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Abstract: Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of
coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial
communities thriving in these habitats, leading to the development of microbial resistance traits. The
samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence
of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes
and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with
anthropogenic pollution. These anthropogenic pressures, along with the differences in species
diversity among the surveyed sites, lead to observed differences in the presence and resistance-
related sequences’ abundance (set of all metal and antibiotic resistant genes and their precursors in
pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox
regulation and oxidative stress response were prevalent. A higher number of significant correlations
were found between the abundance of resistance-related sequences and pollution, inorganic pressures
and density of nearby population centres when compared to the number of significant correlations
between taxa abundance at different phylogenetic levels and the same environmental traits. This
points towards predominance of the environmental conditions over the sequence abundance rather
than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant
or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole
or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies
which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the
taxa present in the samples.
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1. Introduction

Coastal and transitional ecosystems (estuaries and coastal lagoons) are among the most
studied systems in terms of anthropogenic-driven impacts (e.g., [1]). In the last decades,
a significant effort has been made by competent authorities to reduce the anthropogenic
footprint left on these ecosystems, with an evident reduction in the sediment metal burden
from the 1960s to the present [2]. Despite this reduction in the anthropogenic input of
classic contaminants, these are still frequently persistent in the environment, with the
added threat of newly emerging contaminants such as microplastics, pharmaceuticals
and personal care products [3]. The prevalence and consequent significant mobility of
these contaminants in the ecosystems [4] can even be detected in remote uninhabited
locations, with an unexpected presence in key trophic compartments such as the planktonic
microbial community [5,6]. Beyond the necessary environmental risk assessment (ERA)
approaches, to evaluate the possible impacts of these contaminants in the different biotic
compartments [7], it is also essential to understand how these xenobiotics interact with the
organisms and what are the molecular implications of these interactions. These biochemical
and molecular traits that suffer changes from their exposure to a certain xenobiotic or
contaminant cocktail (also known as exposome) can be used as contamination biomarkers
for impact assessment studies.

Several sets of biomarkers are known to respond efficiently to external contamina-
tion in several marine biotic compartments, such as phytoplankton [8,9], plants [10–12],
macroalgae [13], macroinvertebrates [14] and fishes [15]. As for bacteria, a new set of
biomarkers can be of added value, highlighted in recent studies that feature the great
value of this microbial, often disregarded, black box for ecological quality assessment pur-
poses [16,17]. Some authors include microbial communities into taxonomic classification
indexes, with bacterial assemblages complementing the information provided by benthic
metazoan communities as indicators of human-induced impacts [16]. On the other hand,
DNA sequencing may also offer insight into ecosystem stress via changes in relative abun-
dance or completeness of enzymatic pathways associated with chemical biodegradation or
resistance [17]. Nevertheless, it is important to bear in mind that these are not mutually
exclusive evaluations. In our point of view, changes in the community can imply changes in
the community’s metabolic traits, but metabolic changes do not necessarily imply bacterial
assemblages’ changes in taxonomic terms.

The interaction of these microorganisms with classic and emerging contaminants
induces expectable biochemical stress levels and allows the development of resistance traits.
The term resistome was proposed by D’Costa et al. [18] to encompass the set of all antibiotic
resistance genes and their precursors in pathogenic and non-pathogenic bacteria. Since
then, several studies have been conducted in soils [19], wastewater metacommunities [20]
and across metagenome libraries [21]. Nevertheless, these studies mainly focused on
antibiotic-resistance genes. However, the mechanisms of resistance/tolerance to biocides
and heavy metals may also promote resistance/tolerance to antibiotics and have recently
been included in the definition of resistome [19,22–24]. More recently, other contaminants
have been suggested to induce resistance to other xenobiotics, pointing out the importance
to include cross-tolerance mechanisms in resistome assessments. Silva et al. [25] results
indicate that the prevalence of antibiotic resistance genes is directly connected to heavy
metal contamination along a riverine gradient. In coastal and transitional systems, the
prevalence of several and diffuse anthropogenic pressures can thus lead to the development
of different resistomes, namely in terms of antibiotic resistance genes (ARGs) and heavy
metal resistance genes (HMRGs) [25]. It becomes, therefore, important to perform a wide
scale evaluation of the presence of these ARGs and HMRGs.

In this context, large scale metagenomic efforts such as the ones developed in the
MicroB3 project through the Ocean Sampling Day (OSD) initiative [26] or through the
TARA Oceans project [27] represent a unique opportunity to cover significant parts of the
marine realm and produce enormous amounts of metagenomic and metatranscriptomic
data about the Earth’s oceans. This OSD initiative allowed for employing, on a global scale,
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a standardized procedure in every single sampling point, and the effort to sequence all
the samples in a single laboratory created a genomic database of the ocean’s microbial life
that can be used to disclose several unknown aspects of this hidden majority, the ocean
microbiome [26].

In this sense, this work aimed to investigate how anthropogenic abiotic features may
affect the microbial composition and the ARGs’ and HMRGs’ profiles in different sites
sampled along the Portuguese mainland and the islands’ coastal and transitional systems
using metagenomics.

2. Materials and Methods
2.1. Sample Collection and Environmental Data

Surface water samples from 21 marine locations (Figure 1) were collected on 21 June
2014 and transported, refrigerated with ice blocks, to the laboratory. Sampling sites in-
cluded coastal beaches, estuarine areas, coastal lagoons, marinas and Atlantic islands’
coasts. Temperature and salinity data were obtained through direct measurements from in
situ water sampling. At the laboratory, all samples were processed according to the MicroB3
Ocean Sampling Day filtration protocols (https://www.microb3.eu/sites/default/files/
deliverables/MB3_D4_3_PU.pdf, accessed on August 2022). Samples were filtered with
0.22 µm pore size Sterivex filters (Merck Millipore), without prefiltration, and preserved at
−80 ◦C. Filters were then shipped in dry ice to Bremen University for sequencing, as de-
scribed below, within X days after sampling. Metadata (temperature and salinity) were ob-
tained from https://github.com/MicroB3-IS/osd-analysis/wiki/Guide-to-OSD-2014-data
(accessed on August 2022). Anthropogenic pressures (such as inorganic pressure, pollu-
tion, plume influence, shipping influence and nearby population) were derived from the
Halpern database [28] and deposited in the PANGEA database [29], available for download
at https://github.com/MicroB3-IS/osd-analysis/wiki/OSD-2014-environmental-data-
csv-documentation (accessed on August 2022). Distance to the coast was calculated for
each station using Rgdal and Rgeos packages and the coastline file available (http://www.
naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/, accessed on Au-
gust 2022) using the R-Studio Version 1.4.1717 software. Site metadata are presented in
Table 1.
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Table 1. Sampling site metadata measured in situ (salinity and temperature) and extracted from the
Halpern database [28] (a.u., arbitrary units) and number of prokaryotic sequences correctly assigned.

Site Number of
Sequences

Temperature
(◦C)

Salinity
(PSU)

Distance
to Coast
(Km)

Inorganic
Pressure
(a.u.)

Pollution
(a.u.)

Plume
Influence
(a.u.)

Shipping
Influence
(a.u.)

Nearby
Population
(a.u.)

OSD101—Quinta
do Lorde 107,432 20.50 37.00 0.47 0.46 0.40 0.51 59.13 959.381

OSD102—Marina
Funchal 67,004 20.80 36.00 0.40 1.89 0.5 0.81 20.61 4686.554

OSD103—Porto
da Cruz 73,592 20.20 37.00 1.69 0.35 0.20 0.41 38.53 1960.618

OSD107—Lisbon 44,340 20.20 30.00 0.05 13.49 0.21 7.26 1043.46 8346.504
OSD108—
Alcochete 47,730 20.10 30.00 0.36 2.86 0.21 2.32 1163.10 500.485

OSD109—Rosário 42,947 20.50 30.00 3.82 26.38 0.37 23.72 746.34 5045.171
OSD110—
Figueira da
Foz

37,659 23.00 22.50 1.13 22.23 0.52 8.36 2217.20 1444.238

OSD111—Ria de
Aveiro 89,743 25.20 30.00 0.65 16.19 1.02 6.18 8763.42 941.3195

OSD113—Cascais 112,246 20.20 30.00 0.05 23.35 1.16 8.30 3875.05 3864.33
OSD114—
Berlengas 107,131 18.50 33.57 9.22 0.00 0.50 0.00 226.06 0.00

OSD115—Santa
Cruz 88,923 20.30 40.00 0.10 2.94 0.22 2.38 1161.79 488.97

OSD116—Óbidos
Lagoon

43,828 24.70 22.50 0.74 1.11 0.09 0.86 1239.22 208.93

OSD117—Tavira
Beach 81,348 23.64 37.93 0.75 80.71 0.72 206.89 1727.71 1173.97

OSD153—Faro
Island 129,914 21.10 34.40 0.51 4.25 0.51 2.54 2168.11 360.03

OSD158—São
Miguel—II 152,437 19.20 35.70 33.87 0.00 0.34 0.00 43.57 0.00

OSD73—Lima
Estuary 116,182 18.40 32.30 0.58 14.57 1.34 6.15 13,681.47 1176.63

OSD74—Douro
Estuary 121,027 20.20 13.75 0.70 10.16 1.52 4.01 15,309.65 438.40

OSD81—Ria
Formosa 115,610 22.20 34.30 0.08 4.217 0.49 2.53 2277.45 388.36

OSD96—São
Miguel—I 61,474 18.50 35.00 32.81 0.00 0.33 0.00 42.70 0.00

OSD97—Faial 90,089 16.90 35.60 2.13 0.22 0.43 0.99 57.91 432.38
OSD98—São—
Jorge 91,817 18.70 35.60 0.86 0.07 0.30 0.74 84.24 106.86

2.2. Metagenomic Sequencing and Bioinformatic Processing

All molecular processing steps were performed by the OSD team. The DNA was ex-
tracted using the Power Water isolation kit (MoBio, Carlsbad, CA, USA) following the man-
ufacturer instructions. Amplification of the 16S rRNA gene was performed using the primer
pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′), selective for both Archaea and Bacteria [30], which
was designed as part of the Earth Microbiome Project [31]. The Illumina libraries were pre-
pared using the Ovation Rapid DR Multiplex System 1–96 (NuGEN, link to protocol: https:
//owncloud.mpi-bremen.de/index.php/s/RDB4Jo0PAayg3qx?path=/2014/protocols, ac-
cessed on August 2022). Sequencing (2 × 250 paired end) was performed with Illu-
mina technology MiSeq using V3 chemistry by the LGC genomics GmbH (Germany,
http://www.lgcgroup.com/, accessed on August 2022).

Fasta files (http://mb3is.megx.net/osd-files?path=/2014/datasets/workable, accessed
on August 2022) were provided by the OSD consortium. The raw files and pipeline process
data have been deposited at EBI (https://www.ebi.ac.uk/metagenomics/studies/MGYS0
0000462#overview, accessed on August 2022). All subsequent sequence processing was
performed with Mothur v 1.35.1 [32]. Reads were filtered to remove those shorter than
300 bp or containing ambiguities (N). Then, reads were aligned to SILVA seed release

https://owncloud.mpi-bremen.de/index.php/s/RDB4Jo0PAayg3qx?path=/2014/protocols
https://owncloud.mpi-bremen.de/index.php/s/RDB4Jo0PAayg3qx?path=/2014/protocols
http://www.lgcgroup.com/
http://mb3is.megx.net/osd-files?path=/2014/datasets/workable
https://www.ebi.ac.uk/metagenomics/studies/MGYS00000462#overview
https://www.ebi.ac.uk/metagenomics/studies/MGYS00000462#overview
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123 alignments [33], corrected manually with the Geneious software v 7.1.7 [34]: gaps at the
beginning and the end of sequences were deleted. Chimaeras were checked using Uchime
v 4.2.40 [35] as implemented in Mothur. Data were trimmed to remove chloroplast sequence
data. The datasets were pre-clustered using Mothur. After distance matrix calculation, the
sequences were clustered using the Nearest Neighbour method, and Operational Taxo-
nomic Units (OTUs) were built at 99% similarity. OTUs represented by only one sequence
(singletons) were deleted. The OTUs were finally assigned using the Wang approach [36]
and the PR2 database [37], available at https://doi.org/10.6084/m9.figshare.5913181 (ac-
cessed on August 2022), for which the Bacteria and Archaea sequences had been checked
against the most recent taxonomy. Operational Taxonomic Units presenting bootstrap
levels lower than 80% were not considered. Each OTU was linked to a reference sequence,
and an OTU was assigned when the lowest taxonomic level (“Genus” level in PR2) differed
from “unclassified”. In order to validate OTU assignment, megablast was performed
against the GenBank database [38]. Relative abundances of each OUT were determined by
dividing the number of hits of a specific OUT in a sample by the total number of hits of the
same sample. For the resistome analysis, sequence signatures and Gene Ontology terms
(GO terms) were assigned by the InterPro database [39] http://www.ebi.ac.uk/interpro/
(accessed on August 2022). The relative abundance of each InterPro protein signature was
calculated by dividing the number of hits of a specific InterPro signature in a sample by
the total number of resistance-related InterPro hits. Only resistance proteins or domains
associated to resistance characteristics were considered for representation purposes.

Heatmaps were constructed using the ggplot2 () package in R-Studio Version 1.4.1717.
Spearman correlation coefficients and statistical significance between the fatty acid traits,
index, exogenous concentration and growth trait values were computed using the cor-
rplot () package in R-Studio Version 1.4.1717. Principal Coordinates Analysis (PCoA) was
preformed using the vegan () package in R-Studio Version 1.4.1717.

3. Results
3.1. Coastal Archaea and Bacteria Taxonomic Diversity

Regarding the prokaryote kingdom diversity, all sampling stations showed a preva-
lence of Bacteria over Archaea. Bacteria comprised more than 99% of the prokaryote OTUs
of the samples. As for Archaea, the OSD98 sampling station was the site with a higher Ar-
chaea relative abundance (0.64%), while the OSD114 station showed the lowest abundance
(0.11%) of OTUs from this kingdom.

Due to the complete dominance of Bacteria over Archaea, the abundance of Bacteria
phyla was analysed (Figure 2A). Proteobacteria were the prevalent phylum in all samples,
ranging from 80.2% in the sampling site OSD116 (Óbidos Lagoon) to 40.2% in OSD114
(Berlengas), having an average relative abundance over the whole set of sampling sites
of 66.1% of all the bacteria phyla detected. The Cyanobacteria were the second most
abundant phylum detected in the evaluated surface water samples. In fact, in the site
with the lowest prevalence of Proteobacteria (40.2% in OSD114—Berlengas), Cyanobacteria
prevailed. Nevertheless, very low Cyanobacteria relative abundances were also generally
detected, with minimum values detected in OSD111 (0.27%) and presenting an average
relative abundance across the surveyed samples of 7.9%. The phylum Bacteroidetes also
presented relatively high abundances in the collected water samples, with values ranging
from 20.3% (OSD73—Lima Estuary) to 2.16% (OSD96—São Miguel I) and an average
relative abundance value of 10.5%. The fourth most abundant phylum assessed in the
sample dataset was the Actinobacteria. This phylum presented a maximum abundance of
33.4% (OSD96—São Miguel I) and a minimum relative abundance value of 0.49% (OSD114—
Berlengas) in the evaluated dataset, with an average relative abundance of 4.07%. The
relative abundance of OTUs to which it was impossible to assign a specific phylum was
always very low (Unassigned, 6.8 to 10.5%, average value = 8.14%). This interchange
between phyla in the surveyed samples is evident in Figure 3A. Cyanobacteria’s and
Bacteroidetes’ relative abundance presented a significant inverse correlation with almost

https://doi.org/10.6084/m9.figshare.5913181
http://www.ebi.ac.uk/interpro/
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all the phyla relative abundances. Actinobacteria showed highly dynamic trends, with
significant direct correlations between their relative abundance and the abundances of the
phyla Aquificae, Nitrospirae, Planctomycetes and Spirochaetes. On the other hand, inverse
and significant correlations were found between Actinobacteria’s relative abundance and
the prevalence of Bacteroidetes, Fusobacteria, Proteobacteria and Tenericutes.
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Due to the prevalence of Proteobacteria in the surveyed samples, the genus com-
position of the OTUs detected from this phylum was also analysed in further detail in
terms of relative abundance (Figure 2B). At this taxonomic level, a more homogenous
taxa distribution was observed compared to the phylum relative abundance across the
evaluated samples (Figure 3A). The most abundant genus across the surveyed samples was
Candidatus Pelagibacter, ranging from 78.6% to 2.84%, with an average relative abundance
value across all samples of 48.9%. This relative genus abundance showed a strong inverse
correlation (Figure 3B) with almost all the other assessed Proteobacteria genera (except with
the Candidatus Puniceispirillum, Erythrobacter and Vibrio genera). Proteobacteria from the
genus Candidatus Puniceispirillum also showed a relatively high prevalence in some samples
(OSD101—Quinta do Lorde, OSD117—Tavira Beach, OSD153—Faro Island, OSD158—São
Miguel—II), representing 14–17% of the Proteobacteria abundance. Nevertheless, this
genus was also relatively abundant in the remaining samples, with an average relative
abundance of 7.7% (maximum = 17.5%, minimum = 0.57%). Similarly to what was found
for Candidatus Pelagibacter, an inverse correlation with the majority of the surveyed Pro-
teobacteria genera was observed (Figure 3B). Besides the prevalence of these genera, some
punctual, high relative abundances of specific genus at specific samples were also evident.
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The Vibrio genus was particularly abundant in the samples collected at Lisbon (OSD107)
and Óbidos Lagoon (OSD116). Except for Alcanivorax, Alteromonas and Sphingopyxis, the
Vibrio genera showed significant inverse correlations with the majority of the surveyed
Proteobacteria genera (Figure 4B). Although at a lower extent, the Luminiphilus genera also
showed high relative abundances in the samples collected at Santa Cruz (OSD115) and Faro
Island (OSD153). Faial site samples showed a high prevalence of Proteobacteria from the
Burkholderia and Methylococcus genera. The samples collected at Figueira da Foz (OSD110)
showed a high abundance in Alteromonas genus Proteobacteria.
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Regarding the relationship between the Bacteria phyla’s and Proteobacteria genera’s
relative abundance and the abiotic factors of the sampling sites, some significant corre-
lations could be found both at the phylum (Figure 4A) and the genus (Figure 4B) levels.
Salinity was the most influencing factor, presenting significant inverse correlations with the
relative abundance of each phylum. Proteobacteria’s and Bacteroidetes’ relative abundance
was higher in the samples collected near the coast (Figure 4A). This last phylum also
showed itself to be positively correlated with the shipping influence. Cyanobacteria’s and
Proteobacteria’s relative abundance were found to have an inverse correlation with the
site water temperature. Considering the dominance of Proteobacteria over the remain-
ing phyla, the relative abundance of the genus from this phylum was also compared to
the site’s abiotic conditions (Figure 4B). Ruegeria, Oceanicola Octadecabacter, Rhodobacter,
Sagittula, Loktanella, Roseobacter, Dinoroseobacter, Oceanibulbus, Celeribacter and Phaeobacter
genera relative abundances showed significant positive correlations with site pollution
and shipping influence (wherewith this last also had a strong positive correlation with the
genus Shewanella). The Roseovarius, Pseudomonas, Burkholderia, Marinobacter, Methylococ-
cus and Labrenzia genera showed a significant positive correlation with the site distance
to the coast, while the Labrenzia genus’ (Proteobacteria) relative abundance showed the
inverse trend. Analyzing the sites’ Proteobacteria genera abundance and correspondent
environmental features (Figure S1), it is possible to observe that the majority of the samples
(sites) are located in the lower half of the PCoA biplot, aligned with the majority of the
anthropogenic vectors.

3.2. InterPro Resistome Signatures

Sequence protein signatures and Gene Ontology terms (GO terms) were assigned
by InterPro. This approach allowed for identifying the resistance-associated sequences
detected. Considering the resistome, acriflavin resistance protein (IPR00103), the bleomycin
resistance protein (IPR029068) and the tetracycline resistance protein TetA/multidrug resis-
tance protein MdtG (IPR001958) (Figure 5) were the most abundant signatures throughout
all the surveyed samples. The antibiotic resistance GO terms related InterPro sequences
ranged from 23.5 to 35.6% of all the resistome sequences detected in all samples. This high
abundance is associated with sequences that present GO terms associated to membrane
and vesicle transport (20.3 to 41.2% relative abundance) and nucleic acid regulation (11.4
to 16.1% relative abundance) (Figure 6A,B). Despite these ontologies not being directly
associated with resistance (membrane and vesicle transport (e.g., Para-hydroxybenzoic acid
efflux pump subunit AaeB/fusaric acid resistance protein, IPR006726) or to nucleic acid
regulation (MerR-type HTH domain, IPR000551)), several of the genes analysed present
functions that may confer resistance to xenobiotics, including antibiotics. Although with a
lower relative abundance, comparative to the sequences related to antibiotic resistance, the
InterPro sequences group related with the metal ion’s binding and transport (ranging from
6.3 to 8.0% relative abundance, Figure 6A,B) was also highlighted. Among these, the bile
acid sodium symporter/arsenical resistance protein Acr3 (IPR002657), the integral mem-
brane protein TerC (IPR005496) and the heavy metal-associated domain HMA (IPR006121)
were the most abundant across the surveyed samples. Some sampling site groups were
evident when observing the full InterPro resistance-related sequences as a meta-resistance
profile (Figure 5). The first clear separation occurs within the samples collected at the
Tagus Estuary. The three resistomes gathered from this transitional system compose a
distinct branch, wherein there was also a clear separation of the most pristine site Alcochete
(OSD108), located in the Tagus Natural Reserve, from the Rosário (OSD109) and Lisbon
(OSD107) sites, near large industrial and urbanized areas, respectively. A second group
can be identified by gathering all the samples collected in the Azores archipelago and
the resistome of the samples collected in the Berlengas Biosphere reserve (OSD114). The
samples of northern and urbanized estuarine systems appear to be grouped according to
similarities between their resistomes (OSD110 and OSD74). Another exciting aspect is the
grouping resultant from the resistomes gathered in two recreational shipyard sites (OSD102



Toxics 2022, 10, 613 9 of 18

and OSD113), even though they are highly distant (Portugal mainland and Madeira Is-
land, respectively). Finally, a set of samples collected in the vicinity of sandy beaches was
also grouped.
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These differences between resistome profiles are directly related to the previously
observed taxonomic composition of the metacommunities and the environmental traits
of each sampling site (Figure 7). All the sequences that were assigned through InterPro
to resistance features that presented any significant relationship with salinity showed an
inverse trend with this abiotic feature, indicating its prevalence in marine environments.
Heavy-metal resistance protein (IPR025961) was positively correlated with pollution and in-
organic pressures, as well as with the density of nearby population centres and, as expected,



Toxics 2022, 10, 613 10 of 18

was inversely correlated with the distance to the coast. The A-factor biosynthesis hotdog
(IPR005509; GO:0046677 response to antibiotic) and heavy metal-associated (IPR006122)
domains’ sequences appear highly abundant in the sites with higher plume and inorganic
pressure influence. Mercuric transport protein periplasmic component/copper chaperone
CopZ (IPR001802), HTH ArsR-type DNA-binding domain (IPR001845), Alkylmercury lyase
(IPR004927), Aminoglycoside 6-adenylyltransferase (IPR007530), Transcription regulator
YbiH, C-terminal (IPR015292) and Beta-lactamase, class-A active site (IPR023650) sequences’
relative abundance presented a direct and significant correlation with the increasing nearby
population density. Multiple antibiotic resistance (MarC)-related (IPR002771), Tetracycline
regulation of excision, RteC (IPR018534), Ribosomal RNA adenine methylase transferase
and conserved site (IPR020596) sequences, as well as the abovementioned heavy-metal
resistance protein (IPR025961) sequence, have their abundance directly and significantly
correlated with site pollution. The sites with higher shipping and vessel movement also
presented significantly and directly proportional higher relative abundance of the resistance-
related sequences, namely, the multiple antibiotic resistance (MarC)-related (IPR002771),
FemABX peptidyl transferase (IPR003447), bacterial TniB (IPR008868), transcription reg-
ulator QacR, C-terminal (IPR013571) and the Tetracycline regulation of excision, RteC
(IPR018534). Several significant correlations were also found between the relative abun-
dance of OTUs from the Proteobacteria phylum genus and the relative abundance of
resistance related InterPro sequences (Figure 6B). The genus Sphingopyxis showed the high-
est number of significant correlations with these sequences (18), of which 56% are related
to antibiotic resistance and metal ion binding and transport. The relative abundance of
these sequences was found to be positively correlated with the abundance of the genus
Sphingopyxis. The abundance of the genus Erythrobacter also showed strong correlations
with resistance-related sequences, gathering 58% of the correlated sequences related to
antibiotic resistance and metal ion binding and transport. Vibrio OTUs’ abundance also
showed many significant correlations with resistome-related InterPro sequences (8), with
55% of these being related to antibiotic resistance and metal ion binding and transport.
The remaining directly correlated sequences were related to resistance processes linked
to protein, nucleic acid, phosphorylation and vesicle regulation and transport. If we
analyse in further detail the sequences with a higher number of significant direct correla-
tions with Proteobacteria genus OTUs, the Multiple antibiotic resistance (MarC)-related
(IPR002771) shows a strong correlation with 12 Proteobacteria genus OTUs (Celeribac-
ter, Dinoroseobacter, Labrenzia, Loktanella, Oceanibulbus, Oceanicola, Octadecabacter,
Phaeobacter, Rhodobacter, Roseobacter, Ruegeria and Sagittula). This was followed by
Alkylmercury lyase, a helix-turn-helix domain (IPR024259) sequence relative abundance,
which appeared to be significantly and directly correlated with Burkholderia, Loktanella,
Marinobacter, Maritimibacter, Methylococcus, Oceanibulbus, Oceanicola, Octadecabacter,
Pseudomonas and Roseovarius relative abundances.
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4. Discussion

Portugal’s mainland and archipelagos (Madeira and Azores) comprise a wide array of
coastal and transitional ecosystems in the northeast Atlantic region, varying in typology
and degree of human pressure, being, therefore, a natural laboratory to study the ocean
microbiome along with a vast array of conditions [26]. It is critical to underpin how
these environmental and anthropogenic gradients can shape the microbial communities
thriving on these habitats. Microorganisms possess intrinsic genetic traits that allow
them to adapt to their abiotic environment by acquiring resistance/tolerance traits [40].
Nevertheless, resistance/tolerance mechanisms sharing the same genetic factors may
lead to multidrug resistance/tolerance as well as to co-selection events [41]. Previous
works have highlighted that activating metal protective stress responses, such as Cu
and Zn, can also trigger and/or protect antibiotics resistance, even without contact with
the antimicrobial compounds [22,41,42]. In this context, the degree of human pressure
along the Portuguese coast and islands varies significantly with coastal and transitional
sites in the vicinity of large metropolitan and industrial areas, oceanic islands and sandy
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beaches, presenting very different degrees of contamination from anthropogenic sources
(e.g., Concepcion et al., 2021).

In taxonomic terms, the samples collected on the Portuguese northeast Atlantic coast
waters show an unequivocal prevalence of Bacteria over Archaea, a common feature in
marine water samples [43]. This is not unexpected, since these coastal environments are
well oxygenated (especially when considering the surface layer), ranging between meso
and oligo characteristics (in terms of nutrients, temperature, pH and salinity characteristics)
and, thus, lack extreme conditions for the proliferation of extremophile Archaea over
Bacteria [43]. Therefore, the present study focused on the abundance of Bacteria. Results
show that Portuguese coastal water samples showed a high prevalence of Proteobacteria,
Cyanobacteria, Bacteroidetes and Actinobacteria, a very similar profile to those found in
other coastal habitats [44]. Proteobacteria and Cyanobacteria were dominant in samples
collected across all oceanic provinces during the Tara Oceans expedition [45]. Moreover,
our results show an alternation of dominance between Cyanobacteria and Bacteroidetes.
In previous works, Bacteroidetes was already the second most abundant group in several
sampling sites [46]. Some authors attribute this to different sequencing techniques and the
different primers used for amplicon generation, resulting in biased diversity metrics for
bacterial communities [47]. Nevertheless, in the present work, all samples were sequenced
in the same laboratory, recurring to standardized protocols and uniform primer usage [26],
indicating that factors other than primer sets contributed to the observed differences in
bacterial phyla abundances.

In terms of the Proteobacteria genus, and despite slight fluctuations in the surveyed
samples, Candidatus Pelagibacter, Candidatus Puniceispirillum and Vibrio were prevalent in
the analysed samples. Candidatus Pelagibacter was the most abundant genus detected in
the whole set of analysed water samples. Bacteria of the SAR11 clade, to which Candidatus
Pelagibacter belongs, are found throughout the world’s oceans and are the prevailing aerobic
heterotrophs in marine surface waters [48]. The members of the SAR116 clade, such as
Candidatus Puniceispirillum, are also known to be highly abundant in marine samples [49].
This supports the high abundance of these Proteobacteria in the water samples from the
Portuguese coast. The Vibrio genus showed significant inverse correlations with most of
the surveyed Proteobacteria genus, particularly abundant in Lisbon (OSD107) and Óbidos
Lagoon (OSD116). This genus is known to respond to both temperature and anthropogenic
pollution [50]. Although Óbidos Lagoon (OSD116) is not considered heavily disturbed
from a human pressure point of view, the nutrient runoff from agricultural fields nearby
and its semi-enclosed regime lead to low water renovation rates and increased water
temperature [51], thus contributing to the increase in abundance of this genus [50]. As for
the Lisbon (OSD107) sampling site, it is located in the vicinity of a densely urbanized area,
with all the anthropogenic impacts associated with this [52], also generating the conditions
for Vibrio proliferation in surface waters [50].

The taxonomical differences among the surveyed sites also lead to changes in the
presence and abundance of resistance-related sequences. At this level, the environmental
conditions seem to directly and indirectly influence the marine samples’ resistome. If, on
one hand, the presence and prevalence of resistance-related genes are known to be stimu-
lated by the contact of the microorganisms with contaminants [25,41], the modulation of the
microorganisms’ abundance by these abiotic features will also contribute to the availability
of genomes to carry these resistome-related sequences. For example, the presence of heavy
metals in the seawater environment can lead to the activation of metal-protective stress
responses, which can confer resistance to antibiotics even without contact with the antimi-
crobial compounds [22,42]. Contact with heavy metals can trigger a higher abundance of
sequences coding efflux pumps, providing the organisms ways to excrete these toxic com-
pounds, but also conferring resistance/tolerance to other substances such as antibiotics [22],
a mechanism known as cross-resistance [41,53]. Other studies also point towards a similar
outcome but with different mechanisms. Silva et al. (2021) showed that a metal-imposed
selection of antibiotic-resistant bacteria can also occur. In this work, the exposure to copper
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increased cefotaxime- and tetracycline-resistant bacteria, while zinc exposure increased
the abundance of cefotaxime- and kanamycin-resistant bacteria. These authors suggest a
selection of resistant taxa rather than developing cross-resistance genes under contaminant
pressure. Whatever the mechanism (or combination of mechanisms) that occurs in marine
water bodies under significant anthropogenic pressure, this will unequivocally shape the
resistome profile of the bacterial community. This led to the prevalence of resistance-related
sequences assigned to gene ontology terms classified into antibiotic resistance, membrane
and vesicle transport, nucleic acid regulation and redox regulation and oxidative stress
response. A higher number of significant correlations was found between the abundance
of resistance-related sequences and the evaluated environmental traits (namely pollution,
inorganic pressures and density of nearby population centres) when compared to the
number of significant correlations detected between the OTU abundance (either phylum or
genus based) and the same environmental conditions, indicating an overall effect of the
environmental conditions over the sequence abundance rather than the taxa abundance.
These resistome profiles shaped the grouping of the sampling sites. As mentioned above,
the first clear separation groups’ sampling sites are located at the Tagus estuary, which
are separated into two groups composed of anthropogenically impacted (2) and more
pristine areas (1). This separation is not due to differential resistome-related sequences’
presence/absence between sites but to different relative abundances. The Lisboa and
Rosário sites (more anthropogenically impacted sites) present coherently higher values
of antibiotic and metal resistance-related sequences as well as of several other resistome
sequences. This is in line with several previous works where it has been shown that these
two areas have higher impacts than the Alcochete area, located within the Tagus Natural
Reserve [1,13]. This is also in agreement with the previously observed relationship be-
tween, e.g., the heavy-metal resistance protein (IPR025961) and site pollution and inorganic
pressure and the density of nearby population centres. Water samples collected at the
Rosário sampling site (Tagus estuary, OSD109) and Ria de Aveiro coastal lagoon (OSD111)
evidence the higher metal ion binding and transport-related sequences. The individual
evaluation shows that, in fact, these two sites share a high prevalence of metal ion binding
and transport-related sequences, consistent with the known metal contamination degrees
at these sites [1]. Nevertheless, in terms of resistome profile, the location effect prevails
over the effect disturbance. Thus, samples collected at the Rosário location appear coupled
to the remaining samples collected at the Tagus estuary and are not close to those collected
at Ria de Aveiro (a transitional system located ca. 300 km north of the Tagus estuary).
Another interesting aspect to consider is the grouping of the samples collected at shipyards
and marinas (OSD113—Cascais and OSD102—Marina Funchal). Although the samples
collected at these 2 sites have a different number of resistance-related sequences detected,
with 80 sequences at OSD113—Cascais and 46 sequences at OSD102—Marina Funchal,
the latter site shares its resistance profile completely with OSD113—Cascais, with all the
resistance sequences detected in OSD102 being present in OSD113. In fact, and considering
the sites located at Madeira Island, the resistome determined for the samples collected
at OSD102—Marina Funchal (a marina located in Madeira’s capital Funchal) does not
share any resistance-related sequence with OSD103—Porto da Cruz, a site located in the
north coast of Madeira and considered to have a low anthropogenic impact. Previous
studies have shown the impact of vessels and cruise ships as sources of a wide variety
of contaminants such as biocides, pharmaceuticals and heavy metals from ship hulls and
discharges [5,54]. The release of these contaminants in such a small semi-enclosed system,
such as marinas and shipyards with low water renovation cycles, is one of the main factors
shaping the resistome profiles of these sites. Another interesting feature worth noticing is
the cluster of the Azorean islands into a single large group with the Berlenga Island site
(Biosphere Reserve). Among all the sampled sites, these are probably the less impacted sites
(Azorean and Berlenga islands), and, in fact, they show comparatively lower abundances of
resistance-related sequences’ relative abundances. The Douro and Mondego estuarine sites
(located at the end of the estuarine system and in the vicinity of large metropolitan and
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industrial areas) were also grouped. Although these sites may share some characteristics
with, for example, the Tagus estuary’s Lisbon site, this separation indicates their intrinsic
and similar characteristics overlap the potential effect of similar anthropogenic pressures.
Finally, a significant group is also formed by the samples collected at sandy beaches with
low anthropogenic impact, where two subgroups were evident: one formed by the samples
collected at OSD153 (Faro Island) and OSD115 (Santa Cruz) sites, both directly facing
the Atlantic open ocean, and a second group formed by the samples collected at OSD117
(Tavira Beach) and OSD116 (Óbidos Lagoon), both collected at beaches within coastal
lagoon systems with riverine inputs. Once again, there seems to be a system typology
effect, due to their intrinsic characteristics, that, in systems with low disturbance levels,
overlap the anthropogenic factors.

Although the carrier organisms of the resistance-related sequences can be diverse,
some of the correlations observed indicate some potential and plausible organisms as
sources of these sequences. One of the Proteobacteria genera that showed a higher abun-
dance of positive correlations with the abundance of resistome sequences was Sphingopyxis.
The organisms belonging to this genus are versatile, widely known for their role in environ-
ment nutrient cycling, biotechnological practices, intake and metabolism of pesticides and
other toxic compounds [55]. The organisms from this genus are also known for developing
a multidrug resistance tripartite system to increase their survival chances against spe-
cific antimicrobial components in the environment [56]. Additionally, the core genome of
species from this genus also presented annotated genes for copper homeostasis, ammonia
metabolism, folate and zinc transport, suggesting other possible resistance mechanisms [55].
Erythrobacter genus members are also good potential candidates as sources of the resistance-
related sequences. Erythrobacter’s large pan-genome size indicates that it can acquire foreign
genes, which contribute to a more flexible genome and possibly to environmental adapta-
tion [57]. These are probably the two genera whose members most likely contribute, albeit
not exclusively, to the shaping of the resistome of the different sampling sites.

On the other hand, sequences such as the multiple antibiotic resistance (MarC)-related
(IPR002771) sequence were highly ubiquitous in the surveyed samples, being correlated
with 12 different proteobacteria genera OTUs as well as highly correlated with the pollution
and shipping influence of the sites. It is fair to assume that this sequence is not only typical
to several genera, but it can also respond to anthropogenic pressure. These characteristics’
ubiquity and relationship with the environment’s anthropogenic pressure make it a candi-
date for a suitable pressure resistome biomarker. Another highly cosmopolitan sequence in
terms of carrier genus is the well-known alkylmercury lyase sequence, also known as the
merB gene, which encodes an enzyme that degrades the highly toxic methyl-Hg form into
lesser toxic ones. A recent study shows that mercury resistance genes are widely distributed
in the marine realm [58]. Nevertheless, it is also known that its abundance responds to
pollution gradients [59] and, therefore, considering its ubiquity, this resistome sequence
can also provide a good candidate biomarker. Overall, despite the identification of these
specific sequences, our data suggest that the whole resistome profile can provide more
relevant or integrative answers in terms of anthropogenic disturbance of the environment,
either as a whole or grouped in gene ontology groups.

5. Conclusions

This is a pioneer effort, providing a first picture of the Portuguese transitional and
marine realm resistome and evidencing that it is mainly composed of sequences that en-
code antibiotic and metal resistance traits. Results show the prevalence of Bacteria over
Archaea, particularly of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria,
and several taxa (e.g., Vibrio genus) were significantly correlated with anthropogenic pol-
lution. From the risk assessment and ecological points of view, these sequences seem to
have an excellent relationship with the anthropogenic disturbance of the collection sites,
providing good marker candidates for future biomonitoring purposes instead of taxonomic
based approaches. Nevertheless, it is essential to bear in mind that the abundance of resis-
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tance/tolerance genes in such environments may be attributed to several non-exclusive
factors, including (i) co-selection events in response to concentrations of heavy metals,
(ii) impacts of human activities, (iii) increase in horizontal gene transfer and co-resistance
events by biofilm formation, and other abiotic factors. Another important finding from our
data is the need for an efficient sampling program, since site characteristics can overlap
the effect of the anthropogenic disturbance when comparing sites with low human-driven
impacts. The performance of similar studies with higher sampling replication with addi-
tional collection and isolation of bacteria could not only provide more evident insights
into the resistome geographical profiles but also allow us to attribute certain antibiotic
and metal resistance traits to specific isolates, identifying the key bacterial players for the
coastal resistomes.
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