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Abstract: Cadmium is a major health risk globally and is usually associated with pollution and
anthropogenic activity. The presence of cadmium in food is monitored to ensure that the health and
safety of consumers are maintained. Cadmium is ubiquitous in the Asian and Western diets, with the
highest levels present in grains, leafy greens, and shellfish. As part of their natural lifecycle of moult-
ing and shell renewal, all crustaceans—including the brown crab (Cancer pagurus)—bioaccumulate
cadmium from their environment in their hepatopancreas. The brown crab is an important species to
the crab-fishing industries of many European countries, including Ireland. However, the industry
has come under scrutiny in Europe due to the presence of cadmium in the brown crab meat intended
for live export to Asia. This review explores evidence regarding the effects of cadmium consumption
on human health, with a focus on the brown crab. Differences in cadmium surveillance have given
rise to issues in the crab industry, with economic consequences for multiple countries. Currently,
evidence suggests that brown crab consumption is safe for humans in moderation, but individuals
who consume diets characterised by high levels of cadmium from multiple food groups should be
mindful of their dietary choices.

Keywords: cadmium; crab; crustaceans; heavy metal toxicity; nutrition; pollution; biomagnifica-
tion; biomonitoring

1. Introduction

Cadmium is a major health risk globally and is associated with pollution and anthro-
pogenic activity. Consequently, cadmium levels in foods are monitored to ensure the health
and safety of consumers [1]. Some foods are more likely to contain cadmium than others.
These foods include rice, potatoes, leafy greens such as spinach, and various seafoods such
as crustaceans (e.g., lobster, prawns, and crab) [2,3]. Crab fishing is an important industry
around the world, including in Ireland and Northern Europe, where the brown crab (Cancer
pagurus) (Figure 1) is the main species traded. The brown crab is of considerable value to the
European economy, contributing to the income of the communities around the coastlines of
trading nations such as Ireland [4,5]. The brown crab is caught off the Irish, Atlantic, and
Mediterranean shores and occasionally found inshore in countries such as Norway using
baited traps called pots or creels, which can be set individually or in strings [6].

The crab-fishing industry in general has come under scrutiny for cadmium levels
present in the meat of frozen products and live exports to Asia [7–9]. Cadmium and other
heavy metals bioaccumulate in the hepatopancreas of crustaceans, including the brown
crab, due to this organ’s detoxifying function [10–14]. Cadmium may also be present
transiently in low concentrations in the haemolymph [15].

Strict regulations exist in some Asian countries, such as the People’s Republic of
China (PRC) and Hong Kong, where regulatory authorities require testing of cadmium
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levels of the combined white and brown meat of all crabs imported from abroad [16].
Ensuring the health of consumers is of critical importance; hence, the strict regulation of
food products. However, the methods employed to sample and monitor cadmium levels in
the crab industry generally appear to vary [17], as discussed in this review. In the European
Union, cadmium limits are prescribed for the white crab meat intended for consumption
(0.5 mg/kg) [18–20], whereas the same limits are applied to the total of the white and
brown crab meat in the PRC and Hong Kong (0.5 mg/kg) [9,17,21]. These discrepancies
have caused considerable tension between these trading nations [7]. However, cadmium
is an issue for all crab-producing nations, but not all nations have the same issues with
exports to Asian countries; therefore, it is possible that the “political climate between
trading countries” may play a role [9], with preferences evident for some countries over
others [22].
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Chronic consumption of cadmium due to a cumulative dietary intake from cadmium-
exposed foods is dangerous and carries a serious risk of toxicity [24]. Although cadmium
toxicity is extremely rare in modern times [25], monitoring cadmium levels in various foods
is nevertheless a critical safety net to maintain health.

Brown crab is mostly treated as a delicacy and, thus, is consumed in low amounts
in most countries. However, there are countries that are exceptions, including South
Korea [26], Portugal [27], and Norway [28], where regular consumption is common among
some of their populations. For the consumption of any species of crab, factors such as the
age of the crab, the part of the crab consumed, and the origin of the crab may contribute to
the ingestion of cadmium over time [29–31]. Consuming the white meat of the crab from
the appendages, claws, and legs, and avoiding the cephalothorax that contains the gonadal
tissue and hepatopancreas (known as the brown meat or tomalley), can be considered low-
risk, as cadmium is mostly concentrated in the latter tissues [27]. While the brown meat is
edible and enjoyed around the world due to its distinctive flavour, as a precaution, some
health authorities and those in the scientific domain advise against its regular consumption
from crab [9,32,33] and other crustaceans [34]. In 2009, a scientific opinion was published
followed by an information note in 2011 by the European Commission, who recommended
that member states should advise consumers about the consumption of brown crab meat
due to the higher levels of cadmium in the cephalothorax [35]. However, as discussed in
this review, a person’s diet as a whole must be taken into consideration when attempting to
determine their intake of cadmium. Thus, we consider the consumption of crab in relation
to various dietary patterns, the monitoring of cadmium in crabs, and human studies of
brown crab consumption.
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2. Brown Crab (Cancer pagurus)

The brown crab is a long-lived, benthic, carnivorous, nocturnal predator species that
resides on the seafloor, commonly found at depths of 6–100 m, but they are generally found
between 6 and 40 m, where smaller crabs can be seen closer to the intertidal zone. The male
brown crab is easily identified by its large, black-tipped claws and its “pie-crust” edged
carapace (Figure 1), while the female brown crab has a domed and rounded carapace,
which offers greater meat yield. However, the most reliable and common method used for
sex determination is to inspect the shape of their tail, where the male abdomen is relatively
narrow, while that of the females is wider [36–38]. Brown crabs largely consume molluscs
and other decapod species. They achieve a carapace width of up to 270 mm in males and
250 mm in females, although there is regional variation and there have been reports of
larger males reaching 300 mm. They are 5 years old when they reach minimum landing
size, but they can live to 25–30 years, with some living to almost 100 years old. Brown
crab can moult (the process of ecdysis) several times per year when young but less often
as they become larger in size, even up to once every 4 years [4,31,37,39,40]. This can make
it difficult to determine the age of a crab. After moulting, mating occurs generally from
July to September when the female carapace is soft. The male transfers spermatozoa to the
female, who stores the spermatozoa in a specialised organ (the spermatheca) by forming a
plug, pending internal fertilisation, which usually occurs 1–14 months post-mating. The
female spawns the fertilised eggs onto the pleopods and carries them over winter into the
hatching season from spring to summer. During this time, the (berried) females generally
remain in pits dug into the sediment or under rocks, where they mostly refrain from
movement or feeding. Notably, females can spawn and inseminate the eggs without any
need for mating up to several times, due to the presence of sperm plugs that can keep
the spermatozoa viable for up to 3 years. Hatching can occur at any time in this period
depending on numerous environmental conditions, including water temperatures and
latitude. As many as 1–4 million eggs may hatch from one female brown crab, indicating
their high fecundity. Because crabs are known to be migratory due to mating patterns, the
hatchlings may be found over a vast distance [4,37,39,41–43], although the distribution
and density of brown crabs are affected by many factors—not only fecundity or migration.
For example, water temperature and access to food are additional important factors, and
there tends to be greater population density inshore [37]. The biology of brown crabs is
important to consider in order to understand their distribution and their availability for
human consumption. The geographic distribution of brown crabs in Europe is presented
in Figure 2.
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3. The Importance of the Brown Crab Fishing Industry and the Challenge of
Cadmium: Ireland as an Example of a Crab-Trading Nation

The seafood industry is significant to the Irish economy and contributes to a vibrant
export trade with European and Asian countries, especially the PRC. The brown crab, or
“portán dearg”, is the heaviest Irish crab and is landed by most major and some minor
fishing ports in the country. The brown crab is a non-quota species and can be legally caught
by vessels operating with a polyvalent or potting license [44]. Globally, the brown crab is
a seafood species with increasing value, totalling a catch greater than 50,000 tonnes per
year [45]. Exports of crustaceans and molluscs to the PRC from Ireland in 2018 increased
by 68%, accounting for a total of 12,700 tonnes of seafood and growing the market to
almost EUR 46 million [46]. Ireland has become one of the top three producers of brown
crab products in Europe [47]. In 2018, landings of Irish brown crab reached 5500 tonnes,
representing EUR 1 million in domestic sales and EUR 60 million in exports. Additionally,
the price of Irish brown crab that year increased by 58% due to considerable demand from
the Asian market, making brown crab the third most valuable export species that year.
This increase in exports and price is of particular value to small-scale inshore fishermen in
coastal communities around Ireland [48], although it should be noted that the Irish market
was affected by the coronavirus disease 2019 (COVID-19) pandemic, with lower exports
reported in 2020. The Irish brown crab exports reached a total of 2878 tonnes in 2020,
representing a decrease of 47% compared with 2019, recording an exports value decrease of
27% for the same period [9].

Chinese food import authorities have always been concerned regarding the levels of
cadmium in all crustacean species originating from multiple countries, as they may exceed
their limits of 0.5 mg/kg [9,49,50]. Ireland is not the only nation affected, as there are
also reports of similar issues in Britain, Spain, France, Norway, Portugal, the Netherlands
(mitten crab), the United States (Dungeness crab), and even Taiwan for various crab species
exported to the PRC [8,9,49,51–53]. The main European countries exporting brown crab to
the PRC have traditionally been the United Kingdom, Ireland, and France [6]. Initially, those
countries used the basic health certificates (HCs) approved by their individual regulatory
bodies, which were relatively non-specific regarding heavy metal testing but guaranteed
that seafood was not contaminated by pollutants [9,54].

Over the past decade, the supply of brown crab from the main European exporting
countries has been rejected due to cadmium for a period one or more years, and with
high-level negotiations ongoing including delegations from the PRC visiting the exporting
countries [55–57]. In all cases, more specific testing and health certificate (HC) formats
have been agreed, which has restored some level of export of brown crab to the PRC. In
Ireland, the Sea Fisheries Protection Authority (SFPA) is responsible for the issuance of
Irish HCs and operates a monitoring plan whereby samples are collected and tested in a
state laboratory [9,58]; however, difficulties still persist, particularly around the export of
live crabs under these systems.

Questions have been raised in relation to whether the strict limits of cadmium intake in
seafood might be misguided. Indeed, in the PRC there has been public consultation to raise
the permitted level of cadmium in brown crab from 0.5 mg/kg to 3.0 mg/kg, but an update
on this consultation has not been released yet. It is undeniable that cadmium does indeed
accumulate in humans due to dietary exposure and that this does have deleterious effects
on health, as discussed later in the review. However, one must consider the entirety of
the dietary intake of cadmium from various sources before limits of cadmium in a specific
food are imposed for specific populations. Equally, the frequency of consumption of a
particular food product that is naturally high in cadmium must also be considered when
determining dietary guidance on cadmium-containing products. This concept is discussed
further in Section 5.
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4. Cadmium Accumulation and Monitoring in Crabs and Crustaceans

The Industrial Revolution over the last two centuries has led to anthropogenic-derived
pollution that ultimately has negatively affected various global biomes and ecosystems.
While cadmium is ubiquitous in the environment at very low levels, industrial and techno-
logical advancement has occurred at the expense of the environment, with an increased
release of cadmium (Cd2+) into the environment. Cadmium is an element that can accumu-
late in the food chain, with potential human and ecosystem risks [59,60]. Cadmium can
bioaccumulate in various marine organisms, but most prominently within crustaceans such
as lobsters, crabs, crayfish, and prawns. The elemental composition of crabs has mainly
been studied in crabs from the Norwegian and Scottish coasts and the English Channel [31].
See Table 1 for an overview of cadmium measurements in brown crabs. As mentioned
above, crabs and other crustaceans accumulate metals mostly via diet, with some negligible
amounts coming from their environment [61–63].

Table 1. An overview of cadmium concentrations in brown crab (Cancer pagurus) expressed as mg/kg ww.

Crab Meat Type (State) Location Estimated Cadmium Levels (mg/kg) Detection Method Reference

Mean ± SD
Spring Caught Summer Caught

White meat (raw) Portugal 0.07 ± 0.06 0.01 ± 0.01 FAAS [14]
White meat (steamed) Portugal 0.24 ± 0.38 0.10 ± 0.14
White meat (boiled) Portugal 0.05 ± 0.05 0.10 ± 0.16
Brown meat (raw) Portugal 8.4 ± 8.3 8.1 ± 14.2

Brown meat (steamed) Portugal 7.6 ± 5.2 11 ± 13
Brown meat (boiled) Portugal 5.6 ± 5.6 5.0 ± 8.2

Mean ± SD
White claw meat (raw) Northern Norway 0.024 ± 0.012 ICP-MS [30]
White claw meat (raw) Southern Norway 0.007 ± 0.005

Brown meat (raw) Northern Norway 1.15 ± 0.76
Brown meat (raw) Southern Norway 0.21 ± 0.14

White claw meat (boiled) Northern Norway 0.30 ± 0.29
White claw meat (boiled) Southern Norway 0.065 ± 0.075

Brown meat (boiled) Northern Norway 0.45 ± 0.26
Brown meat (boiled) Southern Norway 0.16 ± 0.12

Yearly median concentration range
between 2016 and 2017

Brown meat (raw) Mausund, Norway 2.11–4.37 ICP-MS [33]
Estimated mean

White meat (raw) English Channel 0.10 FAAS [13]
Brown meat (raw) English Channel 15–18
White meat (raw) Scottish coast 0.10
Brown meat (raw) Scottish coast 20–30

Mean/range
White meat (raw) Birsay, Scotland -/0.08–0.27 FAAS [64]
Brown meat (raw) Birsay, Scotland 7.30/1.12–49.4
White meat (raw) Norwegian coast 0.62/0.002–4.5 ICP-MS [33,65]
Brown meat (raw) Norwegian coast 8.7/0.24–43.0
White meat (raw) Senja, Norway 0.53/0.03–3.2 ICP-MS [33,66]
Brown meat (raw) Senja, Norway 9.3/1.6–29.0
White meat (raw) Kvaløya, Norway 0.25/0.06–0.74
Brown meat (raw) Kvaløya, Norway 30.0/7.3–58.0
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Several methods have been employed over the years to detect cadmium in biological
samples. The most effective method to date that is commonly used is inductively coupled
plasma mass spectrometry (ICP-MS), where cadmium can be detected at levels as low as
0.003 µg/L [67,68]. Indeed, most food and environment surveillance agencies use ICP-MS
or similar methods to monitor cadmium in crabs [17,69]. However, alternative methods
are available and have been used to measure cadmium in crabs, as shown in Table 1. For
example, atomic absorption spectroscopy (AAS) is another effective analytical tool used
to measure cadmium in biological materials [68]. Graphite furnace atomic absorption
spectroscopy (GFAAS) was previously a common method used for the detection of cad-
mium in foods, with a sample detection limit of 0.4 µg/L [70]. However, other methods
of cadmium detection exist that are not commonly used today for seafood analysis. For
instance, radiochemical neutron activation analysis (RNAA) is a method that has been used
to detect cadmium burden in humans, but its detection limits are not preferential [68]. Other
methods include differential pulse ASV [71] and the calorimetric dithizone method [68].

Various factors affect cadmium accumulation in crab species. In Carcinus maenas (shore
crab), factors such as ovarian maturation, moulting stage, condition (e.g., water content of
the crab), tissue hydration, sex, and size all affect cadmium bioaccumulation [62,63,72–74].
In brown crabs specifically, there is evidence that cadmium levels differ due to location
and cooking (which increases cadmium in claw meat while reducing the concentration
in the inner meat), and there is a correlation between crab size and levels of cadmium
in the hepatopancreas [30,75], which implies that cadmium accumulates as the crab ages.
However, season, moulting, and gonad maturation have limited effects on cadmium
concentrations in brown crabs [31]. Although no account has been provided regarding the
age of the crabs sampled and the correlation between age and cadmium levels, this is likely
because crustaceans are very difficult to age due to the process of moulting their exoskeleton
throughout their life and their indeterminate growth [76]. Processing conditions are also
an important consideration. Frozen crab that has been defrosted may leech cadmium
with the haemolymph, which may be lost during the cooking process. Indeed, claws
taken from frozen crab before thawing had lower cadmium levels than claws taken from
the carapace after thawing, indicating that there can be redistribution of cadmium in the
crab. This may indicate biases when assessing cadmium levels in crabs that have been
processed [30]. Studies have also linked cadmium levels to seasons, where lower levels
have been detected in the summer months [63,72], potentially due to the shorter biological
half-life of cadmium as the temperature increases during summer [63]. However, the effect
of season was inconclusive in another study [31].

The tissue hydration and water content of the crab have significant effects on the
levels of cadmium measured in the crab—particularly when considering that a lot of trade
involves live transport of crabs. This has significant implications for obtaining accurate
measurements of cadmium in crabs, as once taken from its environment the animal will
begin to lose water content. For live export, it is important that the crabs are in a suitable
environment as they are osmoconformers and, therefore, are reliant on their external
environment to maintain body fluid osmolarity [77]. The longer the crab is out of the water
before testing and consumption, the more likely the cadmium is to concentrate. However,
it should be noted that only some water loss in the interior organs can be tolerated before
the crab dies and is no longer suitable for human consumption. Indeed, feeding is also
an important consideration for export, as the hepatopancreas and the reproductive tissue
may fill the crab’s entire body or may dwindle during periods of poor feeding [78]. These
changes in biological condition can, in turn, affect the overall relative levels of cadmium
in laboratory samples during testing. Therefore, there are potentially discrepancies in
testing for cadmium, as various laboratories will have different schedules for testing and
follow different butchering, sample preparation, and testing protocols, and crab samples
may be in storage for a considerable amount of time prior to testing. This is an important
consideration for the transport of live crabs that are often traded from European countries
such as Ireland and Scotland to Asian regions such as the PRC and Hong Kong, where
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crabs may have to wait at ports to be tested [17,21]. However, it should be noted that Wiech,
Frantzen, Duinker, Rasinger, and Maage [31] did not note an association between condition
and cadmium levels.

The rates of uptake of cadmium in crustaceans appear to increase according to metal
concentration, but are also determined by various other factors, including the uptake rates
of other metals, such as zinc [79]. Indeed, it seems that even acute exposure to cadmium can
result in an increase in its accumulation [80]. This implies that even a localised increase in
cadmium levels in an area supporting the habitat of crabs could affect the levels of cadmium
in the crabs, even over a short period of time. This is particularly concerning considering
the long biological half-life of cadmium in the kidneys (10–30 years) [81]. Heavy industry
can contribute to the geospatial occurrence of cadmium in fishing grounds, particularly
around the mouths of some large European rivers [82]. Certainly, there is evidence of
geospatial cadmium accumulation in crabs, as demonstrated by the higher cadmium levels
in brown crabs in the north of Norway versus the south [31].

It is important to note that the crabs themselves may not always be unscathed by
acute exposure. A study by Zhu et al. [83] determined that cadmium exposure induced the
expression of stress-related genes and histological alterations in the gills and hepatopan-
creas of mud crabs (Scylla paramamosain). However, this was a laboratory experiment with
cadmium levels ranging from 0 to 60 mg/L. Therefore, it is important to determine how
relevant these experiments are to real-world situations. For instance, the study neglected
to include another arm to examine the length of time required for the crab tissues to heal
or return to homeostasis and to measure the internal cadmium uptake in relation to the
pathology observed; however, in any case, their findings are a cause for concern. Another
study found that 24 h of acute exposure to cadmium in Chinese mitten crabs (Eriocheir
japonica sinensis) led to transcriptomic differences in the expression of genes relating to the
immune and antioxidant defence functions of the crab [84]. These are not the only studies
to investigate cadmium toxicity in crabs, as there is concern that cadmium may affect their
reproductive capacity [85]. Likewise, a study in other crustaceans—crayfish (Procambarus
clarkii)—indicated that cadmium may alter their gut histology and the function of their
gut microbiota [86,87]. However, some species of crab may adopt mechanisms to mitigate
cadmium toxicity. One study showed that the hepatopancreas of freshwater crabs (Sinopota-
mon henanense) altered the expression of a considerable amount of miRNAs in response to
acute and subchronic cadmium exposure, which is thought to be an adaptive mechanism
to prevent oxidative stress [88].

Considering that there may be histological and transcriptomic changes specific to
cadmium exposure, there is the potential to develop rapid diagnostics to determine whether
crabs have been exposed to cadmium. Although speculative, lateral flow tests akin to
pregnancy tests in their operation could be designed for the detection of stress proteins
related to cadmium exposure using haemolymph or another biological fluid. Such a test
could be conducted on live crabs at sea, allowing for the release of the crab should an issue
be detected. Further research is required to determine whether there are unique signatures
in brown crabs that correlate with exposure to cadmium and could be leveraged to improve
the industry. An alternative approach to mitigate cadmium levels in crabs is to alter the
cooking process. One study has suggested that temperature and ultrasound could be
used to reduce cadmium levels in crabs during the cooking process [89]. Such technology
could be optimised to reduce cadmium levels in pre-packaged products such as cooked
canned crab. Indeed, developing novel testing capacities or processing steps to reduce
cadmium levels in crab products is necessary to save time and money and protect consumer
health. Another potential way to reduce the risk of capturing cadmium-laden crabs is
to carry out biomonitoring of other crabs or, indeed, other flora and fauna for cadmium
bioaccumulation or related effects. For example, one could monitor the spermatozoa of
Mytilus galloprovincialis for conformational alterations of protamine-like proteins, which
have been shown to change as a result of cadmium exposure, potentially acting as early
sentinels for the health of the environment [90]. However, this approach may be limited
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to crabs that are present close to the intertidal zone and may not be relevant to crabs that
migrate far from the habitats of Mytilus galloprovincialis.

In summary, the sampling and analysis of cadmium in crabs is important, and there
can be significant health and economic consequences if not properly conducted; hence, the
necessity for standardised sampling, butchery, and analysis of cadmium in brown crabs.
However, standardisation of protocols and even limits of cadmium in crabs is not consistent
or uniform worldwide, even between trading nations.

5. Cadmium and Human Health
5.1. Cadmium Exposure in Humans

Understanding all possible routes of human cadmium exposure is important to con-
sider when assessing one’s risk of excessive exposure. Cadmium exposure occurs through
three possible routes: dermal, gastrointestinal, or pulmonary. Inhalation of cadmium by
industrial workers or smokers is a significant exposure risk, but for the general population
of non-smokers, exposure most commonly occurs via ingestion of contaminated foods or
water [91]. Previously, it was suggested that atmospheric changes in cadmium levels due
to increased pollution may affect blood cadmium levels. However, a recent study found
that ingestion of dietary cadmium has a stronger impact on blood cadmium levels [92],
likely due to the biomagnification of cadmium in dietary sources versus occasional acute
exposure from atmospheric pollution. Therefore, it is important to consider dietary sources
of cadmium, which may contain excessive cadmium, so that people and public health au-
thorities can decide whether to mitigate excessive cadmium exposure risk by eliminating or
reducing these food sources in the diet. Notably, cadmium is found ubiquitously in nature,
and not all anthropogenic sources are the result of industrial emissions. For example, it has
been documented that metal pollution can occur due to mining, aquaculture, wastewater
treatment, crop farming, and animal breeding [93,94].

Diet is the most prevalent source of cadmium exposure in the general population,
and it is also a source that can be mitigated to reduce cadmium exposure. It is estimated
that daily dietary cadmium intake in unpolluted European areas can vary from 0.1 to
0.45 µg/kg bodyweight. However, in polluted areas, the total intake may be significantly
more than the tolerable daily cadmium intake and reach several hundred µg/day [95,
96]. This has major implications when considering the overall intake of cadmium from
various foods, which tends to govern what limits are applied to the cadmium content of
foods intended for human consumption. Lifestyle choices are certainly one of the biggest
determinants of cadmium exposure. Smoking is a significant modifiable risk factor for
cadmium exposure, as the tobacco plant accumulates cadmium from the soil into its leaves
with great efficiency [97]. The United States national geometric mean blood cadmium level
for non-smoking adults is 0.47 µg/L, whereas the mean of smokers is approximately thrice
as high at 1.58 µg/L [98]. Smoking is estimated to at least double the body burden of
cadmium exposure in one’s lifetime. Cadmium oxide (CdO) is a highly bioavailable form
of cadmium that is responsible for the high concentrations of cadmium in the blood, urine,
and tissues of smokers compared with non-smokers [99,100].

Whether there are specific foods that one should avoid, or dietary alterations required
to reduce a person’s exposure to dietary cadmium is a topic of interest. The European
Food Safety Authority (EFSA) noted that it is not the foods with the highest cadmium
levels but, rather, the foods that are consumed in larger quantities most often that have
the largest impact on dietary exposure to cadmium [1]. EFSA, using the food description
and classification system FoodEx, determined that dietary cadmium exposure in European
populations mainly originated from grains and grain-derived products (26.9%), vegetables
and vegetable products (16.0%), and starchy roots and tubers (13.2%). In more detail, the
following food categories contributed the most to dietary cadmium exposure across all
age groups: potatoes (13.2%), bread and rolls (11.7%), fine bakery goods (5.1%), chocolate
products (4.3%), leafy vegetables (3.9%), and molluscs (3.2%). However, it was noted that
crustaceans were among a group of foods that exceeded 100 µg/kg, along with algal formu-
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lations, cocoa powder, offal, some seafood, mushrooms, and water molluscs [20]. Lifetime
cadmium dietary exposure for Europeans is estimated to be approximately 2 µg/kg body-
weight/week (averaged for all age groups)—within the EFSA’s tolerable weekly intake
(TWI) of 2.5 µg/kg bodyweight/week.

In Ireland, weekly adult intake of cadmium has been estimated to be between 1.1
and 2.5 µg/kg bodyweight/week, which is between 44 and 62% of the EFSA’s TWI [101].
These findings indicate that the majority of Irish people are not exposed to excess dietary
cadmium levels. These findings are supported by the National Adult Nutrition Survey,
which examined urinary cadmium excretion in the general population They and that 95%
of participants had urinary cadmium levels below the 1 µg cadmium/g creatinine that the
EFSA has deemed safe [102]. The main cadmium-contributing foods in the Irish diet were
cereals (39%), vegetables (36%), and dairy (12%), where fish and shellfish only accounted for
approximately 1% [101], likely due to the low consumption of fish and shellfish in Ireland.

In the United States, a recent study was conducted to determine the intake and sources
of cadmium [103]. The average intake of dietary cadmium in the general population was
4.6 µg/day, or 0.54 µg/kg body weight/week—that is, approximately 22% of the tolerable
weekly intake (TWI), which is considered to be 2.5 µg/kg body weight/week. However,
certain demographics—such as elderly men, those who were well-educated and had a high
income, and those with high adiposity—had higher levels of cadmium intake [103]. The
food groups that contributed the most to the majority of the cadmium intake in the United
States were cereals and bread (34%), leafy vegetables (20%), potatoes (11%), legumes and
nuts (7%), and root vegetables (6%). Notably, the individual foods that contributed the
most to the overall cadmium intake included lettuce (14%), spaghetti (8%), bread (7%), and
potatoes (6%) (Figure 3A).
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Interestingly, but unsurprisingly, due to the many cultures that coexist in the United
States, there were ethnic and cultural differences in cadmium intake due to differences
in dietary preferences. Lettuce was a major cadmium source for Caucasian and Black
populations, whereas tortillas were the main source for Hispanics, and rice was the top
contributor to the Asian population. Notably, the trends of cadmium intake in the United
States seem to be very similar overall to those in the European Union. This is also unsur-
prising because despite there being many culinary differences in the foods and cultures of
the US and Europe, the prevailing dietary pattern in both regions is the so-called “Western
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Diet” characterised by highly processed foods [104]. Amongst the Asian populations of the
United States, smoking was the main exposure route for cadmium, followed by dietary ex-
posure [105], which increases one’s risk for many non-communicable diseases—including
cardiovascular, renal, and pulmonary diseases [104,106]. It is notable that fish and shellfish
comprise a low contribution of cadmium to the American diet, but fish consumption is
traditionally low in the United States [107].

Looking further afield, there are similarities between the so-called Western countries
and Asian countries such as the PRC and South Korea. The average total daily cadmium
intake in healthy Koreans is estimated to be 20.8 µg/day [26]. Figure 3B shows the food
groups that contribute the most cadmium to the diet in South Korea. Notably, the food
groups recorded are starkly different to the food groups associated with higher cadmium
exposure in Europe or the United States. In particular, they seem to be culturally relevant.
For example, there are much higher levels of rice (40.3%), as was noted in Asian groups from
the United States cohort [103], but also higher intake of seafood and specific foods associated
with Korean cuisine, such as kimchi and seaweed. Indeed, crab in this case was shown to
contribute 8.6% of the cumulative cadmium intake in this South Korean population.

Many parts of the PRC share similar food consumption patterns to South Korea
and, thus, similar cadmium exposure [108]. In one study [108], freshwater crab and sea-
caught crab samples obtained contained 0.101 ± 0.323 and 0.544 ± 1.203 mg/kg (mean
± standard deviation) cadmium, respectively, which were estimated to be consumed at
0.7 ± 7.3 and 0.8 ± 8.9 g/day by the general population. This contrasts with rice and wheat,
which contain 0.062 ± 0.128 and 0.021 ± 0.026 mg/kg of cadmium and are consumed at
218 ± 174.5 and 145.4 ± 168 g/day (mean ± standard deviation), respectively. These
data show that while it is true that crab contains higher concentrations of cadmium in
mg/kg weight, its consumption levels are markedly different. A further examination of the
specific food groups contributing dietary cadmium to the Chinese population is presented
in Table 2. The interesting point of this research is that for the high-exposure subpopulation
with cadmium exposure higher than the 95th percentile, rice was the largest contributor
(58.6%), followed by shellfish (13.2%), and leafy vegetables (9.2%). This is a very small sub-
fraction of the population that are exposed to such high levels of cadmium because of their
dietary choices; it would be interesting to break down the subcategory of shellfish further
to determine the impact that crab may have on the consumption of cadmium in this cohort.
The study determined that the mean dietary cadmium exposure of the general Chinese
population was 15.3 µg/kg body weight/month (30.6 µg/day for a 60 kg average body
weight of adults). A similar study in Shanghai found that the average exposure to dietary
and environmental cadmium was 167 µg/day (34% of the PTDI). Similarly, vegetables and
rice were the main sources of dietary cadmium, and tobacco accounted for 25% of the total
cadmium exposure from non-occupational sources [109]. Considering that almost 20%
of agricultural soil in the PRC is contaminated with cadmium [110], it is likely that their
dietary exposure to cadmium will only increase with their growing economy. Furthermore,
the daily exposure to dietary cadmium in the Chinese population is significantly higher
than that in either Europe or the United States.

The total diet study (TDS) is a food safety monitoring program that is conducted by
various food agencies, including the United States Food and Drug Administration (FDA),
the Food Standards of Australia and New Zealand (FSANZ), and the European Food Safety
Agency (EFSA) [111]. These are “market basket surveys” that collection of various food
samples from groceries and retailers for the quantitation of food additives, pesticide residues,
contaminants, nutrients and, of course, heavy metals [112,113]. The TDS provides a realistic
approach to gauge the relative contribution of each food group and specific item to estimate
the total intake of cadmium in the diet. Foods that were consumed in large quantities at
high frequency contributed the most to cadmium intake [111]. Currently, TDS data are
available for a limited number of countries, including Australia, the United States, France,
Spain, Sweden, Chile, Denmark, and Serbia [100]. Overall, data from TDS show that these
countries’ cadmium intake varies between 8 and 25 µg/day for the average consumer with
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staple foods (e.g., rice, wheat, and potatoes), which accounted for 40–60% of total dietary
cadmium ingestion. Shellfish, crustaceans, molluscs, offal, and spinach were considered
to be additional cadmium sources [100,111]. These types of studies are often thought to
underestimate dietary cadmium, as they fail to demonstrate an association between estimated
cadmium intake and the incidence of cancer and bone diseases [114–117].

Table 2. Data depicting the main contributors to dietary cadmium intake in (A) the general Chinese
population and (B) the highly exposed Chinese population. Data adapted with permission from [108].

General Population (A) High-Exposure Population (B) *

Food Group Percentage (%) Contribution of
Dietary Cadmium Intake Food Group Percentage (%) Contribution of

Dietary Cadmium Intake

Rice 55.8 Rice 58.6
Leafy vegetables 10.5 Leafy vegetables 9.2

Wheat flour 11.8 Wheat flour 2
Shellfish 4.8 Shellfish 13.2

Meat 2.6 Meat 2
Seaweed 2.4 Seaweed 6.4

Other vegetables 2.4 Other vegetables 1.4
Other cereals 2.1 Other cereals 0.9

Root and stalk vegetables 2.0 Root and stalk vegetables 1.7
Mushrooms 1.1 Mushrooms 1.5

Fish 1.1 Fish 1
Legumes 0.9 Legumes 0.6

Fruits 0.6 Fruits 0.4
Eggs 0.6 Eggs 0.2
Nuts 0.4 Nuts 0.4
Offal 0.4 Offal 0.2
Other 0.5 Other 0.3

* The highly exposed population was determined to be those within the 95th percentile of the mean dietary
cadmium exposure of the general Chinese population.

Overall, these epidemiological and dietary studies demonstrate that dietary cadmium
exposure is affected by many factors and that the main contributor of dietary cadmium in
all instances around the world mostly originates from staple foods such as rice, wheat, and
other grains. In Asian diets, seafood and shellfish were contributors to dietary cadmium
intake, but this is not necessarily the main source in countries that consume Western diets.
Overall, it seems that it is important to strike a balance and be cautious of foods that are
potentially significant contributors of cadmium to the diet. Indeed, moderate consumption
of shellfish should not significantly affect one’s risk of illness from cadmium ingestion, but
further research specific to crab consumption is required.

5.2. Cadmium Ingestion and Accumulation in Humans

Depending on the exact dose and nutritional composition of a food, the human
gastrointestinal tract can take up 3–5% of ingested cadmium [20,118]. Various factors
can affect cadmium uptake in humans, such as low intakes of calcium, vitamin D, zinc,
and copper [91]. One possible mechanism of high cadmium resorption is related to the
assumption that cadmium shares molecular homology with zinc and calcium; as a result,
low levels of these minerals are compensated by higher cadmium resorption [119]. This
observation was closely replicated in competitive resorption studies in rats against other
polyvalent cations such as Cr3+, Mg, Ni, Pb, and Sr [120]. Notably, a low zinc/iron status
in individuals who subsist on diets characterised by high rice intake may cause high
absorption of cadmium in contrast to other staple diets [121]. Other factors that affect
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cadmium uptake include gender, nutritional status, diet, and smoking status can also affect
the bioavailability of cadmium in humans [68].

Indeed, various human studies show that cadmium intake can be increased by dietary
fibre intake [96]. Animal experiments have shown that diets with high concentrations of
protein and lipids can also increase net intestinal uptake of cadmium and that diets high
in wheat bran may reduce cadmium intake [95]. The exact mechanisms of these effects on
cadmium intake are yet to be fully elucidated. On the other hand, cadmium can bind to
low-molecular-weight proteins rich in cysteine such as metallothionein, which may increase
its bioavailability [122]. This has been demonstrated naturally in various marine organisms
where cadmium seems to be bound to small, soluble cytoplasmic proteins, including in
oysters, mussels, scallops [122], and green crab (Carcinus maenas) [62,63,123]. In rat studies,
cadmium binds to amino acids and peptides in the intestinal tract [124], which undoubtedly
has implications for its bioavailability. What these studies suggest is that these effects may
be the result of a food matrix effect in a similar way to dairy products, where nutrients are
more or less bioavailable depending on the food’s structure and composition [125]. This
implies that the foods or ingredients that we mix with foods containing high cadmium
levels may affect the overall bioavailability of cadmium. Therefore, it may be possible to
mitigate cadmium’s bioavailability when preparing foods that may have higher levels of
cadmium by altering the food matrix. However, research is very limited in this area, and
further studies are required to confirm such associations.

Evidence from animal studies shows that marginal deficiencies in zinc, iron, and
calcium can enhance the absorption, organ accumulation, and retention of dietary cad-
mium [121]. Moreover, marginal deficiencies can enhance cadmium absorption as much
as 10-fold in diets containing low cadmium concentrations similar to those consumed
by some human populations, indicating that people who are nutritionally marginal with
respect to zinc, iron, and calcium are at higher risk of cadmium-related diseases than
those who are nutritionally adequate [126–128]. Indeed, similar studies in humans show
that an individual’s iron levels may be a metabolic factor of concern in the resorption of
cadmium. It has been demonstrated that a lack of iron leads to a 6% higher uptake of
cadmium in individuals with normal iron levels [129]. A study of iron-deficient children
in the United States found elevated blood cadmium levels [130]. This accounts for higher
cadmium absorption in individuals with a habitual iron deficit (e.g., children or menstruat-
ing women) or people with anaemia [91]. It seems that these observations are the result
of the expression of DCT-1 and MTP1—metal ion transporters in the gastrointestinal tract
that act as a gate for cadmium resorption when low iron levels occur [131,132]. Overall, the
evidence presented supports the notion that dietary components and trace element status
can affect the fractional intestinal uptake of cadmium, as reviewed by Andersen et al. [95].

These findings hint at the possibility of ensuring that individuals who may be at high
risk of exposure to cadmium have a healthy nutritional status. Those who may be deficient
in some minerals may consider dietary alterations or dietary supplements to ameliorate
mineral deficiencies.

5.3. Cadmium’s Transport, Bioavailability, and Excretion in Humans

Cadmium is well-known for its toxicity to humans, as evidenced by decades of
observational studies and research. Like many heavy metals, bioaccumulation of cadmium
in mammals can differentially affect certain tissues, including bone, the liver, muscle, and
the kidneys. Indeed, Cd2+ is dangerous in that it can substitute for Zn in enzyme structures.
Likewise, calcium and cadmium have similar ionic radii (109 pm and 114 pm, respectively),
meaning that cadmium can accumulate in the bone along with calcium [133].

Once taken up by the gastrointestinal tract and deposited into the bloodstream, cad-
mium binds to proteins such as albumin and metallothionein. From there, it is transported
to the liver, where cadmium can induce the production of metallothionein. Following the
necrosis and apoptosis of hepatocytes, cadmium–metallothionein (Cd–M) complexes form,
which are washed from sinusoidal blood. Some cadmium then enters the enterohepatic
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cycle via secretion into the biliary tract in the form of cadmium–glutathione conjugates.
Cadmium can then be enzymatically degraded to cadmium–cysteine complexes in the
biliary tree, where it can re-enter the small intestine [91,134]. Cadmium accumulates in
the renal tubular cells in the cortex of the kidneys via the transport of metallothionein. It
resides there, where it can have a half-life of 10–30 years [135]. Lifelong exposure to and
consumption of foods containing cadmium can lead to the accumulation of cadmium, and
as it is very slowly excreted from the body, it causes irreversible tubular cell necrosis in the
kidneys [91]. Unfortunately, the kidneys are the organs most susceptible to damage from
cadmium accumulation [136], although chronic and prolonged exposure to cadmium can
have devastating effects on various tissues of the human body and can even cause bone
demineralisation [137]. When cadmium arrives at the kidneys in the form of Cd–M, it is
filtered in the glomerulus and reabsorbed in the proximal convoluted tubules, where it
tends to remain [91].

Cadmium concentrations can be measured in urine, hair, blood, nail, and saliva
samples. Cadmium-induced kidney damage correlates with urinary cadmium excretion.
Indeed, proteinuria characterised by the excretion of low-molecular-weight proteins such
as retinol-binding protein or ß2-microglobulin [138] is likely to occur with a 10% response
rate when the concentration of cadmium in the cortex exceeds approximately 200 µg/g
wet weight (200 ppm) [135]. Moreover, urinary cadmium has been used as a non-invasive
detection method of the accumulation of cadmium in the kidneys, and as a marker of
tubular dysfunction in industrial workers and those who have had low environmental
exposure. This is due to the curvilinear relationship between urinary cadmium and cad-
mium accumulation in the kidneys [118,139]. This allows for the urinary cadmium value
corresponding to the critical kidney cadmium level of 200 ppm to be estimated at 10 µg/g
creatinine, which is estimated in concordance with the relationship between urinary cad-
mium and proteinuria [138,140,141]. These measurements are now well-established and,
in populations with excessive exposure to cadmium, urinary cadmium is correlated with
the renal cadmium levels or body burden. Worryingly, these levels remain elevated many
years after cessation of exposure [142].

While measuring ß2-microglobulin was previously thought to be the most reliable and
accepted method of measuring cadmium burden and levels in humans, there are several
other urinary biomarkers for the assessment of the renal effects of cadmium. A significant
debate about the utility of these various biomarkers is ongoing [111]. These markers are
outlined in Table 3 as per the publication of Satarug [111]. The associated renal biological
effects are also enclosed in Table 3. These biomarkers are currently being used to assess the
impacts of seafood and crab consumption on human health [143,144].

Table 3. Urinary biomarkers for the assessment of cadmium burden on the kidneys. Adapted from
Satarug [111].

Biomarkers Abnormal Values Interpretations and Associations

NAG >4 U/g creatinine Tubular injury, mortality
Lysozyme >4 mg/g creatinine Tubular injury

Total protein >100 mg/g creatinine Glomerular dysfunction, CKD
Albumin >30 mg/g creatinine Glomerular dysfunction, CKD

ß2MG ≥1000 µg/g creatinine Irreversible tubular dysfunction
ß2-MG ≥300 µg/g creatinine Mild tubular dysfunction, rapid GFR decline
ß2-MG ≥145 µg/g creatinine Increased hypertension risk
α1-MG ≥400 µg/g creatinine Mild tubular dysfunction
α1-MG ≥1500 µg/g creatinine Irreversible tubular dysfunction

KIM-1 ≥1.6 mg/g creatinine in men
≥2.4 mg/g creatinine in women Kidney injury, urinary KIM-1 levels correlated with blood cadmium levels

Abbreviations: NAG = N-acetyl-β-D-glucosaminidinase; ß2-MG = beta-2 microglobulin; α1-MG = α1-microglobulin;
KIM-1 = kidney injury molecule-1; CKD = chronic kidney disease; GFR = glomerular filtration rate.
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An interesting in vivo study assessed the bioavailability of cadmium from boiled crab
hepatopancreas, inorganic cadmium, or dried wild mushroom fed to mice [145]. The study
design included a control group of mice that received low levels of cadmium (<0.007 ppm)
in their feed, which did not lead to detectable levels of cadmium over a 9-week exposure
period. The authors used cadmium accumulation in the kidneys and liver as a measure of
absorption. Notably, the bioavailability of cadmium from boiled crab hepatopancreas was
lower than that of cadmium from mushroom or even inorganic cadmium. Cadmium in
the crab hepatopancreas is mainly associated with denatured proteins with low solubility,
whereas a large proportion of cadmium in dried mushroom is associated with soluble
ligands. Therefore, there was an indication that the difference in cadmium speciation
might account for the lower bioavailability of cadmium from crab than from mushroom.
However, the authors commented that the difference in bioavailability was low, and that
restricting intake was recommended if the products were high in cadmium. This may be
evidence of cadmium speciation or, indeed, a food matrix effect. A similar study in which
rats consumed a diet consisting of high crab intake (4 mg/kg organic-bound cadmium),
a low-crab diet (0.2 mg/kg organic-bound cadmium), or a casein-based cadmium diet
(4 mg/kg as cadmium chloride) for 6 months showed that cadmium intake from the high-
crab diet was only half that of the diet consisting of cadmium chloride [146]. These findings
also appear to indicate that there may be a food matrix effect at play. Other studies in
humans have shown that cadmium is more bioaccessible from fish (84%) than from shellfish
(73%) [147]. Worryingly, individuals who smoke cigarettes and have a high consumption
of seafood can experience exacerbated adverse effects of cadmium exposure [147]. This
is particularly dangerous for populations such as the PRC, where many of the people
smoke frequently. There are still many questions regarding cadmium’s bioavailability that
require further investigation, particularly regarding the food matrix effect and how it may
be leveraged to mitigate dietary cadmium intake.

Another point to note is that current health risk assessments relating to cadmium
exposure in humans rely heavily on the evaluation of the toxicity to the kidneys alone. In
2010, the Joint Food and Agriculture Organisation (FAO) and World Health Organisation
(WHO) Expert Committee on Food Additives and Contaminants (JECFA) deemed the
kidneys to be a suitable target for evaluating cadmium toxicity, as measurements of ß2-
microglobulin could be used as a surrogate biomarker for the effects of dietary cadmium
intake [148]. The JECFA established a tolerable monthly intake of 25 µg/kg/bodyweight
per month, with a urinary cadmium excretion rate of 5.24 µg/g creatinine or 0.8 µg/kg/day
as a nephrotoxicity threshold [148–150]. While the EFSA and JECFA share the same critical
ß2-microglobulin endpoint of 300 µg/g creatinine, the EFSA adopted a different cadmium
excretion rate of 1 µg/g creatinine as the nephrotoxicity threshold, along with an uncertainty
factor of 0.36 µg/kg bodyweight per day for 50 years as a benchmark dose [151]. While
these values are important references to monitor to stay within safe levels of cadmium
exposure, relying on one biomarker (ß2-microglobulin) is insufficient. In 2019, Satarug
et al. [152] showed that ß2-microglobulin excretion levels as low as 100–299 µg/g creatinine
were associated with a 4.7-fold increase in eGFR to ≤60 mL/min/1.73 m2—a measurement
consistent with chronic kidney disease. Therefore, a ß2-microglobulin endpoint of 300 µg/g
creatinine may not be a low enough threshold to detect early nephrotoxicity [149].

Considering the emerging evidence that many organ systems are affected by cadmium
exposure, other toxicity endpoints may be informative for risk assessment. As reviewed
by Satarug et al. [149], other biomarkers of chronic low-dose cadmium exposure may
contribute to risk assessments. For example, reductions in estimated glomerular filtration
rate (eGFR) and lower fecundity have been observed at cadmium excretion levels as low as
0.5 µg/g creatinine, with worsening outcomes noted in a dose-dependent manner [149].
In men, sperm cadmium levels are inversely associated with sperm motility [153,154]
and appear to be associated with other measures of sperm quality, viability, and acro-
some reactions [149]. In females, high blood cadmium levels have been associated with
infertility [155]. High urinary cadmium levels (~0.70 µg/L) have been associated with
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ovarian reserve depletion and ovarian insufficiency, with serum follicle-stimulating hor-
mone (FSH) levels ≥ 10 IU/L [156] and ≥25 IU/L [157], respectively. However, sampling
and monitoring of reproductive health is intrusive and inconvenient; therefore, surrogate
markers such as serum FSH or anti-Mullerian hormone (AMH) in females may be useful.
Blood biomarkers are preferred because of the convenience of analysing a blood sample.
Therefore, alternative approaches have been sought, including monitoring of epigenetic
factors [158]. Preliminary research indicates that cadmium exposure induces epigenetic
changes in micro ribonucleic acids (miRNAs) that may lead to the development of novel
blood-borne biomarkers [159,160]. Collectively, these findings indicate that additional
novel biomarkers of human cadmium exposure are necessary to determine one’s risk of
toxicity and disease, as opposed to the reliance on monitoring kidney function alone.

5.4. Cadmium Toxicity in Humans

Cadmium can affect important cellular functions such as cell differentiation, prolif-
eration, and apoptosis, which is of concern considering that these processes overlap with
the important processes of the generation of reactive oxygen species (ROS) and DNA
repair mechanisms [81]. Cadmium at low concentrations even has the capacity to bind
to mitochondria and can inhibit cellular oxidative phosphorylation and cellular respira-
tion [161]. Cadmium exposure results in chromosomal aberrations, DNA strand breaks,
sister chromatid exchange, and DNA–protein crosslinks. Cadmium can potentially cause
mutations and chromosomal deletions [162]. Cadmium toxicity encompasses the depletion
of reduced glutathione (GSH), binds sulfhydryl groups with proteins, and causes the en-
hanced production of ROS, resulting in oxidative stress, which may promote organ toxicity,
apoptotic cell death, and carcinogenicity [81]. Cadmium can also inhibit the capacity of
the natural antioxidant enzymes, such as catalase, manganese superoxide dismutase, and
copper/zinc-dismutase [163]. Metallothionein is also involved in these processes and can
act as a free-radical scavenger of hydroxyl and superoxide radicals [164]. Largely, the cells
that contain metallothioneins are resilient to the effects of cadmium toxicity. However,
it has been observed that cells that do not synthesise metallothioneins are sensitive to
cadmium [81].

Cadmium has also been shown to be an endocrine disruptor. Cadmium may affect
thyroid function, as demonstrated in both animal and human studies [165], where tissue
damage in the thyroid led to hyperplasia and hypertrophy [166–168]. Moreover, cadmium
has been linked with changes in hormone function [169,170], and there is suspicion that
chronic cadmium exposure may lead to thyroid cancer, but further research is required [171].
Cadmium may also act as a metalloestrogen, as it can bind to the oestrogen receptor [172],
which has led to a concern that chronic cadmium exposure may be associated with breast
cancer [173–175]. There have also been links drawn between cadmium and the inhibition
of progesterone synthesis, ovarian and reproductive tract morphological alterations, dis-
ruption to menstrual cycles, and issues with pregnancy and birth [176]. Likewise, cadmium
may mimic some of the effects of androgens and may play a role in prostate cancer [177,178]
and reduce male fertility by affecting spermatogenesis and motility [179].

The vast and various effects of cadmium exposure on the human body that have been
explored in the previous sections lead to various clinical manifestations. As such, it is
known that different forms of cadmium compounds lead to different clinical manifestations.
However, the details of this require further investigation. While cadmium poisoning is very
rare, it can happen. Itai-itai disease is the most severe form of chronic cadmium toxicity
in humans, caused by the prolonged ingestion of cadmium. Areas severely polluted by
cadmium, such as the Jinzu River Basin in Toyama, Japan, have high incidences of cadmium-
related pathologies. In that example, the river was polluted with slag from a mine upstream.
The cadmium-polluted water was subsequently used to irrigate crops and rice between
the 1910s and 1960s. The water from this river was used as potable water and for cooking,
bathing, etc. [25]. This was significant, as cadmium is a food-chain contaminant that has
high rates of soil-to-plant transference [111] and, thus, a high risk of ingestion. Itai-itai
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disease is characterised by renal tubular disorder and renal osteomalacia [180]. Even if
people did not get itai-itai disease in the Jinzu Basin, they were at serious risk of cancer [181].
Some of the main effects of cadmium on the human body are presented in Figure 4.
Patients with cadmium toxicity require significant treatment, including gastrointestinal
tract irrigation, supportive care, and chemical decontamination via traditional chelation
therapy with novel chelating agents and nanoparticle-based antidotes [81].
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6. Crab Consumption, Cadmium, and Human Health

There are limited studies that have investigated the effects of crab consumption
on cadmium ingestion and human health. A recent study examined whether regular
crab meat consumers exhibited increased levels of ß2-microglobulin or cadmium in their
urine compared to those who did not eat crab meat [143]. They determined that whole
blood cadmium levels can be both a short- and long-term marker of cadmium intake.
However, while it was expected that cadmium levels would be elevated in the crab meat
consumers, the study showed that crab meat consumers did not show increased levels
of urinary cadmium and, consistent with this, showed no changes in cadmium-induced
kidney toxicity markers. Consequently, the authors concluded that compared to consumers
who reported very little crab meat consumption, healthy middle-aged consumers who
regularly consumed brown crab meat products (an average of 447 g/week) for an average
of 16 years showed no changes in long-term cadmium exposure or kidney toxicity. A study
of French seafood consumers demonstrated that the mean dietary ingestion of cadmium
was 2.4 ± 3.3 mg/kg bodyweight/week. The authors also determined that the mean
urinary cadmium level was 0.65 ± 0.45 mg/g creatinine, and was significantly higher in
women than in men. This is particularly interesting, as sexual dimorphism was observed
in populations of Japan who suffered itai-itai disease, where women generally had a more
severe prognosis [100].

In the United States, the Long Island Study of Seafood Consumption, conducted in
New York, examined the relationship between seafood intake and blood cadmium levels in
252 people who were avid seafood consumers [182]. After the researchers adjusted for age,
BMI, sex, smoking status, and other factors, a linear regression model was employed. They
determined that there was no association with regular seafood intake (β = −0.01; p = 0.11)
but did identify an association between salmon intake in cups/week (ln transformed)
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(β = 0.20; p = 0.001) and blood cadmium levels. The study determined that only salmon
was meaningfully associated with blood cadmium levels and that seafood was most likely
not a significant source of cadmium exposure. They suggested that as the cadmium levels
in salmon are not higher than those in many other seafood species, the association with
salmon intake was likely due to higher consumption of salmon within this cohort. A
similar study—the Norwegian Fish and Game study—assessed cadmium concentrations in
spot urine and blood samples and conducted a food frequency questionnaire (FFQ) with
179 volunteers. The median urinary cadmium level was 0.16 µg/L when corrected for
creatinine, and the median (5th to 95th percentile) blood cadmium level was 0.45 µg/L.
According to the FFQ, 24% of individuals designated as high cadmium consumers and
8% of the controls (i.e., those with lower levels of cadmium in the diet) had intakes above
the TWI. Notably, there was an association between high cadmium levels and seafood
consumption, which was thought to be partially driven by crab consumption [183]. This
may be unsurprising, as both white and brown crab meat is consumed in Norway and is a
contributor of cadmium to the diets of Norwegian seafood consumers [28].

Considering these collective findings and some of the mechanisms of cadmium’s
bioavailability discussed in this review, it is likely that while it is necessary to monitor
cadmium levels in foods, these levels may not directly translate to 1:1 absorption from the
bioavailable cadmium pool. It is likely that the food matrix also plays a considerable role in
cadmium’s bioavailability. As discussed previously, the preparation of crab may also play
a significant role in the cadmium levels of crab for consumption [30]. Finally, it is likely
that the health and nutritional status of the individual consuming the product, along with
various other factors, contribute to whether a person is at risk of cadmium bioaccumulation
and associated negative health effects.

7. Conclusions

Trace cadmium is naturally present in the food chain due to its ubiquitous presence
in nature. Some food sources, including crustaceans such as the brown crab, naturally
bioaccumulate cadmium and, therefore, are thought to pose a health risk. However,
cadmium exposure from dietary sources may be mitigated by individuals and public health
authorities by limiting exposure. As discussed in this review, evidence supports the notion
that moderate consumption of brown crab is unlikely to pose a significant health risk
when one’s lifestyle and dietary choices offer little risk of excessive cadmium exposure.
In particular, evidence supports the safe consumption of white crab meat due to its low
cadmium levels and other beneficial health benefits, including its role as a source of protein
and omega-3 fatty acids. On the other hand, the brown meat containing the hepatopancreas
does have high levels of cadmium, but this is unlikely to pose a significant health threat if
the brown meat is consumed in low amounts. However, regular consumption of the brown
meat is not recommended until further dietary research deems frequent consumption
safe. Finally, as discussed, there are discrepancies and various interpretations of adequate
testing for cadmium in crab products in the industry. Furthermore, the sampling, butchery,
and analysis of brown crab would appear to vary from region to region. Differences in
legislation and interpretation of cadmium’s risks have led to rifts in the export trade of live
crabs between Europe and Asia, which have caused significant issues to trade for exporters
such as Ireland and the United Kingdom. This review also raises questions regarding how
legislation is put forward and what are the most reasonable assessments to make when
considering individual and public health risks. Collective agreement on how to determine
cadmium risk factors and the standardisation of crab monitoring are required to ensure a
safe and equitable crab market internationally.
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160. Wallace, D.R.; Taalab, Y.M.; Heinze, S.; Tariba Lovaković, B.; Pizent, A.; Renieri, E.; Tsatsakis, A.; Farooqi, A.A.; Javorac, D.;
Andjelkovic, M.; et al. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease
Development. Cells 2020, 9, 901. [CrossRef]

161. Patrick, L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 2003,
8, 106–128. [PubMed]

162. Joseph, P. Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 272–279. [CrossRef] [PubMed]
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