agreement rate
(n, %) 127 (88.2%) 80 (93.0%) 47 (81.0%)



Tomography 2025, 11, 72 11 of 17

Table 4. Cont.

AI-Based T Stage
(Middle Contour)

T3 0 12 23 35
Understaging

rate
(n, %)

12 (8.3%) 2 (2.3%) 10 (17.2%)

Total 5 115 24 144 Overstaging rate
(n, %) 5 (3.5%) 4 (4.7%) 1 (1.7%)

* NME-involved: includes both NME-only and mass with NME lesions. MRI = magnetic resonance imaging;
AI-CAD = artificial intelligence-based computer-aided detection; NME = non-mass enhancement; CI = confidence
interval.

 

Figure 5. AI-CAD mammography and MRI findings in a 53-year-old woman with invasive ductal
carcinoma, grade III (HR+/HER2−, Ki-67 index 85%). (A) AI-CAD mammography shows hetero-
geneously dense breasts (category C, density score 6/10) and a high abnormality score (97) on the
left mediolateral oblique view. The lesion was classified as a mass. Tumor size along inner, middle,
and outer contours was 2.6, 3.8, and 4.6 cm, respectively (T2 stage for all). A partially visualized
enlarged axillary lymph node was also noted. (B,C) Contrast-enhanced MRI reveals an irregularly
enhancing mass in the corresponding area. The lesion measured 2.8 cm on the axial view and 3.8 cm
on the maximum intensity projection image; the maximal diameter (3.8 cm) was used for T2 staging.
Arrows indicate the lesion; yellow lines represent caliper-based measurements. The outer contour
in A was omitted due to visual overlap with other lines. AI-CAD = artificial intelligence-based
computer-aided detection; HR = hormone receptor; HER2 = human epidermal growth factor receptor
2; MIP = maximum intensity projection.
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To further explore the concordance across clinicopathologic subgroups, a molecular
subtype-stratified analysis was performed (Table 5). The highest concordance was observed
in TNBC cases, with a κ of 0.902 [95% CI, 0.749–1.000] and an agreement rate of 95.4%,
indicating almost perfect agreement. Other subtypes showed κ values ranging from 0.629
[95% CI, 0.316–0.854] to 0.704 [95% CI, 0.448–0.892], with agreement rates between 82.9%
and 86.4%.

Table 5. Concordance metrics by molecular subtype (n = 144).

Molecular
Subtype n Quadratic Weighted κ

(95% CI)
Agreement

(n, %)
Understaging

(n, %)
Overstaging

(n, %)

HR+/HER2– 35 0.629
(0.316, 0.854) 29 (82.9%) 5 (14.3%) 1 (2.8%)

HR+/HER2+ 22 0.660
(0.282, 0.942) 19 (86.4%) 2 (9.1%) 1 (4.5%)

HR–/HER2+ 43 0.704
(0.448, 0.892) 37 (86.0%) 4 (9.3%) 2 (4.7%)

HR–/HER2–
(TNBC) 44 0.902

(0.749, 1.000) 42 (95.4%) 1 (2.3%) 1 (2.3%)

HR = hormone receptor; HER2 = human epidermal growth factor receptor 2; TNBC = triple-negative breast cancer;
CI = confidence interval.

4. Discussion
In this study, we evaluated the concordance between AI-CAD-guided mammographic

measurements and MRI-based assessments of tumor size and clinical T stage in 144 patients
with breast cancer. Among the three AI-CAD-generated contours, the middle contour
consistently demonstrated the highest agreement with MRI across all evaluation metrics. It
showed good absolute agreement (ICC = 0.866), the smallest mean difference (–0.19 cm),
and the highest concordance rate (61.1%). Based on these findings, the middle contour
was selected as the representative contour for T stage comparison with MRI, showing
substantial agreement (κ = 0.743; agreement, 88.2%).

The diagnostic performance of radiologists in mammographic interpretation can
vary considerably [32–34]. To support consistent image evaluation, CAD systems were
introduced, with the first approved by the U.S. Food and Drug Administration (FDA) in
1998 [35]. However, the effectiveness of conventional CAD has remained controversial
due to low specificity, frequent false-positive markings, and high recall rates [36–39]. More
recently, deep learning and CNNs have enabled substantial improvements in AI-based
mammographic interpretation [40,41].

Lee et al. demonstrated that abnormality scores generated by the AI-CAD algorithm
correlated well with PPVs, meeting BI-RADS recommendations [21]. Additionally, prior
studies have shown that when radiologists could not identify corresponding imaging
findings for AI-CAD detections, the likelihood of malignancy was extremely low [21,42].
Nonetheless, some argue that the abnormality score—ranging from 0 to 100—reflects only
the degree of suspicion rather than a true probability of cancer [43].

While AI-CAD systems now offer lesion contours to assist with size estimation,
their validity for tumor size measurement and T staging remains underexplored. To
our knowledge, no prior studies have directly compared AI-CAD-generated measure-
ments with established imaging standards. In this study, we assessed the agreement
between AI-CAD-guided mammographic measurements and MRI tumor size determined
by experienced radiologists.

Our Pearson correlation analysis demonstrated a linear relationship between tumor
sizes measured by AI and those measured by MRI, although this did not imply perfect
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agreement in absolute values. While the middle and outer contours showed similar ICCs
overall, the middle contour demonstrated a particularly high ICC of 0.883 in mass-only
lesions. It also showed the smallest mean difference from MRI measurements across lesion
types: –0.19 cm (LoA, –1.87 to 1.49) in total cases and 0.07 cm (LoA, –0.92 to 1.07) in mass-
only lesions. These findings align with a previous study evaluating dual-layer CT (DLCT)
with virtual monochromatic imaging (VMI), which reported an ICC of 0.840 and a mean
difference of –0.05 cm compared to MRI (LoA, –1.29 to 1.19) [29].

A recent study using a Res-UNet model demonstrated high concordance between
AI-generated and radiologist-derived MRI segmentations in mass lesions, with a T staging
accuracy of 93% [44]. In contrast, our study focused on AI-CAD-guided mammographic
measurements derived from contour levels, and showed substantial agreement with MRI-
based T staging (κ = 0.743; agreement, 88.2%), particularly in mass-only lesions (κ = 0.725;
agreement, 93.0%). Although our AI-CAD system was not designed to assign T stage
directly, the radiologist-assigned staging based on AI-guided size showed promising
concordance, suggesting potential utility in pre-treatment assessment.

Our subgroup analysis by molecular subtype revealed that HR–/HER2– (TNBC) cases
showed a 95.4% agreement rate, likely due to their tendency to present themselves as mass
lesions on MRI [45]. In contrast, NME-involved cases showed an 81.0% agreement rate and
a 17.2% understaging rate. Given that HER2-positive cancers frequently present with NME,
our findings should be interpreted with caution in this subgroup [46].

The BREAST-MRI randomized trial showed that preoperative MRI did not significantly
improve local relapse-free or overall survival, nor did it reduce the reoperation rate [47].
In this context, our findings—demonstrating good concordance between AI-CAD-guided
mammographic T staging and MRI—highlight the potential clinical utility of AI-assisted
evaluation, particularly in settings where MRI is unavailable or impractical. Given that
mammography and ultrasound are more widely accessible, AI-enhanced interpretation
of conventional imaging may support appropriate treatment planning in resource-limited
environments. In particular, AI-CAD-guided mammographic assessment may be clinically
valuable in settings where MRI is not readily available due to cost, examination time, or
limited imaging infrastructure, such as in community hospitals or rural clinics. In these con-
texts, AI-CAD can assist in identifying patients at higher risk of malignancy, thereby helping
to triage cases and prioritize the use of advanced imaging modalities such as MRI for those
with greater clinical need. Additionally, in situations where MRI is contraindicated—for
example, patients with renal impairment, severe claustrophobia, or non-MRI-compatible
implants—AI-CAD may provide tumor size estimates and diagnostic support.

Beyond detection and tumor sizing, AI is also being explored for risk stratification
in breast cancer by analyzing mammographic features like breast density, with improved
prediction over traditional models [16,48]. This expanding role of AI underscores its
potential not only in detection but also in future clinical decision-making.

Nonetheless, our study has several limitations. First, this study was conducted at
a single institution without the inclusion of a large, multi-center cohort. Although the
internal consistency of our findings supports the validity of AI-CAD-guided lesion size
assessment within this setting, the generalizability of the results to broader clinical en-
vironments may be limited due to potential variations in imaging protocols and patient
characteristics across institutions. Second, our study included only patients who received
NAC, and therefore those with ductal carcinoma in situ (DCIS) were not represented. As
NAC is not indicated for DCIS, such patients were inherently excluded from the study
cohort, which reflects current clinical practice. However, as AI-CAD performance may
differ in preinvasive lesions or in patients not receiving NAC, caution is warranted in
extrapolating our findings to such populations. Further prospective, multi-center studies



Tomography 2025, 11, 72 14 of 17

involving more diverse patient cohorts are warranted to validate the broader applicability
of AI-CAD in clinical staging. Third, we used only one commercially available AI system.
Therefore, the applicability of our findings to other platforms with different algorithms
remains uncertain. Fourth, a fixed AI-CAD abnormality score threshold (≥10) was applied
as part of our inclusion criteria, based on the classification rule set by the Lunit INSIGHT
MMG system. Scores below 10 are interpreted as negative, and no lesion contours are
generated. The abnormality score represents the probability of malignancy generated by
an algorithm-specific AI model and is influenced by the distribution and characteristics
of its training data. Although the rationale for this cutoff is not publicly disclosed, it has
been consistently used in prior studies employing the same software [21,22,42]. Finally,
since our study included only patients who subsequently received NAC, pathological
tumor size—altered by treatment-induced changes—could not be used as the reference
standard. MRI, performed before NAC, is widely recognized as the most accurate imaging
modality for evaluating tumor extent and, in patients receiving NAC, for assessing treat-
ment response [9–11]. Accordingly, we considered MRI a reasonable and clinically relevant
reference for evaluating the concordance of AI-CAD-guided mammographic tumor size
estimation and clinical T staging. However, the absence of pathological confirmation limits
the ability to assess how accurately AI-CAD reflects tumor extent, and this should be
considered when interpreting the findings.

5. Conclusions
AI-CAD-guided mammographic tumor assessment, particularly when using the mid-

dle contour, demonstrated good agreement with MRI in estimating tumor size and clinical
T stage. Given the limited accessibility of MRI in many clinical settings, this study was
motivated by the need to evaluate the potential utility of AI-CAD-enhanced mammography
as a supportive tool in clinical staging. These findings suggest that AI-CAD-enhanced mam-
mography provides supportive information for clinical staging in breast cancer patients
being considered for NAC, especially in settings where MRI is unavailable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography11070072/s1, Table S1: Confusion matrices for mass-
only (n = 86) and NME-involved (n = 58) subgroups*.
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