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Abstract: People are exposed to phthalates through their wide use as plasticizers and in personal care
products. Many phthalates are endocrine disruptors and have been associated with adverse health
outcomes. However, knowledge gaps exist in understanding the molecular mechanisms associated
with the effects of exposure in early and late pregnancy. In this study, we examined the relationship
of eleven urinary phthalate metabolites with isoprostane, an established marker of oxidative stress,
among pregnant Mexican-American women from an agricultural cohort. Isoprostane levels were
on average 20% higher at 26 weeks than at 13 weeks of pregnancy. Urinary phthalate metabolite
concentrations suggested relatively consistent phthalate exposures over pregnancy. The relationship
between phthalate metabolite concentrations and isoprostane levels was significant for the sum of
di-2-ethylhexyl phthalate and the sum of high molecular weight metabolites with the exception
of monobenzyl phthalate, which was not associated with oxidative stress at either time point.
In contrast, low molecular weight metabolite concentrations were not associated with isoprostane at
13 weeks, but this relationship became stronger later in pregnancy (p-value = 0.009 for the sum of
low molecular weight metabolites). Our findings suggest that prenatal exposure to phthalates may
influence oxidative stress, which is consistent with their relationship with obesity and other adverse
health outcomes.

Keywords: phthalates; isoprostane; pregnancy; birth cohort; oxidative stress; endocrine disruptors;
in utero exposure

1. Introduction

Phthalates are a group of chemicals used in personal care products, including fragrances, cosmetics
and shampoo. They are also utilized as plasticizers in flexible plastic products, such as food packaging,
building materials and medical devices. Due to the non-covalent bonds with the plastics they soften,
phthalates leach easily into the environment [1]. Human exposure occurs mainly via diet, inhalation
and dermal absorption. Phthalates have short half-lives and are rapidly excreted in humans. Phthalate
metabolites are almost universally present in human urine at varying levels in the U.S. population [1].
Monoethyl phthalate (MEP), a metabolite of diethyl phthalate (DEP), a fragrance solvent in personal
care products, is generally detected at the highest concentrations compared to other metabolites [2].

Exposure to certain phthalates has been associated with adverse birth outcomes, inflammation
and asthma [3–7]. The Chronic Hazard Advisory Panel (CHAP) of the U.S. Consumer Product
Safety Commission has identified the developing fetus as the most vulnerable target of toxicity for
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phthalates [8]. A growing body of mechanistic, animal and human data suggests a strong link between
phthalates and the biological pathways that influence obesity in adults [9–11] and children [6].

Oxidative stress occurs when the body’s antioxidant defenses are overwhelmed by the reactive
oxygen species generated through metabolic processes. The reactions of such free radicals with
lipids, proteins or nucleic acids can lead to tissue damage. Obesity is considered a condition of
systemic oxidative stress [12–14]. Isoprostanes result from free radical-dependent peroxidation of fatty
acids and are well-validated biomarkers of oxidative stress [15–19]. In adults, increased isoprostane
levels have been associated with higher body mass index (BMI) [20,21], diabetes mellitus [22] and
hypercholesterolemia [23]. Overweight children have higher levels of isoprostanes than normal weight
children [17,18,24].

Growing evidence suggests phthalates can induce oxidative stress [25–31]. For instance,
epidemiologic studies have reported links between urinary phthalates (e.g., mono-isobutyl phthalate
(MiBP)) and phthalate metabolites (e.g., di-2-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP))
with increased levels of lipid peroxidation, inflammation and decreased levels of antioxidants [32–34].
Prenatal phthalate exposure was also associated with increased oxidative stress in male rat
offspring [35], providing some evidence of fetal programming by phthalate exposure. Limited data,
however, are available on the effects of phthalates on isoprostane levels during pregnancy, a particularly
sensitive period for phthalate exposure. In a recent study of pregnant women from Boston,
concentrations of nine phthalate metabolites measured four times during pregnancy were significantly
associated with isoprostane levels in urine [4]. Estimated differences were greater for monobenzyl
phthalate (MBzP), mono-n-butyl phthalate (MBP) and MiBP in comparison with metabolites of DEHP.
The same group of investigators also reported a statistically-significant relationship of nearly all
phthalate metabolites with isoprostane in pregnant women in Puerto Rico [36]. However, most of the
existing data are for urban cohorts, and less is known about phthalate exposure and oxidative stress in
minority pregnant women from agricultural areas who may also have a low socioeconomic status and
different lifestyle variables. Therefore, we have examined whether those results hold true in a rural,
Mexican-American population.

The purpose of the present study is to determine the relationship of isoprostane levels in maternal
urine in early and late pregnancy with in utero phthalate metabolite concentrations in participants of
the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS), a longitudinal
birth cohort study of Mexican-American farmworkers and their families.

2. Materials and Methods

2.1. Study Subjects

The CHAMACOS study has been conducted in the agricultural region of Salinas Valley, California,
since 1999 [37]. At the time of enrollment, pregnant women (N = 601) were at least 18 years of age, at
less than 20 weeks gestation, Spanish or English speaking and receiving prenatal care at the community
clinics. Trained bilingual, bicultural staff members interviewed CHAMACOS women twice during
pregnancy (~13 weeks and 26 weeks gestation) and obtained information on sociodemographic
characteristics, reproductive and medical history, exposures during pregnancy, and lifestyle and
environmental exposures.

Spot urine samples were collected from women at the time of both interviews. The timing during
the day (between 8 a.m. and 7 p.m.) was recorded, since we were aware of its potential relationship
with the concentrations of isoprostane and possibly phthalate metabolites. Samples were frozen at
´80 ˝C until shipped on dry ice to the Centers for Disease Control and Prevention (CDC). Phthalate
metabolite concentrations were measured at CDC in 432 maternal urinary samples at 13 weeks of
gestation and for 417 mothers at 26 weeks. Four hundred women had samples at both time points.
Isoprostane was quantified in a subset of women (N = 166 at 13 weeks and N = 180 at 26 weeks)
randomly selected from those with phthalate measurements. Study protocols were approved by the
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University of California, Berkeley, and the CDC Committees for Protection of Human Subjects. Written
informed consent was obtained from all mothers at the time of enrollment.

2.2. Isoprostane Analysis

A competitive enzyme-linked immunosorbent assay (ELISA) kit was used to determine levels
of 8-isoprostane in urine (Oxford Biomedical Research, Rochester Hills, MI, USA) collected at 13
and 26 weeks gestation. Samples were randomized across plates and run in duplicate at the
Children’s Environmental Health Laboratory, the University of California, Berkeley. Additional
quality assurance/quality control (QA/QC) provisions included repeats of 5% of samples and blanks
and internal lab controls with good reproducibility of isoprostane measurements (coefficient of
variation <7%).

2.3. Phthalate Metabolite Measurements

Eleven phthalate metabolites were quantified in prenatal urine samples collected from mothers
at ~13 and 26 weeks gestation as previously described [38]. They included three low molecular
weight (LMW) metabolites (MEP, MBP, MiBP), four high molecular weight (HMW) metabolites of
DEHP (mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),
mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP))
and four additional HMW metabolites of other parent phthalates (MBzP, mono(3-carboxypropyl)
phthalate (MCPP), monocarboxyoctyl phthalate (MCOP), monocarboxynonyl phthalate (MCNP)).
Measurements were performed using online solid phase extraction coupled with isotope dilution
high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry [39].
QC procedures included the use of laboratory blanks, calibration standards and spiked controls with
high and low concentrations.

The limits of detection (LOD) for all metabolites were previously reported [39,40]. Concentrations
below the LOD with no corresponding instrumental signal were imputed from a log-normal
distribution using the “fill-in” method described in Lubin et al. [41]. For other concentrations below the
LOD, the actual instrument reading value was used. Summary measurements (e.g.,

ř

LMW,
ř

HMW
and

ř

DEHP) were created as described elsewhere [42]. Briefly, molar concentrations were calculated
by dividing the concentration of each metabolite by its molecular weight. For each summary measure,
the molar concentrations for each group were summed and then multiplied by the average molecular
weight of the metabolites in that group to yield measurements expressed in µg/L.

Urinary dilution was accounted for by using either creatinine or specific gravity for each urine
sample analyzed for isoprostane and phthalate metabolites. Here, we report results based on creatinine
adjustment for better comparability with the National Health and Nutrition Examination Survey
(NHANES) data [2] and because some of the women in our study were missing specific gravity data.
However, creatinine levels have been associated with factors, such as muscle mass and age [43], and
can change over the course of pregnancy [44], possibly influencing urinary adjustment of phthalate
metabolite concentrations. Thus, we also report a sensitivity analysis accounting for specific gravity
instead of creatinine.

Specific gravity was measured with a refractometer (National Instrument Company Inc.,
Baltimore, MD, USA), while urinary creatinine was determined using a commercially-available
diagnostic enzyme method (Vitros CREA slides; Ortho Clinical Diagnostics, Raritan, NJ, USA).
Creatinine-adjusted phthalate metabolite concentrations expressed in µg/g creatinine were
calculated by dividing phthalate metabolite concentrations (µg/L) by creatinine levels (g/L).
The following formula was utilized to produce specific gravity-adjusted concentrations (µg/L):
Pc = P[(1.024 ´ 1)]/(SG ´ 1), where Pc is the specific gravity-adjusted concentration, P is the metabolite
concentration (µg/L), 1.024 is the median specific gravity of all samples and SG is the specific gravity
for the specific sample [45]. Creatinine adjusted phthalate metabolite concentrations were used for
descriptive analyses and correlation calculations. However, in regression models, we used unadjusted
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phthalate metabolite concentrations and included maternal creatinine or specific gravity levels as
a covariate in the model, because previous studies have shown that the use of creatinine or specific
gravity-adjusted phthalate metabolite concentrations in regression models can introduce bias [46].
Further, it was shown that using creatinine for adjustment, as has been reported for the National Health
and Nutrition Examination Survey (NHANES) [1], can also minimize the noise of the intra-individual
variability of spot sample measurements [47,48].

2.4. Statistical Analyses

All urinary phthalate metabolite measurements were log10 transformed to approximate a normal
distribution. We calculated Pearson’s correlation coefficient to examine the correlation of concentrations
of phthalate metabolites and isoprostane between time points (13 vs. 26 weeks of pregnancy). We also
examined mean differences between 13-week and 26-week phthalate metabolite concentrations using
a paired t-test. We used analysis of variance (ANOVA) to determine the association of phthalate
metabolite and isoprostane concentrations with categorical demographic variables, such as maternal
country of birth, race, poverty, age, pre-pregnancy BMI and infant sex.

To determine the relationship between different phthalate metabolites with oxidative stress as
measured by concentrations of isoprostane, we first calculated Pearson’s correlation coefficients. We fit
linear regression models to determine the relationship of prenatal phthalate metabolite concentrations
and isoprostane. Isoprostane measured at early or late pregnancy was the dependent variable, while
phthalate metabolite concentration measured at the concurrent time point was the independent
variable. Separate models were fit for each of the 11 phthalate metabolites and 3 summary measures
(
ř

LMW,
ř

HMW and
ř

DEHP) during early and late pregnancy. Additionally, for each phthalate
metabolite and summary measure, we also created a regression model examining the association of the
change in phthalate metabolite concentrations from 13–26 weeks gestation (independent variable) with
the change in isoprostane concentrations from 13–26 weeks gestation (dependent variable). Maternal
creatinine levels were included as a covariate in these models to adjust for urinary dilution. Years in
the U.S., education, parity, pre-pregnancy BMI and child’s sex were included in the models as potential
confounders, because they were associated with at least one phthalate metabolite concentration and
levels of isoprostane. Time of day of urine collection was also associated with phthalate metabolite
concentrations, but we did not include this variable in final models, because it was not associated
with isoprostane levels. As a sensitivity analysis, we also performed regression models adjusting
for specific gravity instead of creatinine to account for urinary dilution; however, results did not
change appreciably, and therefore, we report the results for the “creatinine” models only. All statistical
analyses were carried out using R Version 3.2.2 (R Foundation for Statistical Computing, Vienna,
Austria, 2013). p-values less than 0.05 were considered significant, and p-values less than 0.10 were
reported as marginally significant.

3. Results

3.1. CHAMACOS Participants

Demographic characteristics of the CHAMACOS pregnant women are summarized in Table 1.
Most of them were Mexican-American from a major agricultural area of Salinas Valley, CA, USA and
50% of them lived less than five years in the U.S. at the time of pregnancy. While relatively young (26.3
years old on average), many were overweight (38.4%) or obese (24.1%). Alcohol use and smoking were
not common in this population of women, which was also characterized by low levels of education
and income (most within 200% of the poverty level).
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Table 1. Demographic characteristics of Center for Health Assessment of Mothers and Children of
Salinas (CHAMACOS) mothers (1999–2000).

Characteristic Mothers with Phthalate Data *
(N = 433) N (%)

Mothers with Isoprostane Data*
(N = 196) N (%)

Pre-pregnancy Weight Status - -
Normal 156 (36.8) 59 (30.1)

Underweight 3 (0.7) 1 (0.5)
Overweight 163 (38.4) 84 (42.9)

Obese 102 (24.1) 52 (26.5)

Age at Delivery - -
18–24 189 (43.8) 70 (35.7)
25–29 136 (31.5) 73 (37.2)
30–34 70 (16.2) 32 (16.3)
35–45 37 (8.6) 21 (10.7)

Education - -
ď6th grade 186 (43) 89 (45.4)

7–12th grade 154 (35.6) 71 (36.2)
ěHigh School Graduate 93 (21.5) 36 (18.4)

Years in U.S. - -
ď1 107 (24.7) 45 (23)
2–5 111 (25.6) 48 (24.5)
6–10 98 (22.6) 60 (30.6)
11+ 66 (15.2) 30 (15.3)

Entire life 51 (11.8) 13 (6.6)

Poverty Status - -
At or below poverty 270 (62.4) 132 (67.3)

Poverty-200% 148 (34.2) 57 (29.1)
>200% poverty 15 (3.5) 7 (3.6)

Alcohol Use during Pregnancy - -
No 403 (94.6) 183 (94.8)
Yes 23 (5.4) 10 (5.2)

Smoking during Pregnancy - -
No 410 (94.7) 188 (95.9)
Yes 23 (5.3) 8 (4.1)

Parity - -
0 144 (33.3) 59 (30.1)
ě1 289 (66.7) 137 (69.9)

* Total number of observations vary due to missing data.

3.2. Phthalate Exposure

Phthalate exposure as measured by eleven urine metabolites was common. Detection frequencies
were above 90% for all phthalate metabolites and reached 99.7% for MEP and 100% for MECPP in
CHAMACOS participants. Table 2 shows the distribution of phthalate metabolite and isoprostane
concentrations measured in urine during early and late pregnancy. Distributions of phthalate
metabolites were similar to those reported in NHANES women of child-bearing age [49]. As expected,
MEP had by far the highest concentrations in prenatal urine at both time points among all metabolites.

MEP and MBzP concentrations had the highest correlations between early and late pregnancy
(r = 0.39, p = 4.44 ˆ 10´16, and r = 0.38, p = 2.66 ˆ 10´15, respectively) among phthalate metabolites.
The correlations for other HMW metabolites (MCOP, MCPP, MCNP) were weaker, but still statistically
significant (r = 0.14–0.21, p < 0.05) (Table 2). Statistically-significant, but relatively small differences
between early and late pregnancy concentrations were observed for all DEHP metabolites with the
exception of MEHHP (Figure 1). Two HMW metabolites were statistically higher later in pregnancy
(MBzP and MCPP, p < 0.01) in comparison to early pregnancy, but this was not the case for the

ř

HMW
(p > 0.05) (Figure 1).
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Table 2. Distribution of phthalate metabolite concentrations at 13 and 26 weeks gestation.

Exposure * 13 Weeks (N = 432) 26 Weeks (N = 417)
Correlation p-Value

Median IQR 5th 95th Median IQR 5th 95th

MEP 161.8 (67.3, 435.1) 24.3 1618.6 153.3 (65.6, 376.3) 22.2 1262.1 0.389 4.44 ˆ 10´16

MBP 18.4 (9.1, 37.9) 3.7 102.4 22.6 (11.7, 42.6) 5.0 121.6 0.211 1.76 ˆ 10´5

MiBP 2.4 (1.1, 4.5) 0.2 14.0 2.8 (1.4, 5.2) 0.4 14.4 0.267 4.46 ˆ 10´8

ΣLMW 211.9 (100.7, 524.4) 40.0 1806.8 217.8 (113.7, 451.4) 43.2 1506.3 0.371 9.77 ˆ 10´15

MEHP 3.0 (1.4, 6.4) 0.2 17.7 3.6 (1.9, 6.7) 0.4 18.0 0.199 5.04 ˆ 10´5

MEHHP 12.6 (6.8, 24.7) 2.5 76.9 15.7 (8.3, 28.1) 3.3 66.2 0.233 2.02 ˆ 10´6

MEOHP 8.7 (4.7, 16.7) 1.6 47.2 12.1 (6.8, 21.1) 2.8 48.4 0.204 3.37 ˆ 10´5

MECPP 22.0 (13.7, 39.7) 5.9 104.0 25.8 (16, 45.6) 8.5 97.5 0.241 8.79 ˆ 10´7

ΣDEHP 46.0 (27.6, 84.3) 11.8 242.3 57.8 (33.2, 99.3) 16.1 235.5 0.231 2.35 ˆ 10´6

MBzP 6.6 (3.1, 12.7) 0.9 32.1 7.6 (4.3, 14) 1.5 38.1 0.378 2.66 ˆ 10´15

MCPP 1.8 (1, 2.9) 0.1 6.4 2.1 (1.2, 3.2) 0.2 6.4 0.154 1.76 ˆ 10´3

MCOP 2.8 (1.7, 4.6) 0.5 10.7 3.2 (2.1, 5) 0.8 9.6 0.138 5.30 ˆ 10´3

MCNP 1.8 (1, 2.7) 0.4 7.2 1.9 (1.3, 2.8) 0.6 5.8 0.206 2.80 ˆ 10´5

ΣHMW 65.7 (37.8, 110.4) 17.6 303.8 79.5 (46.8, 126.4) 24.2 270.5 0.244 6.37 ˆ 10´7

Isoprostane ** 3.6 (2.2, 5.0) 1.0 10.8 4.6 (3.1, 6) 1.2 8.9 0.176 3.34 ˆ 10´2

* All units are µg/g creatinine; ** N = 166 for 13 weeks and N = 180 for 26 weeks.
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Figure 1. Differences in the phthalate metabolite concentrations (creatinine adjusted) between samples
from the same individual collected at 13 and 26 weeks gestation. Differences that are statistically
significant are indicated by: * p < 0.05, ** p < 0.01 and *** p < 0.001.

The heat map in Figure 2 shows the relationship of different creatinine-adjusted phthalate
metabolite concentrations with each other. The concentrations of DEHP metabolites were highly
correlated with each other. Figure 2 also highlights a strong relationship between

ř

HMW and all
DEHP metabolite concentrations throughout pregnancy. Among LMW metabolites,

ř

LMW was
primarily driven by MEP concentrations, while MBP and MiBP were more highly correlated with each
other than with MEP.
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Figure 2. Correlation matrix of concentrations between eleven phthalate metabolites and isoprostane
averaged for two time points in early and late pregnancy. Each colored square represents Pearson’s
correlation coefficient between different phthalate metabolites. The dark blue squares indicate strong
positive correlations with correlation coefficients ranging from 0.5–1.

Figure 3 shows the heat map illustrating the relationship between phthalate metabolite
concentrations and demographic variables. Effects of maternal age, sex of the child, marriage and
poverty status were negligible at 13 weeks of pregnancy. However, determinants of acculturation,
such as years in the U.S., country of birth, race and primary language, became surprisingly strong
for MBzP. This relationship was still noticeable, but weaker at 26 weeks. DEHP metabolites appear
moderately affected by maternal level of education and pre-pregnancy BMI, but this was limited to
13 weeks. In contrast, at 26 weeks, the strongest relationship with parity was seen for both DEHP and
HMW metabolites. Detailed parameters for these relationships can be found in Table S1 and Table S2.
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There was no meaningful association between most of these demographic variables with the LMW
metabolite concentrations at early pregnancy. However, MEP and ΣLMW concentrations appear to be
related to parity, pre-pregnancy BMI and years in the United States during late pregnancy.
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Figure 3. Heatmap of the relationship between phthalate metabolite concentrations and demographic
variables at (a) 13 and (b) 26 weeks gestation. Each colored square represents the´log10 p-value for the
association of demographic variables (using the same categories as Table 1) with phthalate metabolites
concentrations as determined by analysis of variance (ANOVA). The darker squares represent
associations with smaller p-values, with dark red representing the most significant associations
(p ~ 1 ˆ 10´4). Each model is adjusted for creatinine by including it as a covariate.

3.3. Isoprostane

The distribution of isoprostane concentrations in urine samples shows an almost 20% increase
at 26 weeks in comparison to 13 weeks (the median 3.6 vs. 4.6 µg/g creatinine, respectively;
Table 1). However, the ranges were similar, from 0.3–29.3 µg/g creatinine at early pregnancy and
from 0.4–25.0 µg/g creatinine later in the pregnancy. The correlation of isoprostane concentrations
between the two time points was modest (r = 0.18, p = 0.03). No significant associations between
demographic variables and isoprostane concentrations were observed at early pregnancy (Figure 3).
At late pregnancy, isoprostane levels were significantly associated with years in the United States,
parity and pre-pregnancy BMI.

3.4. Phthalates and Isoprostane

Results of the regression analysis examining the associations of phthalate metabolite
concentrations with isoprostane concentrations at 13 and 26 weeks gestation are shown in Table 3. Effect
estimates in crude models were similar to those in the final adjusted models reported here. Most of the
relationships at 13 weeks were not significant with the exception of two HMW metabolites; MCOP and
MCNP were significantly positively associated with isoprostane with a 0.178 µg/g creatinine (standard
error (SE) = 0.059) and a 0.152 µg/g creatinine (SE = 0.063) increase, respectively, per 10-fold increase
in metabolite level. However, the picture was quite different at 26 weeks of pregnancy. Specifically,
many of the LMW and HMW metabolite concentrations were significantly associated with isoprostane
concentrations. For instance, while the relationship with MEP was moderate (p = 0.04), the relationship
of isoprostane concentrations with other LMW metabolite concentrations, as well as

ř

LMW were
stronger (p-values between 0.0004 and 0.01). Using a linear model that accounts for creatinine as
a covariate, as well as other demographic covariates, the correlation coefficient relating MBP and
isoprostane concentrations at the 26-week visit was modest, r = 0.11, but significant (p = 0.009). DEHP
metabolites were not associated with isoprostane in the cross-sectional models at 13 and 26 weeks
(Table 3).
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Table 3. Regression models of phthalate metabolite concentrations with isoprostane levels at 13 and 26 weeks gestation a.

Phthalate Metabolite
(µg/g Creatinine)

13 Weeks (n = 166) 26 Weeks (n = 180) Change (n = 150)

β 95% CI p-Value β 95% CI p-Value β 95% CI p-Value

MEP 0.045 (´0.031, 0.121) 0.2486 0.074 (0.003, 0.145) 0.0417 0.110 (0.014, 0.206) 0.0271
MBP 0.064 (´0.028, 0.156) 0.1721 0.183 (0.083, 0.283) 0.0004 0.094 (´0.006, 0.194) 0.0684
MiBP ´0.002 (´0.088, 0.084) 0.9665 0.097 (0.023, 0.171) 0.0108 0.059 (-0.031, 0.149) 0.2012

ΣLMW 0.056 (´0.028, 0.140) 0.2007 0.109 (0.029, 0.189) 0.0087 0.144 (0.036, 0.252) 0.0099
MEHP 0.006 (´0.080, 0.092) 0.8949 0.057 (´0.023, 0.137) 0.1643 0.073 (´0.019, 0.165) 0.1239

MEHHP 0.066 (´0.048, 0.180) 0.2526 0.068 (´0.018, 0.154) 0.1271 0.101 (-0.009, 0.211) 0.0768
MEOHP 0.064 (´0.036, 0.164) 0.2160 0.072 (´0.018, 0.162) 0.1220 0.092 (-0.014, 0.198) 0.0910
MECPP 0.087 (´0.050, 0.224) 0.2151 0.074 (´0.040, 0.188) 0.2002 0.130 (´0.005, 0.265) 0.0613
ΣDEHP 0.075 (´0.052, 0.202) 0.2499 0.080 (´0.026, 0.186) 0.1349 0.131 (0.004, 0.258) 0.0464
MBzP 0.045 (´0.059, 0.149) 0.3983 0.012 (´0.074, 0.098) 0.7805 0.076 (´0.032, 0.184) 0.1710
MCPP 0.033 (´0.045, 0.111) 0.4142 0.125 (0.035, 0.215) 0.0072 0.003 (´0.052, 0.112) 0.4728
MCOP 0.178 (0.062, 0.294) 0.0031 0.090 (´0.020, 0.200) 0.1119 0.078 (´0.045, 0.201) 0.2188
MCNP 0.152 (0.029, 0.275) 0.0166 0.136 (0.021, 0.250) 0.0211 0.110 (´0.014, 0.233) 0.0832
ΣHMW 0.088 (´0.050, 0.226) 0.2119 0.092 (´0.026, 0.209) 0.1300 0.142 (0.002, 0.283) 0.0487

a Covariates in each regression model included creatinine and categorical variables for years in U.S., education level, parity, pre´pregnancy BMI and sex of child.
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Among non-DEHP HMW phthalate metabolites, only MBzP was not significantly associated with
isoprostane concentrations at either time point. The relationship between MCPP with isoprostane was
strong at 26 weeks (β(SE): 0.125(0.046); p = 0.007), but not at 13 weeks (β(SE): 0.33(0.040); p = 0.41). The
opposite was the case for MCOP concentrations (p = 0.003 at 13 weeks and p = 0.11 at 26 weeks). In
contrast, MCNP and isoprostane concentrations were significantly associated at both early and late
pregnancy (p = 0.02 at both time points).

When we modeled the relationship of the change in phthalate metabolite concentrations with the
change in isoprostane levels from early to late pregnancy (Table 3), we found a positive association for
MEP (p = 0.03). The results for

ř

LMW metabolites (p = 0.01) appear to be driven by MEP, because MBP
was only borderline significant (p = 0.068), and MiBP was not significant. For DEHP metabolites, there
was a suggestive trend of increasing isoprostane levels with higher metabolite concentrations, but
the associations did not reach statistical significance when metabolites were considered individually.
However, the relationship between changes over pregnancy in isoprostane and

ř

DEHP metabolites (p
= 0.046) were modest, but statistically significant. We saw a similar trend for HMW metabolites where
there were suggestive trends of a positive relationship with isoprostanes for individual metabolites,
but the association only reached statistical significance for the sum of metabolites (

ř

HMW; p = 0.049).
The difference between results with the individual time point models (13 and 26 week) versus the

change models can be explained as follows: the single time point models show correlation between
phthalate metabolites and isoprostane concentrations at a given time (static), whereas the change
model includes two time points and reflects correlations of the change in the two measures over
time (dynamic). Demonstrating that two variables change over time in the same way provides
additional evidence of a common association. The change model also incorporates a larger number of
measurements, providing increased power to detect associations compared to the static single time
point model.

Importantly, beta coefficients were consistently positive, indicating that isoprostane levels in
CHAMACOS pregnant women tended to increase with higher phthalate metabolite concentrations.

4. Discussion

In this study, we examined the association of prenatal phthalate exposure during early and late
pregnancy in CHAMACOS women with 8-isoprostane, a biomarker of lipid peroxidation resulting
from oxidative stress. We observed a broad range of urinary phthalate metabolite concentrations
in this Mexican-American rural cohort. The relationship of isoprostane and phthalate metabolite
concentrations was not consistent over pregnancy. While it was significant for only two HMW
metabolites (MCOP and MCNP) at 13 weeks of pregnancy, all three LMW metabolites (MEP, MBP and
MiBP) were associated with oxidative stress later in the pregnancy when the levels of isoprostanes
were 20% higher.

Our findings of high detection and a broad distribution of phthalate metabolite concentrations are
consistent with previous reports for NHANES [32,39,42,50] and several other studies [26,36,49,51], as
well as the California Environmental Biomonitoring Program [52]. Patterns of temporal variability for
phthalate metabolite concentrations over pregnancy, including higher temporal variability in DEHP
metabolites and more moderate temporal variability for MEP, were similar to those reported in other
studies, as well [36,53,54]. MEP, reflective of the use of DEP in perfumes, deodorants, shampoo and
soaps [55,56], was the most common metabolite in CHAMACOS pregnant women. DBP and di-isobutyl
phthalate are also used in personal care products and cosmetics. These three LMW phthalates have
been associated with a number of health conditions related to endocrine disruption, such as obesity,
asthma, preterm birth and neurobehavioral problems [36,57,58]. MEP was also common in a cohort of
men and women from Boston [51]. However, in that cohort, it was closely followed in concentrations
by MBP, while in CHAMACOS women, the difference was an order of magnitude. In the Boston study,
cologne users had MEP urine concentrations 167% higher than non-users. The difference was 28% for
lotion users and also noted for women who used nail polish in the last 24 h before urine collection.
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Overall, women who reported using more personal care products had higher urinary concentrations of
the two measured phthalate metabolites, MEP and MBP, and of three parabens [51]. In another study of
adolescent girls (Health and Environmental Research in Make-up Of Salinas Adolescents; HERMOSA)
from the same area of Salinas Valley, CA, where our CHAMACOS is located, urine measurements
after a three-day replacement of their usual personal care products with those with lower levels of
phthalates resulted in a significant decrease of urine concentrations by 27% for MEP, but no change in
MBP and MiBP [59], possibly because these latter chemicals are in other products [60–63].

In our cohort, MEHP, a monoester metabolite of DEHP, was present in lower concentrations than
reported in other studies [36,50] in the majority of pregnant CHAMACOS women. It was proposed
that the increased ratio of urine concentrations of oxidized DEHP metabolites (MEHHP, MEOHP
and MECPP) to MEHP may be evidence of inter-individual differences in efficiency of conversion of
MEHP to less toxic metabolites that can be readily excreted [64–66]. In primarily Mexican-American
CHAMACOS cohort, we observed a significant increase in concentrations of HMW metabolites,
especially MBzP, in association with parameters of acculturation, such as race, primary language
spoken at home (English vs. Spanish), country of birth (USA vs. Mexico) and more years living in
the U.S. Some differences in the concentrations of phthalate metabolites related to ethnic background,
socioeconomic status (SES) and predominant types of exposure were also noted in several other
cohorts from the U.S., Puerto-Rico, Taiwan and Korea [4,36,58,67]. Another factor that could possibly
contribute to the difference is the diet. CHAMACOS women and their families commonly consumed
a number of typical Mexican foods and drinks, such as chalupas or flautas (type of tacos), quesadillas,
plantains, etc., but in general their diet was Americanized, containing frequent consumption of soft
drinks and fast food, especially for those who were in the country the longest [68]. In the future, it will
be interesting to explore this relationship more thoroughly by examining the associations of phthalates
with other measures of acculturation and diet.

In our study, we observed a substantial increase in 8-isoprostane concentrations at 26 weeks of
pregnancy in comparison with earlier pregnancy. This finding is consistent with studies that have
demonstrated a gradual increase of systemic oxidative stress as pregnancy progresses [36]. The level
of oxidative stress is an important factor in embryogenesis, as well as for pregnancy and normal birth.
Pregnancy itself is a state of higher oxidative stress levels; and 8-isoprostane may be a useful marker for
the risk for pregnancy complications [69]. It has been reported that isoprostane levels were significantly
increased in pregnant women in relation to healthy non-pregnant women and were higher during the
second and third trimester of pregnancy [69,70]. Isoprostane levels in CHAMACOS pregnant women
appear to be higher than reported by similar methods in pregnant women from Europe [71]. This may
be related to a high prevalence of obesity in this cohort that was a significant factor associated with
isoprostane at late pregnancy, as well as other factors, such as diet or acculturation. However, it is
more difficult to make a comparison with some other cohorts that either used alternative methods of
isoprostane measurements [72] or do not report similar adjustments. However, it does appear that at
least some of the CHAMACOS pregnant women had noticeably higher levels of isoprostane, especially
in late pregnancy, than in the Boston and Puerto Rico cohorts [33,36]. Moreover, complications of
pregnancy, such as preeclampsia, have been associated with elevated oxidative stress in comparison to
normal pregnancy cross-sectionally [71].

Several studies have reported that oxidative stress during pregnancy is predictive of adverse
outcomes. For instance, in a study of 503 healthy pregnant women with samples collected
at 24–26 weeks of gestation and prospectively followed through postpartum [73], women with
significantly higher plasma 8-isoprostane levels were at higher risk of developing preeclampsia and
delivering small-for-gestational age infants. Another study indicated elevated levels of prostaglandins,
such as 8-isoprostane, to be associated with an increased risk of preterm birth [74]. These findings
demonstrate that increased maternal oxidative stress is associated with subsequent pregnancy
complications [73]. The vasoconstrictive and inflammatory properties of oxidative stress may cause
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maternal endothelial dysfunction and leukocyte activation, which may elucidate the pathogenesis of
these pregnancy complications.

Previously, positive relationships were found between biomarkers of oxidative stress, including
8-isoprostane, malondialdehyde (MDA) and 8-oxo-21-deoxyguanosine (8-oxo-dG), with phthalate
metabolite concentrations [4,26,32,75]. In our cohort, at 13 weeks of pregnancy, only two HMW
metabolites (MCOP and MCNP) were significantly associated with 8-isoprostane. This relationship
persisted for MCNP at 26 weeks when MCPP, another HMW metabolite, was also associated with
8-isoprostane. However, the relationship with MCOP was no longer significant later in pregnancy.
The most striking change between early and late pregnancy in CHAMACOS women in regards to the
8-isoprostane was observed for LMW metabolites, showing consistently strong associations for MEP,
MBP and MiBP at 26 weeks, but not at 13 weeks. However, the same was not seen for MBzP metabolites.
As in our study, Ferguson and colleagues [4] report a highly significant positive relationship between
phthalate metabolites with 8-isoprostane in pregnant women. However, in that study, relationships
for all phthalate metabolites were significant, possibly because of a larger number of isoprostane
measurements providing more statistical power. It may be also explained by ethnic and SES differences
between cohorts or perhaps dietary differences in exposure to DEHP in the urban Boston cohort
compared to CHAMACOS [76,77].

This study has several strengths and some limitations. It was performed in a well-characterized,
large minority cohort of pregnant women from Salinas Valley, CA, a major agricultural area in
the United States. Given that CHAMACOS cohort is relatively homogeneous with regards to race
and social class, it potentially reduces the impact of unaccounted confounding. Measurements of
a validated biomarker of oxidative stress, urinary isoprostane, were performed twice during pregnancy
allowing for comparison of the relationship with phthalate metabolites in early and late pregnancy in
the same participants. As for most biomarker studies, we cannot completely eliminate the possibility
of potential residual confounding, misclassification of exposure and outcome variables and selection
bias, despite our best efforts to address them. One potential challenge is that phthalates may not be
the only chemical affecting oxidative stress in the CHAMACOS cohort. However, we have already
characterized exposures to PBDEs and BPA (among others) and did not see significant associations
with BPA, another endocrine disruptor with similar patterns of exposure to phthalates. In the future, it
would be desirable to apply an exposome-type approach to characterize the combined effects of many
exposures simultaneously. To this effect, we recently initiated a metabonomic study of samples from the
CHAMACOS pregnant women. Finally, given that participants in our study were Mexican-Americans
from a low SES rural cohort, the interpretation of the findings may not be completely applicable to
other ethnic groups or urban populations with a higher income and different life style.

5. Conclusions

In conclusion, average phthalate metabolite concentrations in Mexican-American pregnant
women from a rural area remain fairly constant over pregnancy. The relationship of the biomarker
of oxidative stress 8-isoprostane with low molecular weight phthalate metabolites was significant in
late, but not early pregnancy. We also observed a statistically-significant, but not consistent association
of 8-isoprostane with HMW metabolites at both early and late pregnancy, while DEHP metabolites
were marginally associated with oxidative stress only if the sum of these metabolites was considered
in the models. The oxidative stress mechanism related to phthalate exposure during pregnancy is
especially important, as it is one of the critical pathways that may lead to adverse health outcomes,
such as preterm delivery. These new data for a large rural minority cohort add to existing information
about molecular mechanisms of phthalate exposure in different populations.

Supplementary Materials: The following are available online at www.mdpi.com/2305-6304/4/1/7/s1. Table S1:
Mean phthalate metabolite concentrations (µg/L) during early pregnancy by maternal demographic variables.
Table S2: Mean phthalate metabolite and isoprostane concentrations (µg/L) during late pregnancy by maternal
demographic variables.



Toxics 2016, 4, 7 13 of 18

Acknowledgments: We are grateful to the laboratory and field staff and participants of the Center for Health
Assessment of Mothers and Children of Salinas (CHAMACOS) study for their contributions. We would like
to acknowledge Antonia Calafat’s helpful comments on this manuscript and her oversight of the phthalate
measurements at the Centers for Disease Control and Prevention (CDC) performed by Xiaoyun Ye. We appreciate
the advice on the statistical analysis of the longitudinal data in this study from Alan Hubbard. This publication
was made possible by grants from the National Institute of Environmental Health Science (NIEHS) (PO1 ES009605,
RO1 ES021369), from the U.S. Environmental Protection Agency (EPA) (R82670901 and RD83451301). Its contents
are solely the responsibility of the authors and do not necessarily represent the official views of NIEHS, EPA or
CDC. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health
Service nor the U.S. Department of Health and Human Services.

Author Contributions: N.H. conceived the study and designed the experiments; V.T. and B.N. performed the
experiments; K.S. and K.H. analyzed the data; B.E. is the principal investigator of the Center for Health Assessment
of Mothers and Children of Salinas (CHAMACOS) cohort and together with A.B. coordinated recruitment of
subjects and data collection for the study cohort; N.H. and K.H. wrote the paper.

Conflicts of Interest: Asa Bradman has served as a volunteer member of the Board for The Organic Center,
a non-profit organization that provides information for scientific research about organic food and farming.
The funding sponsors had no role in the design of the study; in the collection, analyses or interpretation of data; in
the writing of the manuscript; nor in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BMI body mass index
CDC Centers for Disease Control and Prevention
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CHAP Chronic Hazard Advisory Panel
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DEHP di-2-ethylhexyl phthalate
DEP diethyl phthalate
HMW high molecular weight
LMW low molecular weight
LOD limit of detection
MBP mono-n-butyl phthalate
MBzP monobenzyl phthalate
MCNP monocarboxynonyl phthalate
MCOP monocarboxyoctyl phthalate
MCPP mono(3-carboxypropyl) phthalate
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MECPP mono(2-ethyl-5-carboxypentyl) phthalate
MEHP mono(2-ethylhexyl) phthalate
MEHHP mono(2-ethyl-5-hydroxyhexyl) phthalate
MEOHP mono(2-ethyl-5-oxohexyl) phthalate
MEP monoethyl phthalate
MiBP mono-isobutyl phthalate
NHANES National Health and Nutrition Examination Survey
SE standard error
SES socioeconomic status
QA/QC quality assurance/quality control
8-oxo-dG 8-Oxo-21-deoxyguanosine
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