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Abstract: Zebrafish are increasingly used to study how environmental exposures impact vertebrate
gut microbes. However, we understand little about which microbial taxa are common to the zebrafish
gut across studies and facilities. Here, we define the zebrafish core gut microbiome to resolve
microbiota that are both relatively robust to study or facility effects and likely to drive proper
microbiome assembly and functioning due to their conservation. To do so, we integrated publicly
available gut microbiome 16S gene sequence data from eight studies into a phylogeny and identified
monophyletic clades of gut bacteria that are unexpectedly prevalent across individuals. Doing
so revealed 585 core clades of bacteria in the zebrafish gut, including clades within Aeromonas,
Pseudomonas, Cetobacterium, Shewanella, Chitinibacter, Fluviicola, Flectobacillus, and Paucibacter. We
then applied linear regression to discern which of these core clades are sensitive to an array of
different environmental exposures. We found that 200 core clades were insensitive to any exposure
we assessed, while 134 core clades were sensitive to more than two exposures. Overall, our analysis
defines the zebrafish core gut microbiome and its sensitivity to exposure, which helps future studies
to assess the robustness of their results and prioritize taxa for empirical assessments of how gut
microbiota mediate the effects of exposure on the zebrafish host.

Keywords: zebrafish; gut microbiome; environmental exposure; phylogenetics; meta-analysis

1. Introduction

The zebrafish has emerged as a powerful model for studying the interactions between
a vertebrate’s environment, gut microbiome, and physiology [1]. For example, a rapidly
growing number of investigations have leveraged zebrafish to determine how exposure
to exogenous factors, including antibiotics [2–4], environmental toxicants [5,6], or para-
sites [7], impacts the composition of the juvenile or adult gut microbiome. Additionally,
studies have also resolved microbiota that link to host physiology [8–10] as well as gut
taxa that appear to mediate the impact of various exposures on physiology [4,7,11]. It
remains unclear, however, whether the interactions that have been uncovered to date are
robust to study or facility effects, which can contribute substantial variation to microbiome
studies [12,13]. This limited insight in turn complicates the interpretation and prioritization
of microbiome study results, especially for follow-up investigations that seek to discover
robust mechanisms of interaction.

One way to advance this knowledge is to determine which gut microbes constitute
the zebrafish core gut microbiome. While there are many ways of defining the core gut
microbiome [14,15], it typically comprises the set of taxa that are nearly ubiquitous across
presumably healthy host individuals. In addition to clarifying which taxa are robust to
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facility and experimental effects, identifying the core taxa provides a framework for testing
which taxa are critical to the assembly and function of a gut microbiome that provides
the most beneficial contribution to host physiology [16]. While extensive investigations
have sought to define the core gut microbiome in a variety of mammals, we understand
little about whether zebrafish possess a core gut microbiome and, if they do, which taxa
comprise it. That said, a prior investigation used clone libraries alongside a limited
exploration of 454 sequencing to uncover evidence that pointed to the existence of a
zebrafish core gut microbiome [17]. Moreover, zebrafish studies often identify consistent
phylotypes in the gut that are linked to exposure or health, such as Pseudomonas, Aeromonas,
and Vibrio [2,6,7,18,19]. Inspired by this prior work and the growth of zebrafish gut
microbiome studies, we sought to empirically define which taxa comprise the zebrafish
core gut microbiome and measure their sensitivity to various exposures.

Identifying which taxa comprise the gut microbiome is not necessarily straightforward.
Frequently, studies will identify core taxa by measuring the prevalence of different phylo-
types across a set of microbiome samples. Core taxa are then defined as those phylotypes
that meet some threshold of prevalence. This phylotype approach yields at least two forms
of bias that can complicate the identification of core taxa: (1) the prevalence threshold is
arbitrarily defined; and (2) Linnaean taxonomy, which serves as the basis for phylotypes, is
inconsistent across the tree of life and may obscure resolutions of evolutionarily meaningful,
but cryptic, core sub-taxa [20]. We have developed an alternative approach that leverages
microbial phylogenetics to circumvent these biases [20]. Briefly, our approach assembles
a phylogeny of the 16S rRNA gene sequences of the taxa observed in each microbiome
sample and resolves specific monophyletic clades in this phylogeny whose prevalence
across all samples is higher than expected by chance given the clade’s size. As a result,
this approach considers intermediate levels of taxonomy as defined by the phylogeny, and
leverages a statistical test to ascertain which taxonomic groups are sufficiently prevalent to
be considered part of the core microbiome.

Here, we used this phylogenetic approach to define the zebrafish core gut microbiome
and its sensitivity to various environmental exposures. In particular, we assembled a
phylogeny that integrated publicly available 16S rRNA gene sequence data generated
from eight different zebrafish gut microbiome studies that span an array of facilities, ages,
and exposure conditions. We then used our procedure to identify monophyletic clades
that were more prevalent in unexposed fish across these studies than expected by chance,
which we defined to collectively constitute the core zebrafish gut microbiome. Finally, we
used linear regression to profile the sensitivity of these clades across a range of exposure
conditions.

2. Materials and Methods
2.1. Data Acquisition and Study Inclusion Criteria

Studies for our integrative analysis were identified through a literature search of
Google Scholar and NCBI PubMed. To be included in the analysis, all studies were
required to have: (1) been sampled from zebrafish (Danio rerio); (2) used high-throughput
sequencing of the 16S rRNA gene; (3) associated metadata; and (4) data that were freely
available. Sequence files from each study were downloaded from the short read archive
(SRA) or provided by study investigators. A total of 8 studies met our inclusion criteria
(Table 1).
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Table 1. Details of studies included in this analysis.

Lead Author Year Facility ¥ Number of Individuals Age (dpf) Exposure
Conditions

SRA Bioproject
Identifier Citation

Catron 2018 EPA 118 10 Bisphenol A or
related metabolites € NA * [6]

Gaulke 2016 SARL 45 270 Triclosan SRP071910 [2]

Gaulke 2019 OSU ZPV 210 127–213 P. tomentosa SRA708553 [7]

Ma 2018 CAS 132 120 Silver nanoparticles PRJNA348716 [5]

Phelps 2017 EPA 32 10 N/A NA * [10]

Pindling 2018 Bard College 10 96 Subclinical
streptomycin SRP139123 [3]

Stagaman 2017 Huestis 198 9, 75 N/A SRA527217 [19]

Weitekamp 2019 EPA 53 6, 10 Triclosan NA * [4]
¥ EPA, The United State Environmental Protection Agency; SARL, Sinnhuber Aquatic Research Laboratory; OSU ZPV, Oregon State University Zebrafish
Pathogenesis Vivarium; CAS, Chinese Academy of Science; Huestis, Huestis Zebrafish Facility at the University of Oregon. € Related metabolites are
Bisphenol AF (BPAF), Bisphenol B (BPB), Bisphenol F (BPF) or Bisphenol S (BPS). * Received data directly from study authors.

2.2. S rRNA Gene Sequence Quality Control and Amplicon Sequence Variant Clustering

Quality control of 16S sequences and amplicon sequence variant (ASV) calling was con-
ducted on a per-project basis using a standard dada2 (v1.16.0) [21] pipeline in R (v4.0.3) [22].
For each dataset, forward and reverse reads containing ambiguous base calls or an expected
error rate greater than 2 were dropped. For projects with raw read lengths greater than
150, forward reads were trimmed to 225 bp and reverse reads trimmed to 150 bp, and then
forward and reverse reads were merged. The pipeline included chimera removal, and
assigned taxonomy to ASVs using the Silva NR v138 training database [23]. ASVs assigned
to Eukarya were discarded. ASV abundance tables were then rarefied to 1000 sequences per
sample to ensure uniform sequencing depth across studies, and the sequences of the ASVs
that survived rarefaction were subject to the subsequent phylogenetic analyses. Assessment
of ASV beta-diversity was determined using the phyloseq (v1.32.0) library in R [24]. In
particular, weighted and unweighted unifrac statistics were quantified, subject to ordina-
tion using principal coordinates analysis (PCoA), and statistically associated with sample
covariates through PERMANOVA tests as implemented in the adonis function through the
vegan (v2.5.6) package [25]. These phylogenetic-based beta-diversity metrics were chosen
to account for taxa that, because of our analytical pipeline, were assigned differing ASV
IDs, but may actually be closely related or even the same strain. To facilitate measuring
ASV prevalence across studies, ASV sequences were directly compared and those that
were either identical or perfect subsets of other ASV sequences were agglomerated into a
representative ASV. The observations of these identical ASVs were also agglomerated to
profile the representative ASV’s presence and abundance across samples.

2.3. Phylogenetic Analysis

Following our prior work [20], we assembled a phylogenetic tree relating the rarefied
ASV sequences identified across the studies. Briefly, the 4195 ASV sequences were aligned
to the SILVA (v1.2.3) reference alignment using the mothur (v1.39.3) implementation of the
NAST aligner [26] with the setting flip = TRUE. We included 100 full-length, phylogeneti-
cally diverse guide sequences in this alignment to improve the accuracy of phylogenetic
reconstruction [20,27]. The resulting alignment was then subject to phylogenetic inference
using FastTree (v2.1.10) with the settings -nt -gtr [28]. Custom R scripts (v4.0.3) that invoked
the ape package (v5.4.1) function drop.tips pruned guide sequences from the phylogeny
to produce a phylogenetic tree relating to study ASVs [29]. This tree was then subject to
midpoint rooting using the midpoint.root function in the phytools (v0.7.70) R package [30].
The resulting phylogeny data are included in the Supplementary Materials.
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2.4. Ecophylogenetic Discovery of Core Clades

We used the ClaaTU algorithm [20] to identify clades that are more prevalent in the
control samples across studies than expected by chance. The ClaaTU algorithm traverses a
phylogenetic tree relating to ASV sequences and, for each monophyletic clade found in the
tree, sums the abundance of each subtending lineage found in each sample. These sums
represent the clade’s abundance in each sample, akin to the process of agglomerating ASV
abundances to discern phylotype abundance. ClaaTU then measures the prevalence of
each clade in each sample and quantifies if the observed prevalence is significantly greater
than that expected by chance. To do so, it first bootstraps a null distribution of each clade’s
prevalence across samples by randomly permuting the association between tips in the
phylogeny and ASV labels. A z-test then determines if each clade’s observed prevalence
significantly differs from its null distribution. Clades exhibiting a significantly greater
prevalence were deemed to be core components of the gut microbiome. In particular, we
identified clades that were core to the control samples (i.e., no exposure) across studies
irrespective of fish age, facility, or strain. To produce null distributions of clade prevalence,
we permutated associations between trees and ASVs 999 times. Core clades were iden-
tified as those whose prevalence across samples was significantly greater than the null
distribution when using a false discovery corrected p-value threshold of 0.05 (i.e., p < 0.05).
The resulting clade diversity matrix, clade prevalence values, and statistical test results are
included as supplemental data (Supplementary Table S1).

2.5. Linear Regression

We implemented negative binomial linear regression models to determine whether
the abundance of core clades significantly varied across samples as a function of specific
exposures. Negative binomial distributions are appropriate for modeling the sparse and
over-dispersed count data typically observed in microbiome experiments [7,31]. In partic-
ular, we used the glm.nb function in the MASS (v7.3.53) R package to construct distinct
models for each study, because studies included non-overlapping and sometimes multiple
exposures [32]. For each study, we regressed each core clade’s abundance in a sample as
a function of that sample’s exposure condition. In particular, the clade abundance was
measured as the agglomerated clade abundances produced by ClaaTU, and the exposure
type is the different exposure categories applied in a given study, including the category of
no exposure (i.e., control samples), which was set as the base level in each model. Clades
for which a given exposure type’s model coefficient was significantly different than that of
the unexposed condition using a false discovery rate (fdr) corrected threshold of 0.1 (i.e.,
fdr < 0.1) were determined to be sensitive to the exposure.

3. Results
3.1. Study and Age Effects Drive the Phylogenetic Composition of the Zebrafish Gut Microbiome

To uncover the core zebrafish gut microbiome, we downloaded publicly available 16S
rRNA gene sequence data from eight studies spanning five different zebrafish facilities. The
collective dataset included 582 samples, 316 of which were subject to one of nine different
environmental exposure conditions. We then applied a consistent informatic approach to
each study’s data to resolve amplicon sequence variants (ASVs) within each study and
measured their abundance across samples. In total, our analysis identified 3814 distinct
ASVs spanning this set of samples after rarefaction. ASVs ranged from 225 to 254 bp in
length.

We first measured the extent to which experiment, facility, age, and exposure effects
impacted the distribution of ASVs across individuals (Figure 1). To do so, we quantified
the phylogenetic beta-diversity across samples using the weighted and unweighted unifrac
distance metrics. These metrics were used because they leverage phylogenetic distances
between ASVs to inform on the similarity between the composition of two communities,
which was critical in our study because ASVs may appear to be distinct—albeit phyloge-
netically proximal—as a result of technical differences across studies. PERMANOVA tests
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revealed that the phylogenetic composition of the zebrafish gut microbiome is dominated
by study effects (Weighted Unifrac: R2 = 0.326, p < 0.001; Unweighted Unifrac: R2 = 0.264,
p < 0.001). Facility effects also play a role (Weighted Unifrac: R2 = 0.193, p < 0.001; Un-
weighted Unifrac: R2 = 0.192, p < 0.001), but are generally confounded with study effects.
Moreover, the phylogenetic composition of the gut microbiome also significantly differed
across fish based on their age (Weighted Unifrac: R2 = 0.216, p < 0.001; Unweighted Unifrac:
R2 = 0.247, p < 0.01). We also stratified samples by their study of origin and assessed if
samples subject to an exposure are generally distinct from their paired controls. We found
that exposed samples weakly differentiate from controls when considering the presence
of phylogenetic lineages (Unweighted Unifrac: R2 = 0.0178, p < 0.001), but not when con-
sidering the abundance of phylogenetic lineages (Weighted Unifrac: R2 = 0.022, p = 0.194).
This result indicates that although exposure may affect which taxa are present in the gut,
simply being exposed to an exogenous factor may not consistently result in a different set
of dominant taxa in the gut as compared to unexposed controls. Rather, as found in prior
work [6], specific exposures may elicit specific effects on which taxa dominate the zebrafish
gut microbiome.
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3.2. A Small Set of ASVs Are Common to Zebrafish across Studies

We then quantified the prevalence of ASVs across all studies as well as within each
study to ascertain if core microbiota may exist at the ASV level. While we clustered
ASVs independently per project to optimize error learning, we informatically merged
ASVs based on sequence identity to resolve ASVs that were prevalent across studies. We
quantified the prevalence of these ASVs across the 266 control (“unexposed”) samples to
prevent exposure effects from spuriously decreasing the apparent prevalence of ASVs. As
illustrated in Figure 2, when assessing the prevalence of each ASV across control samples
irrespective of their study of origin, we find that each ASV is, on average, present in 0.62%
of these samples (median = 0.38%). The 477 ASVs in the top quartile of sample prevalence
manifested prevalence rates ranged from 0.38% to 84.2%. While the vast majority of
these relatively high prevalence ASVs were present in a single study, 130 were found
in more than one study, and 32 were found in more than three studies. Of them, seven
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ASVs appeared to be extremely prolific, because they appeared in more than half of the
studies and their median per study prevalence (MSP) exceeded 10%. These ASVs were
members of Aeromonas (MSP = 84.3%; study number = 8), Paucibacter (MSP = 40.5%;
study number = 8), Flectobacillus (MSP = 40.0%, study number = 5), Vibrio (MSP = 25.4%;
study number = 6), Shewanella (MSP = 21.5%; study number = 6), an ASV within the
Comamonadaceae (MSP = 17.4%, study number = 8), and Bosea (MSP = 10.0%, study
number = 6). Collectively, these results indicate that although the vast majority of observed
zebrafish gut ASVs are not common across individuals, a small number of ASVs appear
to be relatively prolific. However, it is challenging to ascertain which ASVs constitute
core taxa given the arbitrary thresholds applied above. Moreover, the fine-scale taxonomic
resolution of ASVs may obscure detection of prevalent taxonomic units, which in turn
results in an underestimated size of the core zebrafish gut microbiome.
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ambiguous genus-level annotation).
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3.3. A Diverse Set of Clades Comprise the Core Zebrafish Gut Microbiome

We next investigated whether core monophyletic clades of ASVs existed in the zebrafish
gut, which we defined as clades whose prevalence across samples was significantly greater
than expected by chance. As with the ASV analysis, we limited our consideration of
samples to the 266 that were not subject to experimental exposures. In so doing, we
identified 585 core clades of ASVs out of the 4054 total clades present in the phylogeny
we assembled. As illustrated in Figure 3, the prevalence of these clades across samples
irrespective of their study of origin ranged from 0.75–100%, and the median prevalence was
12.5%. The low prevalence values for some of these clades can be attributed to their very
recent divergence, because the average tip-to-tip phylogenetic distance between lineages
within a clade correlates with overall prevalence across samples (Spearman’s rho = 0.472,
p < 0.001). While these clades manifest low prevalence rates, they were more prevalent than
expected by chance given the clade’s size. Moreover, these clades tend to be prevalent across
multiple studies; 53% of these core clades (313 clades) were present in four or more studies.
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To better understand high-prevalence core clades, we assessed how the top 25%
most prevalent clades were distributed across studies. As shown in Figure 4, hierarchical
clustering of each of these 143 most prevalent clades reveals that the clades are grouped
into three major clusters (A, B, C) based on their prevalence distribution across samples.
This grouping is supported by kmeans clustering (centers = 3). These clusters appear to
be defined by the clades’ prevalence across studies based on the age of the fish subject
to investigation. For example, cluster A contains clades that are prevalent in adult fish
and typically missing from juvenile fish. Cluster B contains clades that are effectively
ubiquitous across all fish. Cluster C contains clades that are prevalent in juvenile fish and
typically missing from adult fish. In general, these life phase effects appear to overwhelm
study effects with respect to the prevalence distribution of these highly prevalent core
clades. The taxonomy associated with all core clades, including these highly prevalent
core clades, as well as their overall and median per study prevalence rates, is included as
supplemental data (Supplementary Table S1).
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3.4. Core Clades Differentially Respond to Environmental Exposures

We next sought to clarify how different environmental exposures impact the zebrafish
core gut microbiome (Figure 5). To do so, we used negative binomial regression to model
each core clade’s abundance across the samples from each study as a function of the
different exposure conditions applied in that study. As illustrated in Figure 6, core clades
vary in their profile of sensitivity across exposure conditions. In particular, 385 core clades
were sensitive to at least one exposure, while the remaining 200 clades appeared to be robust
to the exposures used in the studies considered here (fdr < 0.1). Of these sensitive clades,
134 were sensitive to at least three different exposures, placing them in the top quartile
of exposure sensitivity. These clades inconsistently responded to exposures, such that
differences in a clade’s relative abundance as compared to unexposed controls increased
in response to some exposures, while it decreased in response to others. For example,
the core clades that increased the most in abundance, which resulted from exposure to P.
tomentosa, were also among the set that decreased the most in abundance, which resulted
from exposure to the chemical BPS. These observations indicate that while some core
clades appear to be robust to exposure, others elicit extensive variation in their response to
exposures.
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Figure 5. The zebrafish core gut microbiome is phylogenetically diverse. The above cladograms illustrate the phylogenetic
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clades is sensitive, as measured by negative binomial regression models. The smaller cladograms near the top illustrate
which clades are sensitive to specific exposures (fdr < 0.1).
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Additionally, exposures vary considerably in their effect on core clades. Exposure to
parasites in adults affects the largest number of core clades (186 each), while exposure to
triclosan or silver nanoparticles affects the smallest number of core clades (21 clades each).
The impact of exposure on core clades does not appear to be driven by life stage, study, or
facility, as evidenced by the hierarchical clustering. For example, Catron et al. [6] exposed
juvenile fish to five different BPA metabolites using the same facility. These metabolites
varied widely in terms of the number of core clades they affected (range 86–158) and
clustered distinctly from one another based on the specific clades they impacted. However,
triclosan, the only exposure included in more than one study, elicited substantially different
effects on core clades in the adult zebrafish studied by Gaulke et al. [2] (21 affected core
clades) as compared to the juvenile fish studied by Weitekamp et al. [4] (142 affected core
clades), suggesting that age (or alternatively differences in the route or concentration of
exposure) may mediate how specific exposure types affect the gut microbiome. Collectively,
these results indicate that the core gut microbiome’s sensitivity to exposure may be largely
driven by specific exposure parameters (e.g., exposure concentration, duration, etc.).
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Figure 6. Core clades differentially respond to environmental exposures. In this heatmap, zebrafish gut microbiome core
clades are represented as columns and exposure states included in different studies are represented as rows. Heatmap
colors represent negative binomial model regression coefficients of the clade’s count within a rarefied sample as a function
of the exposure. Both columns and rows were subject to hierarchical clustering and organized accordingly in the heatmap,
as illustrated by the dendrograms decorating the top and left side of the heatmap. The bar plot to the right of the heatmap
illustrates the number of core clades that were sensitive to the exposure in question (fdr < 0.1).
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4. Discussion

The identification of core microbiota has been a consistent, albeit somewhat elusive,
objective in microbiome research. Driving the effort to identify such taxa is the assumption
that, due to the fact that these taxa are more prevalent among healthy individuals than
expected by chance given neutral processes, they are critical to the ecological functioning
of the microbiome that promotes health. Putative core taxa can be used to generate hy-
potheses for researchers to experimentally test the microbiome’s impact on host physiology,
and ultimately define biochemical or ecological mechanisms through which these host–
microbiome interactions occur. Moreover, resolving core microbiota clarifies which taxa
may comprise the minimum viable microbiome that associates with a healthy host, which
advances efforts to develop model microbiomes and probiotic consortia. Finally, such
taxa are valuable to identify because they clarify which discoveries in a given microbiome
investigation are likely robust to facility and experimental effects.

The identification of core microbiota is especially important in widely used model
systems, such as zebrafish. Zebrafish have emerged as a valuable resource for studying
both how the gut microbiome impacts vertebrate physiology and mediates the effects of
environmental exposures on the host [1]. However, we understand little about which
aspects of the zebrafish gut microbiome are robust to experimental and facility effects,
and whether healthy fish associate with common gut microbes. Prior work points to
the existence of a zebrafish core microbiome [17], but to date it has not been explicitly
defined. By phylogenetically integrating microbiome sequence data across a litany of
zebrafish studies, we identified a diverse core gut microbiome in zebrafish that is robust to
facility, experimental, age, strain, and diet effects. One of the benefits of our phylogenetic
approach to defining the core gut microbiome is that it resolves periods in the evolution of
zebrafish gut microbiota that resulted in the innovation of traits that underlie the prevalent
distribution of taxa across zebrafish. Although we do not know what those traits are or
whether they matter to zebrafish physiology, our efforts uncovered phylogenetic groups
of ASVs that have presumably conserved the traits in question, which facilitates future
discovery of these traits. Regardless, our observations help contextualize discoveries made
in zebrafish gut microbiome experiments, and as discussed below, align with prior work in
such that the core taxa identified here are commonly observed in zebrafish gut microbiome
investigations.

In particular, 14% of the monophyletic clades present in our integrated phylogeny
showed statistical evidence of being more prevalent across samples than expected by
chance. These clades are members of a diverse range of phylotypes, highlighting the
phylogenetic diversity of the zebrafish core gut microbiome. For example, the top 25% most
prevalent clades are members of the Gammaproteobacteria, Fusobacteria, Bacteroidetes,
and Alphaproteobacteria. Many of these clades appear to have recently diverged, such
that they are members of genus-level phylotypes. Notably, several of these phylotypes
were also identified as common zebrafish gut phylotypes in prior work [17], and have been
linked to zebrafish physiology or overall microbiome composition elsewhere. For example,
a clade within the genus Aeromonas (node2572) was present in 84.6% of samples. Specific
molecules produced by Aeromonas strains have been shown to influence immune system
activation and even kidney beta-cell expansion in larval zebrafish [9,33]. A clade within the
genus Cetobacterium (node2632) was present in 74.4% of samples. Members of Cetobacterium
have previously been shown to be enriched among adult zebrafish intestines [18] and
are negatively associated with parasite burden in the zebrafish gut [7]. A clade within
Shewanella (node1650) was present in 51.5% of samples. Shewanella species have been shown
to prevent immune responses induced by other members of the zebrafish microbiome (e.g.,
Vibrio), even when Shewanella is in relatively low abundance [34]. Other highly prevalent
yet recently diverged clades include members of Chitinibacter (node780, 37.2% prevalence),
Fluviicola (node3491, 30.0% prevalence), Flectobacillus (node3426, 22.6% prevalence), and
Paucibacter (node971, 44.0% prevalence). Finally, clades within the Pseudomonadales
were also highly prevalent. For example, a clade within the genus Pseudomonas (node
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1555) was present in 45.5% of samples, and more divergent clades within the order were
present in 77.1% of samples (e.g., node1474). Members of the Pseudomonadales, including
Pseudomonas, were shown to protect zebrafish from infection by the pathogen Flavobacterium
columnare [35].

An emerging goal in environmental health science is to determine how environmental
exposure impacts the gut microbiome. Our investigation reveals that core microbiota
vary in their sensitivity to different exposures. For example, some core clades, such as
a clade in the genus Shewanella (node1670, 43.3% prevalence) and a clade in the genus
Acinetobacter (node1578, 35.7% prevalence) are robust to all exposures we assessed. On
the other hand, certain clades were much more sensitive, including a clade within the
Gammaproteobacteria (node1382, 80.5% prevalence, sensitive to all 9 exposures), a clade
within the genus Rheinheimera (node1546, 18.8% prevalence, sensitive to seven exposures),
and a clade within the Pseudomonadales (node1475, 77.1% prevalence, sensitive to seven
exposures). It is not apparent from the data we could access if exposure-induced effects
on the core microbiome yield robust changes in fish physiology. That said, exposures
impacted core clades that are members of phylotypes that have been previously linked
to physiology. For example, as noted above, members of Pseudomonadales can protect
fish from pathogens. Moreover, prior work showed that Rheinheimera is enriched in
conventionalized germ-free fish that manifest normal neurobehavior as compared to their
germ-free counterparts and conventionally reared fish [10]. Future work should seek to
measure the effect of perturbing core taxa on fish physiology and whether these effects are
consistent across different types of exposures.

Exposures also varied in how extensively they impacted the gut microbiome. For
example, exposure to the intestinal parasite Pseudocapillaria tomentosa affected the largest
number of core clades (186 clades), while exposure to the consumer grade antibiotic
triclosan (at least in adults) or silver nanoparticles affected the smallest number of core
clades (21 clades each). As noted in our results, simply being exposed to an exogenous factor
only modestly affects the phylogenetic composition of the gut microbiome. Collectively,
these observations support the expectation that different types of exposures select for
different gut microbiome compositions and do so with different magnitudes.

In addition to the aforementioned core clades, our analysis resolves a small set of
highly prevalent ASVs. We currently lack a statistical framework for assessing whether an
ASV’s prevalence is greater than that expected by chance; thus, studies frequently use con-
servative but arbitrary prevalence thresholds to identify core ASVs (e.g., 80% prevalence).
We identified seven ASVs that were at least 10% prevalent across at least half of the studies
we evaluated. Although the prevalence of these ASVs may not meet thresholds commonly
employed to determine core taxa, the fact that these highly resolved taxonomic units are
relatively prevalent (i.e., as compared to the median ASV prevalence) across multiple
studies and facilities suggests that these ASVs should be experimentally prioritized for
follow-up investigations of their physiological impacts as though they were core taxa.
As noted in our results, these ASVs are members of Aeromonas, Paucibacter, Flectobacillus,
Vibrio, Shewanella, the Comamonadaceae, and Bosea. These observations are at least in part
consistent with prior work that resolved operational taxonomic units (OTUs) common to
two different zebrafish facilities, as well as wild-caught fish [17]. In particular, this prior
work discovered common OTUs that were members of Aeromonas, Shewanella, and Vibrio
(as well as others not in our set of highly prevalent ASVs). Collectively, these observations
suggest that specific strains of bacteria may exist which associate with zebrafish across
facilities, possibly due to an intimate physiological association between these microbiota
and their host.

Our goal was to identify a robust core microbiome associated with healthy fish. To
do so, we investigated zebrafish microbiome samples collected from the control (i.e.,
unexposed) arms of a variety of zebrafish studies. While this selection of samples affords
an opportunity to identify a core microbiome that is robust to experimental and facility
effects, it is imperfect for at least two reasons. Firstly, we do not possess direct insight
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into the physiology of these fish, so it is possible that these fish manifest cryptic diseases.
However, given that the facilities that managed these fish provide extensive oversight
of their husbandry and that these control arm fish were intended to represent healthy
individuals in the investigations we selected, we presume our assumption of health is
meaningful. Secondly, the control arm fish were not identical across all studies. In particular,
they varied by strain, diet, tank conditions (e.g., recirculating versus flow through), water
quality, and whether the fish were exposed to a control vehicle or not. As a result, more
core taxa may actually exist than those which are uncovered here, because our investigation
incorporated additional variation that may impact the core microbiome that associates
with specific zebrafish strains, diets, or other related covariates.

Future work should consider if and how core zebrafish gut microbiota affect zebrafish
physiology and whether exposure-induced changes to these microbiota mediate how expo-
sure impacts the host. For example, many of the core taxa identified in our investigation
may actually represent taxa that are common to and abundant within zebrafish facilities
(e.g., the tank microbiome). Such taxa may appear prevalent in the gut of zebrafish simply
as a result of neutral dispersal processes rather than any sort of selection that would in-
dicate functional effects on the host. On the other hand, common facility microbes may
be selected for various physiological processes, such as intestinal motility [36], possibly
because such microbes confer important functional effects on the host. Exposure to en-
vironmental toxicants that interfere with the success of these core taxa in the gut could
manifest as toxicity. Our results can help future studies prioritize which microbiota should
be functionally characterized in greater detail.

Additionally, future studies should consider conducting similar integrations as those
described here to better understand how different exposure conditions, study and facility
designs, and fish genetics impacts the core gut microbiome. To help facilitate this work, we
recommend that studies that generate zebrafish gut microbiome data ensure that their data
and study covariates, especially physiological measures, are appropriately deposited into
public data repositories. As the number of zebrafish fish microbiome studies continues
to grow, such publicly available data will help to transform our understanding of the
robustness of the results produced in this important model system.
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