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Abstract: Arsenic trioxide (As2O3) is a ubiquitous heavy metal in the environment. Exposure to this
toxin at low concentrations is unremarkable in developing organisms. Nevertheless, understanding
the underlying mechanism of its long-term adverse effects remains a challenge. In this study,
embryos were initially exposed to As2O3 from gastrulation to hatching under semi-static conditions.
Results showed dose-dependent increased mortality, with exposure to 30–40 µM As2O3 significantly
reducing tail-coiling and heart rate at early larval stages. Surviving larvae after 30 µM As2O3 exposure
showed deficits in motor behavior without impairment of anxiety-like responses at 6 dpf and a slight
impairment in color preference behavior at 11 dpf, which was later evident in adulthood. As2O3

also altered locomotor function, with a loss of directional and color preference in adult zebrafish,
which correlated with changes in transcriptional regulation of adsl, shank3a, and tsc1b genes. During
these processes, As2O3 mainly induced metabolic changes in lipids, particularly arachidonic acid,
docosahexaenoic acid, prostaglandin, and sphinganine-1-phosphate in the post-hatching period of
zebrafish. Overall, this study provides new insight into the potential mechanism of arsenic toxicity
leading to long-term learning impairment in zebrafish and may benefit future risk assessments of
other environmental toxins of concern.

Keywords: arsenic toxicity; zebrafish; long-term learning impairment; behaviors; metabolomics

1. Introduction

Among the various organs affected by bioaccumulation of heavy metals, brain dam-
age is of particular concern due to its high susceptibility to environmental chemicals [1].
Exposure to heavy metals during neurodevelopment is believed to cause more types of
neurodevelopmental disorders (NDDs) than in adulthood. However, the complexity of
etiological pathways makes elucidation of this mechanism challenging [2]. The effects of
environmentally relevant concentrations of heavy metals on the nervous system are usually
slow-onset, irreversible, and often overlooked due to non-teratogenic effects. Children with
NDDs have difficulties with sensory and motor function, communication, learning, and
memory. NDDs include intellectual disabilities (ID), autism spectrum disorders (ASDs),
attention-deficit/hyperactivity disorder (ADHD), and motor development disorders [3].
Impaired cognitive function interferes with normal human functioning and is often as-
sociated with neuropsychiatric disorders to varying degrees [4,5]. The global increase in
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NDDs [6,7] highlights the need for multidisciplinary efforts to understand the effects of
low-concentration heavy metal exposure to fill data gaps in developmental neurotoxic-
ity (DNT).

Arsenic (As) is a toxic, ubiquitous metalloid found in food, water, the environment,
and various tissues of the human body [8] and has become a global health concern. The
double-edged potential of As became a topic of discussion when the US Food and Drug
Administration (FDA) approved arsenic trioxide (As2O3) for the treatment of acute promye-
locytic leukemia (APL) in 1996 [9]. This biologically active form of As further pollutes
the environment via patient excretions, as well as improper waste manufacturing and
disposal [10]. Impacts during early life development are determined by the dynamics of
As transit through the placental barrier, which regulates important aspects of embryonic
development [11]. Exposure during pregnancy has been associated with neurological im-
pairments in the prenatal, perinatal, and childhood periods [12]. Although it is not yet clear
whether ingestion of drinking water contaminated with As at low concentrations affects
children’s brains, epidemiological studies have indicated that cognitive deficits associated
with As exposure [13,14] may have irreversible cumulative adverse effects years later [15].
A recent global As risk assessment predicted that 85–90% of people particularly who live in
south Asia, are potentially exposed to high levels of As in groundwater from their domestic
water supply [16], even at low concentrations [17]; thus, it is critical to understand the
mechanism of action of As toxicity. The changing landscape, ponds, and extensive use of
pesticides on palm oil plantations in the Langat Basin, Malaysia, are considered to be the
major sources of increased arsenic concentration in the Langat River (0.98–21.94 µg/L),
which exceed the Malaysian Ministry of Health (MOH) and World Health Organization
(WHO) permissible limit for arsenic of 10 µg/L [18].

To reduce costs and shorten the duration of basic toxicity DNT studies, zebrafish
(Danio rerio) have attracted considerable interest due to their practical benefits, including
high fecundity, small size, short embryonic period, high permeability to small molecules,
and transparency, which facilitate their anatomical characterization [19]. The zebrafish is
universally used by biologists to study brain development [20], as it has key pathways
relevant to human disease [21] with conserved gene expression for neurodevelopment [22]
and brain homology [23]. Zebrafish also exhibit behavioral responses similar to those of
rodents when exposed to toxicants [24], along with a behavioral repertoire that can be
automatically quantified as a valuable indicator of altered brain function.

In this study, zebrafish were used as a model organism to understand the developmen-
tal effects of embryonic exposure to As2O3. To assess the long-term toxic effects of As2O3
at the functional level, motor activity, anxiety, and learning behavior were measured at
different life stages. With the aim of deciphering the neurochemical changes upon expo-
sure to As2O3 at environmentally relevant concentrations, zebrafish behavioral analysis,
untargeted liquid chromatography–mass spectrometry (LCMS)-based metabolomics, and
gene expression analyses were performed.

2. Materials and Methods
2.1. Zebrafish Husbandry

All experiments were performed in accordance with the Institutional Animal Care and
Use Committee of Universiti Putra Malaysia (UPM) (UPM/IACUC/AUP-R049/2019), with
an approval date of 23 July 2019. Adult wild-type zebrafish were maintained in freshwater
at the Natural Medicines and Product Research Laboratory (NaturMeds), Institute of
Bioscience, UPM. Fish were maintained at 25–27 ◦C with a light cycle of 14 h light: 10 h
dark [25] to induce the reproductive cycle of the fish. Fertilized eggs were collected
30 min after lights were turned on. The collected eggs were incubated at 28 ◦C in an egg
buffer solution [26]. Only embryos with intact chorionic membranes that had reached
the gastrulation stage (50% epiboly) were chosen [27]. All dead or unfertilized eggs were
removed. After behavioral assessment at age 6 dpf, surviving larvae were fed formulated
diets and brine shrimp (Artemia salinaa) twice until the adult stage [28]. A total of 90 of
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the 6 dpf larvae from each group were evenly distributed to a different 3 L freshwater
aquarium equipped with dripped water. At 14 dpf, larvae were provided with a small
stream of circulating water [29] and reared in this system until the adult stage (3 months).

2.2. Chemical Exposure

The selected As concentrations correspond to the As concentrations reported in the
domestic water supply [16]. A stock solution of 100 mM As2O3 (≥99.99%, Sigma-Aldrich,
St. Louis, MO, USA) was diluted in 1 M NaOH (0.01%), which then further diluted to final
concentrations of 20, 30, 40, and 50 µM in egg buffer solution. Zebrafish embryos were
exposed to a varying range of As2O3 from 5 hpf to 72 hpf under semi-static conditions.
For behavioral, biochemical, and metabolomics analysis, we chose a 30 µM As2O3 concen-
tration, which does result in any morphological abnormalities at 5 hpf under semi-static
conditions until hatching (72 hpf). All experiments were performed in triplicate and re-
peated at least three times (n = 90 embryos per exposure group). For larval anxiety-like
response assay, an anxiogenic (100 mg/L Caffeine, Sigma-Aldrich C53) or anxiolytic drug
(5 mg/L Buspirone, Sigma-Aldrich B7418) was used in 6 dpf larvae [30,31]. Both caffeine
and buspirone were dissolved in egg buffer solutions at the selected concentration. Larvae
were treated with caffeine or buspirone 2 h prior to behavioral recording and maintained in
the same solutions during the behavioral recording [32]. To investigate learning behavior at
11 dpf, zebrafish larvae were exposed to cognition-impairing MK-801 as a positive control
(M107, Sigma-Aldrich, St Louis, MO, USA). MK-801 was dissolved in sterilized water to
prepare a 10 mM stock solution. The MK-801 working solution was freshly diluted from
the concentrated stock solution with egg buffer solution to a final concentration of 200 µM
4 h before the experiments [33].

2.3. Embryonic Toxicity Test

At 4 hpf, normal fertilized embryos with intact chorion membranes were selected prior
to As2O3 exposure. A comprehensive toxicity assessment was performed for each As2O3-
exposed zebrafish group, including mortality rate, morphological deformities, survival to
adult stage, heartbeat (count/minute), and percentage of hatching rate. The morpholog-
ical deformities after As2O3 exposure in zebrafish included impairment of fin folds and
tail primordium; body axis curvature (kink in tail, lordosis, or scoliosis); and abnormal
shape of yolk, heart, and eyes. Body length, swim bladder diameter, and swim bladder
volume of surviving larvae were measured at 6 dpf. Swim bladders were observed with
an SMZ-745T stereomicroscope (Nikon, Nikon Instruments Inc., New York, NY, USA).
Swim bladder volume was measured as follows: 4/3 πab2, (a) major horizontal axis and
(b) minor vertical axis [34]. Image analysis was performed using the freely available
ImageJ software (version 1.48, Wayne Rasband, National Institutes of Health, Bethesda,
MD, USA from http://rsb.info.nih.gov/ij/webpage (accessed on 15 July 2021). The swim
bladder elongated anterior–posterior was flattened, resulting in decreased volume. As2O3-
exposed embryos were raised to adult stage, and their survival was recorded throughout
the growth phase.

2.4. Assessment of Locomotor, Anxiety, and Color Preference in Zebrafish

After As2O3 exposure, we examined locomotor activity and anxiety-like responses
at the larval stage 6 dpf. Vertical swimming behavior was defined as the ability of larvae
to reach the water surface [34]. Down preference in this assay denotes the percentage
of larvae positioned at the bottom of the glass cylindrical column. To further examine
the effect of swim bladder changes on vertical swimming behavior, we measured swim
bladder diameter and swim bladder volume of larvae 6 dpf after the vertical swimming
behavior was recorded. The exploratory activity of larvae was examined using an open
field test that measured the distance traveled [35]. For anxiety-like response assay, we
measured the percentage of down and edge preference, swimming speed, and percentage
of rest. All larval behavioral procedures were performed in triplicate and repeated at
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least three times (n = 90 embryos per exposure group). An aversive stimulus (Figure S3)
represented by a red moving ball was introduced to 6 dpf larvae for 5 min using Microsoft
PowerPoint (version 2010, Robert Gaskins and Dennis Austin, Santa Rosa, CA, USA) [26].
ImageJ and Microsoft Excel were used to auto-generate the percentage of down and
edge preference, swimming speed, and percentage of rest [32]. Assessment of avoidance
response (down preference) in the anxiety-like response assay represented the percentage
of larvae positioned at the bottom part of the well, as the aversive stimulation from left to
right. Larval color preference was assessed in zebrafish larvae at 11 dpf by percentage of
exploration maze and color preference (yellow, green, blue, and red represented by total
distance traveled) [36–38], whereas exploratory test and color preference (green or red)
were assessed in adult zebrafish at 3 months of age [39]. A summary of the behavioral
assessments is provided in Supplementary Materials (Figures S1–S3A).

2.5. Fourier Transform Infrared Spectroscopy (FTIR)

The 6 dpf zebrafish larvae from both control and As2O3-exposed groups were fixed
with 4% paraformaldehyde (PFA) and washed three times with phosphate-buffered saline
(PBS) for 5 min each. All 180 larvae (90 = control, 90 = As2O3-exposed) were dried in a
lyophilizer (Benchtop Freeze Dryer Labconco, Kansas City, MO, USA) at 50 ◦C for 12 h to
remove the water content in the samples before grinding in an agate mortar and pestle
to obtain zebrafish larvae powder. Larvae powder was completely mixed with dried
potassium bromide (100 mg) and subjected to a pressure of 5 t in an evacuated disc for
5 min to produce a clear, transparent KBr disc with a diameter of 13 mm and a thickness
of 1 mm for use in FT-IR analyses [40]. FT-IR analyses of the freeze-dried samples were
performed using a Thermo Nicolet Nexus Smart Orbit spectrometer (Ramsey, NJ, USA).
The spectra were recorded in the middle infrared (IR) region (500–4000 cm−1, in triplicate
for each sample).

2.6. LC-MS Analysis and Metabolomics

At the end of the behavioral assessment, pools of 90 zebrafish larvae at 6 dpf were
extracted; the freeze-dried tissues were homogenized in 300 µL of extraction solvent
(80:20 v/v, cold methanol/water) in a 2 mL Eppendorf tube. All samples were analyzed as
a single batch in random order to minimize analytical error and subjective interference and
to minimize column retention shift. UHPLC analysis was performed using a Bruker impact
II quadrupole time-of-flight (QTOF)–mass spectrometry system (Bruker Daltonics, Bremen,
Germany) equipped with an electrospray ionization source (ESI). Chromatographic separa-
tions were performed in an Inertsil phenyl-3 column (150 × 4.6 mm with a particle size
of 5 µm) (GL Sciences Inc., Rolling Hills Estates, CA, USA) for positive- and negative-ion
analyses [41]. The injection volume was 10 µL, with filtration using a 0.22 µm hydrophobic
PTFE membrane at a flow rate of 0.4 mL/min. The mobile phases consisted of water
with 0.1% formic acid (solution A) and methanol with 0.1% formic acid (solution B). The
elution gradient at 50 ◦C was as follows to ensure improved repeatability between runs:
(1) 5% solution B for 1 min, (2) 5–50% solution B for 11 min, (3) 100% solution B for 23 min,
(4) new 100% solution B for 35 min, and (5) 5% solution B for 37–50 min. The acquisition
time for time-of-flight (TOF) mass spectrometry (MS) was 0.25 s, with a scan range of
70–1250 Daltons (Da). The collision energy was set to 35 V, with a collision energy spread
of 15 V. A summary of sample preparation and LCMS data analysis [42–45] is provided in
Figures S3B and S4 in the Supplementary Materials.

2.7. Quantitative Expression Analysis (qPCR)

To investigate the effects of As2O3 exposure on the expression of ASD-associated genes
(adenylosuccinate lyase (adsl), SH3 and multiple ankyrin repeat domains 3A (shank3a),
and tuberous sclerosis complex 1 (tsc1b) [46,47]), qPCR was performed in triplicate on
6 dpf zebrafish larvae (n = 30 larvae per sample). After chemical exposure and behavioral
recording at 6 dpf, the larvae were transferred into a 1.5 mL centrifuge tube and flash-
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frozen for euthanization purposes. Total RNA was extracted using an RNeasy UCP micro
kit (QIAGEN, Hilden, Germany, 2019), with concentration and quality checked with an
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, ED, USA). During the
RNA extraction, genomic DNA was selectively removed with the clearing agent that was
included in the purification kit. cDNAs were synthesized by reverse transcription using a
ReverTra AceTM qPCR RT master mix with gDNA Remover (Toyobo, Japan). The cDNA
concentrations were also measured using an ND-1000 spectrophotometer. The samples
were then diluted with purified water, followed by the addition of 2 µL of 4× DN master
mix incubated at 35 ◦C for 5 min. A control experiment without RNA was used to validate
whether amplicons originate from cDNA and/or genomic DNA. We used β-actin as a
reference housekeeping gene. The sequence of primers for the target genes and reference
gene (β-actin) for zebrafish are shown in Table S1 [48]/Target genes were amplified using
a CFX96 real-time PCR detection machine (Bio-Rad Laboratories, Hercules, CA, USA).
The PCR reaction mixture (total 20 µ/L) contained 10 µL of SensiFAST™ SYBR No-ROX
kit master mix (Meridian Bioscience, Cincinnati, OH, USA), 0.8 µL of each forward and
reverse primer (10 µM), 8.4 µL of purified PCR-grade water, and 0.8 µL of cDNA sample.
The thermal cycle profile was as follows: preincubation at 95 ◦C for 2 min; 40 cycles of
amplification at 95 ◦C for 5 s and 60 ◦C for 20 s; and annealing at 65 ◦C for 10 s and 72 ◦C
for 10 s. Variations in target gene expression were normalized by using β-actin expression
as a reference. Delta delta Ct values (∆∆Ct) were used to calculate the relative level of
gene transcription. The Ct value was determined to calculate ∆Ct by subtracting the Ct
value of the treated and control samples. The ∆∆Ct value was obtained by subtracting the
∆Ct value of the target gene of the treated sample from the ∆Ct value of the housekeeping
gene. The expression value of each gene was represented by the fold changed, which was
calculated as follows: (x = 2−∆∆Ct).

2.8. Statistical Analysis

All experiments were repeated three times and performed in triplicate. Data were
analyzed with SPSS statistical analysis software (version 22.0, IBM Corp., Armonk, NY,
USA) using the probit analysis statistical method. The LC50 values (with 95% confidence
limits) were calculated. Differences among the results were considered to be statistically
significant when the p value was <0.05. MS Excel 2007 was used to determine the regression
equation (Y = mortality; X = concentrations), and the LC50 was derived from the obtained
best-fit line. One-way ANOVA followed by post hoc Tukey test and two-way ANOVA
followed by Duncan’s test and t test were applied to determine significant differences in
teratogenicity, behavior, learning impairment assessment, and gene expression between
exposed and control groups. Data are presented as mean values ± standard error of
the mean (SEM), with significant differences relative to the control (p-values ≤ 0.05).
GraphPad Prism statistical software (GraphPad Software, San Diego, CA, USA) was used
for all graphs.

3. Results
3.1. Developmental Toxicity Effects of Embryonic Exposure to As2O3

The total percentage of mortality was represented by dead embryos that exhibited
coagulation, lack of somite formation, non-detachment of the tail, and no heartbeat. Fig-
ure 1A shows the percentage of mortality in zebrafish larvae until hatching (24–72 hpf). The
mortality in as-exposed embryos was increased in a dose-dependent manner. Exposure to
concentrations equal to or greater than 30 µM resulted in a significant increase in mortality;
in contrast, exposure to 20 µM As2O3 showed no significant difference compared to the
control group. The lethal concentration (LC50) of As2O3 killing 50% of zebrafish embryos
at 96 hpf was 27.10 µM, as shown in Figure 1B. Furthermore, no severe morphological
malformations (scoliosis, yolk sac edema, or tail kinks) were observed in the exposed larval
groups throughout the exposure period. Exposure to 30 and 40 µM As2O3 resulted in a
decrease in the incidence of tail coiling compared to the control group (Figure 1C), whereas
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no tail coiling occurred in embryos exposed to 50 µM As2O3, as all embryos were dead
after 24 hpf.
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Figure 1. The toxicity effects of As2O3 on zebrafish (Danio rerio) embryos. (A) Exposure to As2O3

increased embryo mortality in a dose-dependent manner. (B) LC50 for As2O3. (C) Exposure to 30 µM
and 40 µM As2O3 significantly decreased the incidence of tail coiling in 24 hpf embryos. (D) Exposure
to 40 µM As2O3 significantly decreased the heartbeat of embryos examined at 48 hpf. (E) Exposure to
increased As2O3 concentrations significantly delayed hatching between 48 hpf and 72 hpf. Data are
presented as mean ± SEM of triplicate wells (n = 90 embryos per exposure group), with significant
differences relative to the control group. ∗ (p ≤ 0.05); a no tail coiling, and heartbeats were recorded
for 50 µM As2O3 exposed embryos, as all embryos were dead at 24 hpf.

At 48 hpf, heartbeat was significantly decreased in larvae exposed to 40 µM As2O3,
whereas no significant alterations in heartbeat were observed at lower concentrations when
compared with the control group (Figure 1D). However, no heartbeat was recorded in larvae
exposed to 50 µM As2O3, as all larvae were dead at 24 hpf. As shown in Figure 1E, the
percentage of hatched fish decreased over time in As2O3-exposed embryos. Furthermore,
48 h of exposure to 20 µM (8.9 ± 2.2%) to 40 µM (2.8 ± 2.2%) As2O3 inhibited embryo
hatching by up to 75% compared to the control group (35.1 ± 2.2%). A similar significant
trend was also observed after 72 h with 40 µM (68.3 ± 2.2%) and 50 µM (0.1667 ± 2.188%)
As2O3 exposure compared to the control group (98.5 ± 2.2%). In contrast, at 72 h, no
significant differences in hatching were observed in 20 µM (97.3 ± 2.2%) and 30 µM As2O3
(95.4 ± 2.2%)-exposed larvae, suggesting that delaying the hatching of zebrafish embryos in
the presence of As2O3 may result in abnormal organ function in subsequent developmental
stages, reducing their ability to survive to adulthood. To better understand the toxic effects
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of As, 30 µM As2O3-exposed larvae were selected due to the significant effects of this
concentration on total toxicity levels, survival to adulthood, and similarity to the arsenic
concentration found in Langat Basin, Malaysia (0.98–21.94 µg/L) [18].

3.2. Effects of Embryonic As2O3 Exposure on Anxiety-Related Responses in 6 dpf Larvae

To further understand the toxic effects of As2O3 exposure on zebrafish larval de-
velopment, we examined their anxiety-related behavior. Assessment of anxiety-related
responses in this study included percent of edge preference (thigmotaxis), down prefer-
ence (avoidance response), rest, and speed upon aversive stimulation. Aversive stimulus
was represented by a red moving ball from left to right displayed in Microsoft Power-
Point, whereas no stimulus was represented by a blank background. As2O3 exposure
resulted in no changes in anxiety-related responses in 6 dpf larvae under either condition
(without/with aversive stimulus) (Table 1 and Figure S3A in Supplementary Materials,
respectively) when compared to controlled larvae.

Table 1. Changes in anxiety-related responses in As2O3-, caffeine-, or buspirone-exposed larvae.

Anxiety-
Related
Response

Controlled Larvae 30 µM As2O3-Exposed
Larvae

100 mg/L
Caffein-Exposed Larvae

5 mg/L
Buspirone-Exposed

Larvae

Aversive Stimulus Aversive Stimulus Aversive Stimulus Aversive Stimulus

Without With Without With Without With Without With

Edge
preference 84.0% ± 3.4 87.0% ± 3.4 83.0% ± 3.4 84.6% ± 3.4 89.9% ± 3.3 92.1% ± 3.7 73.9% ± 5.6 79.3% ± 4.8

Down
preference 48.0% ± 3.9 54.0% ± 3.9 43.1% ± 3.9 49.6% ± 3.9 47% ± 2.8 58.9% ± 2.9 57.9% ± 4.1 74.3% ± 3.9

Speed 42 ± 3.1
mm/min

39 ± 3.0
mm/min

42.8 ± 3.0
mm/min

47.3 ± 3.0
mm/min

9 ± 2.1
mm/min

11.0% ± 2.1
mm/min

47 ± 2.1
mm/min

43 ± 2.1
mm/min

Rest 20% ± 4.6 24% ± 4.6 17.4% ± 3.0 18.8% ± 3.0 72% ± 2.1 74% ± 2.1 0% 0%

Exposure to anxiogenic caffeine increased edge preference under both conditions,
reduced downward preference, reduced swimming speed, and increased rest. These results
suggest that caffeine exaggerated edge preference and reduced larval avoidance behavior
compared to control larvae. In contrast, exposure to anxiolytic buspirone decreased edge
preference and increased down preference and swimming speed, and no resting larvae
were detected, indicating that all larvae moved under both conditions compared to the
control group. These results suggest that buspirone had minimal effects on larval edge
preference and significantly enhanced larval avoidance behavior. Overall, the data show
that As2O3, buspirone, and caffeine each have different effects on larvae.

3.3. As2O3 Affects Survivability and Induces Behavioral Defects during Juvenile to Adult Stages

After the exposure period, zebrafish larvae were rinsed and reared to maturity under
normal laboratory conditions. The long-term deleterious effects of As2O3 were evidenced
by reduced survivability at 72 hpf, increase in swim bladder volume with impaired vertical
swimming behavior at 6 dpf, and a persistent decrease in exploratory behavior until
adulthood. However, increased swim bladder volume did not affect survivability itself
at 72 hpf after As2O3 exposure. For both control and As2O3-treated larvae, survival was
100% by day 12 and decreased to 86.7% by day 13 (Figure 2D). The survivability was
maintained after day 14 in control and after 23 dpf in As2O3-exposed fish during juvenile
and adult growth. Throughout the rearing process, not a single death was recorded
after 72 hpf in As2O3-exposed fish, comparable to the control group. Exposure to As2O3
(1.4 ± 0.05 mm3) resulted in a smaller diameter of the posterior lobe of the swim bladder
versus the control group (1.7 ± 0.05 mm3, Figure 2A). This was supported by the fact that
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swim bladder volume was significantly enlarged in As2O3-exposed larvae (0.4 ± 0.07 mm3)
compared to that of the control group (0.3 ± 0.07 mm3, Figure 2B). Increased swim bladder
volume affected the neutral buoyancy of larvae, ultimately affecting their survival in
later stages, as well as subsequent behavior. Larvae exposed to As2O3 (44.6 ± 1.1%)
showed a significantly decreased down preference when compared with the control group
(61.8 ± 1.1%) (Figure 2C). These excessive floating attempts were consistent with the higher
swim bladder volume observed in As2O3-exposed larvae, indicating an impaired control
of neutral buoyancy affecting swim behavior [34].
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Figure 2. Effects of embryonic As2O3 exposure in 6 dpf larvae and adult zebrafish. At 6 dpf, As2O3

exposure increased swim bladder inflation/volume (B), although its anterior–posterior length was
shortened (A). (C) With change in swim bladder volume, As2O3 exposure also affected swimming
behavior, with reduced down preference. (D) In adults, embryonic As2O3 exposure resulted in a
reduced percentage of survivability in As2O3 exposed larvae (x), which was mainly detected at
13–23 dpf, compared to the control group (�). Data are presented as mean ± SEM, (∗ p ≤ 0.05)
n = 30–90 per group), with significant differences relative to the control group ∗ (p ≤ 0.05).

As2O3 caused a persistent reduction in larval exploratory behavior until adulthood.
The exploratory behavior of zebrafish at 6 dpf, represented by the average distance traveled,
was significantly decreased in As2O3-exposed larvae (219.6 ± 5.7 mm) compared to the
control group (271.7 ± 5.7 mm, Figure 3A). These findings are consistent with the positive
control, caffeine-treated larvae (58.1 ± 5.7 mm), which showed a significant reduction
in average distance traveled. However, buspirone treatment (negative control) resulted
in a longer average distance traveled (242.2 ± 5.7 mm), which was significantly greater
than that of the other exposed groups. The exploratory activity of zebrafish was further
evaluated at 11 dpf and 3 months of age. The results showed that exploratory activity
of As2O3-exposed larvae (83.6 ± 12.8 mm) was significantly reduced compared to con-
trol larvae (131.4 ± 12.8 mm Figure 3B). Coincidentally, zebrafish larvae that were treated
with cognitive impairer MK-801, which mechanistically blocks NMDA/glutamatergic
signaling, showed a severe reduction in exploratory activity (11.4 ± 12.8 mm) compared
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to control larvae (Figure 3B). In addition, no morphological deformities were observed
in MK-801-exposed larvae throughout the exposure period. Locomotor behavioral as-
sessment, represented as exploratory activity, performed prior to any aversive or color
stimulation showed that these detrimental effects persisted into the adult stage, as As2O3
(417.7 ± 91.8 mm) significantly decreased exploratory activity compared to control larvae
(640.5 ± 91.8 mm) (Figure 3C).
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Figure 3. Effects of long-term impairment of 30 µM As2O3 exposure on exploratory activity. Ex-
ploratory activity was persistently decreased in larvae from 6 dpf (A) and 11 dpf (B) to adult stage
(C). Data are presented as mean ± SEM, (∗ p ≤ 0.005), n = 30 larvae per group, n = 22 adults per
group), with significant differences relative to the control group, ∗ (p ≤ 0.05).

3.4. As2O3 Exposure Affects Color Preference and Learning Impairment

An innate color preference test was performed in a plus maze with four different-
colored sleeves to assess the effects of embryonic As2O3 exposure in 11 dpf zebrafish
larvae. This color test showed that control zebrafish larvae exhibited distinct color dis-
crimination and color preference. We observed a reduction in color preference for blue
in As2O3-exposed larvae (749.3 ± 132.4 s) compared to the control group (1052 ± 133.5 s)
(Figure 4A). No significant differences were observed in color preference for red and green
in control (336.1 ± 132.4 s vs. 271.6 ± 132.4 s) or As2O3-exposed larvae (262.7± 132.4 s
vs. 250.2 ± 132.4 s). However, MK-801-exposed larvae showed a change in color pref-
erence (blue: 303.3 ± 132.4 s, red: 305.3 ± 132.4 s, green: 579.8 ± 132.4 s, and yellow:
361.6 ± 132.4 s). MK-801-treated larvae swam longer in the center of the maze without
showing a clear color preference.

Because the color preference test was previously used to evaluate adult zebrafish
behavior for learning and memory [49,50], we examined color preference in 3-month-old
adult zebrafish using a three-chamber apparatus with red and green sleeves to assess
long-term effects of embryonic As2O3 exposure on color preference in adult fish. It was
previously established that red is the most preferred color in zebrafish and that associations
with red are easily learned from food color (for example, brine shrimp) during rearing [51].
Thus, we used red color preference for food-associative learning in adult zebrafish. To
increase food color-associated learning in the color preference test, adult fish were accli-
mated in the maze for 6 days with red color brine shrimp feeding before the test on the 7th
day. In the three-chamber color preference test, control fish showed a tendency to prefer
the red-colored zone over the green zone (red, 139.1 ± 22.0 s; green, 78.5 ± 22.0 s; center,
81.9 ± 22.0 s). However, no such response was observed in the As2O3-exposed adult group,
showing no significant preference for either green or red color (red, 74.6 ± 22.0 s; green,
62.2 ± 22.0 s; center: 162.6 ± 22.0 s) (Figure 4B). This lack of color preference and lost
directional preference (Figure S12) in the adult stage may indicate an association with color
impairment in the As2O3-exposed group.



Toxics 2022, 10, 493 10 of 20

Toxics 2022, 10, x FOR PEER REVIEW 10 of 22 
 

 

 

Figure 4. Effects of embryonic As2O3 exposure on the color preference of larval (11 dpf, A) and adult 

zebrafish (B). (A) In the 11 dpf larval test, a cross maze with four different-colored cambers was 

used. Reduction in color preference for blue in As2O3-exposed larvae compared to the control group. 

No significant differences were observed in color preference for red and green in control or As2O3-

exposed larvae. However, MK-801-exposed larvae showed no clear color preference(B) Five-minute 

video tracking of color preference in adult fish after associative learning. Adult fish were acclimated 

to the three-chamber maze for 6 days with red food association before the test on the 7th day. As2O3-

exposed zebrafish showed no significant preference for either green or red color Data are presented 

as mean ± SEM, (∗ p ≤ 0.005). n = 30 larvae per group, n = 22 adults per group. ∗ Significance at p ≤ 

0.05 between left/center/right and between two color arms for each test, n.s: not significant 

Because the color preference test was previously used to evaluate adult zebrafish be-

havior for learning and memory [49,50], we examined color preference in 3-month-old 

adult zebrafish using a three-chamber apparatus with red and green sleeves to assess 

long-term effects of embryonic As2O3 exposure on color preference in adult fish. It was 

previously established that red is the most preferred color in zebrafish and that associa-

tions with red are easily learned from food color (for example, brine shrimp) during rear-

ing [51]. Thus, we used red color preference for food-associative learning in adult 

zebrafish. To increase food color-associated learning in the color preference test, adult fish 

were acclimated in the maze for 6 days with red color brine shrimp feeding before the test 

on the 7th day. In the three-chamber color preference test, control fish showed a tendency 

to prefer the red-colored zone over the green zone (red, 139.1 ± 22.0 s; green, 78.5 ± 22.0 s; 

center, 81.9 ± 22.0 s). However, no such response was observed in the As2O3-exposed adult 

group, showing no significant preference for either green or red color (red, 74.6 ± 22.0 s; 

green, 62.2 ± 22.0 s; center: 162.6 ± 22.0 s) (Figure 4B). This lack of color preference and lost 

directional preference (Figure S12) in the adult stage may indicate an association with 

color impairment in the As2O3-exposed group. 

Figure 4. Effects of embryonic As2O3 exposure on the color preference of larval (11 dpf, A) and
adult zebrafish (B). (A) In the 11 dpf larval test, a cross maze with four different-colored cambers
was used. Reduction in color preference for blue in As2O3-exposed larvae compared to the control
group. No significant differences were observed in color preference for red and green in control or
As2O3-exposed larvae. However, MK-801-exposed larvae showed no clear color preference (B) Five-
minute video tracking of color preference in adult fish after associative learning. Adult fish were
acclimated to the three-chamber maze for 6 days with red food association before the test on the
7th day. As2O3-exposed zebrafish showed no significant preference for either green or red color
Data are presented as mean ± SEM, (∗ p ≤ 0.005). n = 30 larvae per group, n = 22 adults per group.
∗ Significance at p ≤ 0.05 between left/center/right and between two color arms for each test, n.s:
not significant.

3.5. Disturbance of Lipid and Fatty Acid Metabolites

To assess changes in biochemical information and understand both molecular structure
and molecular composition, freeze-dried samples of 6 dpf control (whole body) and 30 µM
As2O3-treated zebrafish larvae were subjected to FTIR analysis. As2O3 exposure causes
biochemical alterations in proteins, lipids, carbohydrates, and nucleic acids of larvae. The
regions of transmittance in the FTIR spectra are directly proportional to concentration of
the molecules. The FTIR spectrum of 6 dpf zebrafish larvae showed a complex of several
bands originating from functional groups belonging to lipids, proteins, nucleic acids, and
carbohydrates (Table S2 and Figure S6 in Supplementary Materials). However, a more
detailed picture of altered metabolites could be identified using a more sophisticated
LCMS-based metabolomics tool to detect a broad spectrum of affected metabolites with
high sensitivity and resolution.

One approach to detect significant similarities and differences among affected metabo-
lites in large metabolomics datasets is multivariate data analysis (MVDA) methods, in-
cluding unsupervised principal component analysis (PCA) and supervised partial least
squares-discriminant analysis (PLS-DA). In this MVDA method, the tested samples are
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clustered based on their variance by exposing them to different principal components (PCs).
The metabolites are believed to be responsible for group separation by PCA (Figure S7) and
PLS-DA loadings (Figure S8). To further identify the significant metabolites contributing
to the discrimination, a second precise and straightforward comparison was performed
between the As2O3-exposed zebrafish larval group and the control group, as shown in
the supervised orthogonal projections to latent structure discriminant analysis (OPLS-DA)
(Figure 5). OPLS-DA using the S-plot was helpful in clarifying and identifying biomarkers
in both groups.
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Figure 5. OPLS−DA score plot and loading scatter plot (A,B) of negative and positive (C,D) modes
based on the zebrafish larvae normalized data exposed to 30 µM As2O3 in comparison to control
larvae. (E) Differential expression of metabolites in As2O3-exposed larvae produced by hierarchical
clustering of the most significantly upregulated (red) and downregulated (blue) metabolites obtained
from in negative- and positive-ion modes compared to the control group based on the log2 fold
change value. (F) Metabolic set enrichment analysis of lipid metabolites in 6 dpf zebrafish showed the
biosynthesis of unsaturated fatty acids, arachidonic metabolism, and sphingolipid were dysregulated
after embryonic exposure to As2O3. Color intensity (yellow–to–orange/red) represents increasing
statistical significance, whereas circular diameter is related to pathway impact. The graph was
obtained by plotting−log of p-values from pathway enrichment analysis on the y-axis and the
pathway impact values derived from pathway topology analysis on the x-axis.
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The potential biochemical biomarkers for the long-term effects of As2O3 compared
to control larvae were further computed using a supervised OPLS-DA analysis (score
and loading plots of negative (Figure 5A,B) and positive (Figure 5C,D) mode) to correlate
the changes in metabolites in As2O3-exposed larvae with neurotoxicity and behavioral
abnormalities. The generated OPLS-DA score plot shows significant differences between
the As2O3-exposed zebrafish larvae and the control groups (Figure 5A,C). In negative
mode, four components were produced (Figure S9A,B) with acceptable goodness of fit
and predictability of the model, as evidenced by R2Y and Q2Y values of 0.997 and 0.912,
respectively. In contrast, the positive mode generated five components (Figure S9C,D),
with an R2Y value of 1 and a Q2Y value of 0.657. One hundred random permutations of
the y variables confirmed the minimal validity of the current model of y-axis intercepts
below zero, as indicated in SIMCA (Figure S11). The validity of metabolite changes was
supported by observed vs. predicted plots, with excellent correlation between all features
(y data) and metabolites (x data), as represented by regression lines with a value of 1
(Figures S10 and S11).

Of the total 150 identified features, 13 metabolites were found to be significantly altered
between the As2O3-exposed and control groups. Table S3 lists the identified metabolites and
their changes with significant p and FDR values. The generated p and FDR values are <0.01,
which is below the threshold of 0.05, indicating that the observed changes are statistically
robust. The log2 fold change in metabolite levels, presented as red pixels (for upregula-
tion) and blue pixels (for downregulation) in Table S3 (in Supplementary Materials), are
shown in the heatmap (Figure 5E). The results show that nine metabolites were significantly
downregulated in As2O3-exposed zebrafish larvae, including arachidonic acid, docosahex-
aenoic acid (DHA), palmitic acid, 9,10-epoxyoctadecenoic acid, sphinganine-1-phosphate,
L-palmitoylcarnitine, prostaglandin, cholesterol, and sulfate tetrahydrocorticosterone. In
contrast, four metabolites, namely 5,6-epoxy-8,11,14-eicosatrienoic acid, 7α-hydroxy-3-oxo-
4-cholestenoate, stearic acid, and homogentisic acid, were upregulated. Following FTIR and
LCMS-based metabolomics analyses, which showed that As2O3 primarily affected lipids,
further targeted data analysis of lipid metabolites was performed, which included pathway
enrichment analysis combined with topology analysis to identify the major metabolic path-
ways affected by As2O3 (Figure 5F). Based on KEGG metabolic pathways, As2O3 was found
to be responsible for disrupting three major metabolic pathways, namely unsaturated fatty
acid biosynthesis, arachidonic acid, and sphingolipid metabolism in zebrafish larvae.

3.6. Alterations in ASD-Associated Genes

As2O3 exposure resulted in significant overexpression of adsl (3.57 ± 0.19) and shank3a
(1.8 ± 0.31) genes and downregulation of tcs1b (0.49 ± 0.15) compared to control larvae
(adsl: 0.8585 ± 0.1949, shank3a: 0.87± ± 0.30, tsc1b: 1.106 ± 0.1466) (Figure 6). Overall, the
results of this study highlight that embryonic exposure to environmentally relevant As
concentrations in zebrafish embryos could be associated with NDD, particularly ASD. ASD-
associated genes were selected due to the widespread prevalence of ASD-like symptoms,
such as cognitive deficit, and the anticipated burden of ASD in children in Malaysia. A
proportion of 3.3% of infants in Malaysia were reported to exhibit developmental delays,
with 4.7% of children born with disabilities [52]. Besides genetics, environmental exposure
to arsenic is a potential risk factor for ASD [53], which is usually accompanied subtle effects
in childhood with potentially late onset [54].
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Figure 6. Embryonic exposure to As2O3 induced alterations in transcriptional regulation of ASD-
associated genes. As2O3 exposure resulted in significant overexpression of adsl and shank3a, whereas
tsc1b was downregulated. Data are presented as the mean ± SEM, (* p < 0.05) (n = 90 per group).

4. Discussion

This study demonstrated that embryonic exposure to As2O3 in zebrafish increased
mortality, decreased heart rate, and reduced the incidence of tail coiling in a dose-dependent
manner. Additionally, As2O3-exposed larvae showed motor behavior deficits, followed by
an impairment in color preference at 11 dpf and later in adulthood. Preliminary biochemical
evaluation by FTIR showed that 30 µM As2O3 induced changes in lipid, protein, carbohy-
drate, and nucleic acid profiles. Metabolomics analysis further revealed disruption of lipid
metabolites involving arachidonic, sphingolipid, and biosynthesis of unsaturated fatty acid
metabolism in As2O3-treated zebrafish larvae. By integrating metabolite dysregulation,
behavioral alteration, and altered regulation of ASD-associated genes, these results support
the idea that embryonic As2O3 exposure could be involved in NDD pathogenesis. Lipid
alteration associated with cognitive deficit, which have been reported in both ASD and
ADHD [55], highlights the possibility that a similar metabolism could be affected likewise
in NDD.

Exposure to concentrations equal to or greater than 30 µM As2O3 caused a signif-
icant increase in mortality and induced weak heartbeats. This result is consistent with
previous studies, which reported that zebrafish exposed to a range of As in later stages
(15–96 hpf) developed edema and scoliosis, which could lead to cardiac malformations
and mortality [56]. In contrast, 20–50 µM As2O3-exposed embryos (5–72 hpf) showed no
morphological abnormalities. However, a significant increase in embryo mortality was
observed after exposure to 40–50 µM As2O3. The increase in mortality and occurrence of
abnormalities after exposure to thousand-fold As (2 mM) began prior to gastrulation (4 hpf)
and post gastrulation (6 hpf), signifying the vulnerability of the exposure window [57,58].
This suggests that zebrafish larvae are more sensitive to toxic effects of As2O3 at younger
ages, even at micromolar concentrations, resulting in reduced survival into adulthood, also
affecting defective swimming activity [34]. As2O3 exposure also affected swim bladder
inflation and vertical swimming behavior. However, further exploration is required to iden-
tify the molecular mechanism underlying swim bladder development or inflation [59,60].
Larvae stayed less on the edge after exposure to As2O3 and buspirone, suggesting that
anxiety was reduced, although non-significantly. In contrast, larvae tended to stay on
the edge after exposure to caffeine, suggesting that anxiety was increased. This result is
consistent with previous reports that high levels of caffeine can increase anxiety [32,61] and
increase edge preference in response to visual stimuli [32].

Although no noticeable malformations were observed, micromolar As2O3 revealed its
toxic effect by reducing the incidence of tail coiling and causing a persistent reduction in
larval locomotor activity until the adult stage. This cumulative effect suggests that embryos
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treated with As2O3 from the gastrulation stage could be impaired in essential neurodevel-
opmental processes [60,61]. However, further investigation is required to identify the exact
molecular mechanism. The obtained results are comparable to those of a previous embry-
onic exposure study investigating thousand-fold NaAsO2 exposure (1 mM) (0–120 hpf),
which reduced locomotor activity in zebrafish [62]. A similar trend was observed in rats,
with locomotor decreased activity by 0.10 mg/L AsNaO2, which was associated with an
increase in oxidative stress and inhibition of AChE in the striatum [63]. Another study [64]
reported decreased myoblast proliferation and a reduced number of muscle fibers, resulting
in a long-lasting impairment of locomotor activity in fish that persisted into adulthood [65]
after exposure to 1 µM arsenite for 72 h, which is consistent with the results of the present
study. However, As2O3 exposure had no effect on anxiety responses in the present study.

Innate color preferences are vital abilities for fish to learn and make decisions [51] as
one such example of associative learning, which is critical for foraging and navigation [66].
Although larvae explored all available color choices, we observed a significant reduction
in color preference for blue in 11 dpf zebrafish after embryonic As2O3 exposure. We also
observed impairment in color preference (red > green) in adults after 3 months of embryonic
As2O3 exposure. The presence of four cone photoreceptors in the zebrafish retina enables
the detection of light with short wavelengths (ultraviolet, blue), which is required for non-
opponent processing; and medium (green) and long (red) wavelengths, which are required
for opponent processing [67]. Strong blue preference was exhibited in As2O3-exposed and
control larvae due to their preference for shorter light wavelengths [68]. The preference
for red is associated with food foraging [69], whereas yellow has been proposed as a
warning signal that allows fish to assess potential mates or locate less common resources
that contribute to avoidance behavior [70]. The yellow-zone avoidance observed in the
current study was consistent with reports in previous studies [38,68].

Learning impairment became evident in adulthood. As2O3-exposed fish showed
no directional or color preference, indicating an impairment in associative learning. In
comparison, control zebrafish spent a longer time in the right chamber and preferred red
over green color, regardless of the location of color sleeves. The rightward preference
observed in control adult zebrafish was attributed to the right eye being used to view a
novel environment [71]. The introduction of red pigment-enriched diets (brine shrimp,
pellets) throughout the rearing period caused zebrafish to learn to associate red color with
the presence of food [72]. This result demonstrates that As2O3 exposure can affect learning
or eye development, which manifests later in adulthood [73,74]. Consistent with these
results, arsenic exposure has been shown to decrease retina thickness and affect zebrafish
eye development [75]. Thus, these findings raise the possibility that arsenic could damage
retinal pigment epithelia, leading to visual disturbances and impairing the ability to detect
and evaluate surrounding stimuli needed for survival.

Preliminary FTIR analysis showed that As2O3 destructively affects functional groups,
such as proteins, lipids, carbohydrates, and nucleic acids, in zebrafish larvae. The decrease
in intensity of C=O bands of amide at 1542.77 cm−1 (control) and 1538.98 cm−1 (As2O3-
exposed) indicates a change in protein structure or protein synthesis resulting from As2O3
exposure. Protein degradation was previously reported in relation to the interaction of As
with sulfhydryl groups in protein [76,77]. This toxic interaction could trigger the formation
of free radicals, leading to oxidative damage, which could alter protein conformation,
function, and interaction with other functional proteins, as shown in rat brains after As
exposure [78]. The decrease in intensity of the asymmetric CH3 stretch band suggests a
change in lipid content upon As2O3 exposure and might be related to increased lipoly-
tic activity. Similar destructive effects of As2O3 were observed in the kidney tissue of
freshwater fish (Labeo rohita), causing biochemical changes in proteins, lipids, and nucleic
acids, resulting in functional deformations [79]. In addition, chronic As exposure has been
reported to impair lipid metabolism and consequently decrease cognitive functions [80,81].

Further supporting the FTIR findings, LCMS-based metabolomics data show that
As2O3 leads to a deficiency of essential polyunsaturated fatty acids (PUFAs) in the biosyn-
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thesis of unsaturated fatty acids, including arachidonic acid, docosahexaenoic acid (DHA),
stearic acid, and palmitic acid. PUFAs are known to play a central role in mediating cog-
nitive functions. As2O3 also showed that cyclooxygenase (COX)-associated metabolites
(arachidonic acid and prostaglandin) were significantly reduced in the As2O3-treated group.
This result is consistent with a study in mice, in which As increased cyclooxygenase-2
(COX-2) mRNA while decreasing prostaglandins, resulting in a decrease in arachidonic acid
levels [82]. An increase in COX activity triggered an increase in inflammation in the hip-
pocampus, leading to impaired spatial memory in mice [82], suggesting that embryonic As
exposure decreases arachidonic levels, which are associated with changes in prostaglandin
levels, leading to behavioral impairments. High As exposure activates microglia with a
reactive proinflammatory phenotype, as well as increases in inflammatory markers, such
as prostaglandins, which have been associated with memory impairment [83].

Furthermore, As2O3 disrupted sphingolipid metabolism by increasing sphingosine-1-
phosphate metabolite in exposed larvae, which can lead to vascular defects and pericardial
edema in zebrafish [84–86]. This is consistent with our results showing a dose-dependent
reduction in heart rate, highlighting that upregulation of sphingosine-1-phosphate in
exposed larvae plays a crucial role in their survival at later stages of growth. In addition,
DHA deficiency can disrupt neuronal development, stimulate apoptosis, and increase tissue
inflammation [87]. DHA deficiency has also been linked to impaired cognitive abilities and
abnormal emotions [88], which may affect brain function in adulthood [89], as observed in
association with persistent learning deficits in As2O3-exposed adults.

Overexpression of adsl and shank3a genes and downregulation of tcs1b genes suggest
that behavioral impairments are associated with ASD. The upregulation of the adsl gene in
As2O3-exposed larvae may indicate a lack of purine nucleotide production, a decrease in
the purine nucleotide cycle, and an accumulation of defective enzyme substrates [90]. The
accumulation of uridine and its derivatives detected in As2O3-exposed larvae also confirms
that purine nucleotides and de novo synthesis of pyrimidine were impaired, accelerating
the biosynthesis of pyrimidine nucleotides [91]. The alteration in the expression of synaptic
scaffolding protein shank3 detected in the present study is consistent with shank3 mutations
associated with NDD, such as ASD, ID, and schizophrenia, in several cohort studies [92,93]
and with manic-like hyperkinetic behavior in transgenic mice [94,95].

Downregulation of the tsc1b gene in As2O3-exposed larvae may involve overstimula-
tion of the mammalian target of rapamycin (mTORC1), leading to metabolic overactivity
and excessive cell growth, causing many of the multisystem effects of tsc [96,97]. Alter-
ations in negative regulators of mTORC1 have been associated with ASD, ADHD, cognitive
deficits, and affective disorders [98]. Consistent with this phenomenon, mice with de-
fective tsc1/2 show autistic traits, such as reduced cognitive abilities, social interaction,
and repetitive behaviors [99]. Therefore, the downregulation of the tsc1 gene detected in
As2O3-exposed larvae may be responsible for cognitive deficits observed in the current
study. Hence, this multi-model analysis was necessary for future studies and allows for
exploration of how NDD-related phenotypes may arise by confirming the refined validity
of environmental and genetic factors influencing NDD risk. Taken together, these results
provide evidence of an association between abnormal ASD-like genes, metabolite changes,
and As exposure.

5. Conclusions

Embryonic exposure of embryos to low concentrations of 30 and 40 µM As2O3 signif-
icantly decreased the number of tail-coil movements, heartbeat, and swimming activity.
Although no changes in anxiety-like responses were observed in larvae at 6 dpf, the toxic
effects of 30 µM As2O3 were delayed and manifested in later stages of growth. The long-
term embryonic effects of 30 µM As2O3 exposure were evidenced by reduced survival and
delayed hatching in early larval stages, as well as alterations in motor response and loss of
directional and color preference in adult zebrafish. Preliminary FTIR analysis combined
with the sophisticated LCMS-based metabolomics approach showed that As2O3 expo-



Toxics 2022, 10, 493 16 of 20

sure affected biochemical changes in proteins, lipids, and nucleic acids of larval zebrafish,
particularly arachidonic acid, docosahexaenoic acid, prostaglandin, and sphinganine-1-
phosphate metabolites in the post-hatching period of zebrafish. Additionally, we showed
concomitant upregulation of adsl and shank3a and downregulation of tsc1b genes. This
study shows that the integration of toxicity, behavior, metabolomics, and gene expres-
sion is a promising approach to understanding the mechanisms underlying behavioral
disorders associated with NDDs. Nevertheless, an additional multi-omics approach is
needed in future studies to obtain a holistic view linking the interaction between genotype
and behavioral phenotypes. Overall, this study provides new clues with respect to the
possible mechanism of embryonic arsenic toxicity, leading to long-term learning disorders
in zebrafish and benefiting future risk assessments of arsenic and other environmental
contaminants of concern.
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