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Abstract: Heavy metal pollution can adversely impact marine life, such as crabs, which can accumu-
late it in different organs and potentially transfer and biomagnify along the food chain in aquatic
ecosystems. This study aimed to examine the concentrations of heavy metals (Cd, Cu, Pb, and Zn)
in sediment, water, and crab tissues (gills, hepatopancreas, and carapace) of the blue swimmer crab
Portunus pelagicus in the coastal areas of Kuwait, northwestern Arabian Gulf. Samples were collected
from Shuwaikh Port, Shuaiba Port, and Al-Khiran areas. The accumulation of metals in crabs were
higher in the carapace > gill > digestive gland, and the highest metal concentration was found in
crabs collected from Shuwaikh > Shuaiba > Al-Khiran. The metal concentrations in the sediments
were in the order Zn > Cu > Pb > Cd. Zn was the highest metal concentration detected in marine
water sampled from the Al-Khiran Area, whereas the lowest metal was Cd sampled in water from the
Shuwaikh Area. The results of this study validate the marine crab P. pelagicus as a relevant sentinel
and prospective bioindicator for evaluating heavy metal pollution in marine ecosystems.

Keywords: Portunus pelagicus; sentinel; seawater; sediments; heavy metals; bioaccumulation; Kuwait

1. Introduction

Portunus pelagicus (Linnaeus, 1758), commonly known as the blue swimmer crab or
sand crab, is a species of economic importance in many parts of the world [1]. Thus,
this species is an important component of small-scale coastal fisheries worldwide [2–4].
For example, P. pelagicus is in demand in the markets of distinct Asian countries such as
Thailand, Malaysia, and China [5].

P. pelagicus has a key role in the marine ecosystem because it is not only a predator, but
also a scavenger and a cannibal [6]. Bivalves, crustaceans, gastropods, fish, and ophiuroids
are the dominant components of its diet, but these animals are able to ingest any food
item depending on the availability [7,8]. This species appears to be a common member
of the rich intertidal fauna of Kuwait that dominates the sublittoral zone of the coastal
area as a fast-swimming predator [9–11]. In parallel, it is considered a commercial seafood
product by both locals and expatriates. Blue swimmer crab total landing in Kuwait has not
been documented; however, since Kuwait shares the same region as other Arabian Gulf
countries, the total landings were 3248 tons in Bahrain and 4472 tons in Saudi Arabia [8,12].
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2. Portunus pelagicus: Description, Phylogeny, Distribution and Habitat, Life Cycle,
and Physiological Capacities
2.1. Description of Portunus pelagicus

First described by Carl Linnaeus in 1758 as Cancer pelagicus, this species was later
transferred to Portunus (Weber, 1795) and included in Portunidae [13]. As implicit from
its name, the blue swimmer crab is a distinguished swimmer, basically because of the
modification of its last pair of walking legs. It has five pairs of walking legs (Figure 1).
The first pair was altered into a long, skinny cheliped with a combination of the merus,
carpus, manus, and dactylus, and three sharp spines on the inner margins of the merus.
The second, third, and fourth walking legs are slender and lengthened. The fifth pair is oval,
paddle-shaped at the end, and rotates easily to help swimming in all directions [14]. This
modification of the legs to facilitate swimming can be observed in other genera, including
Portunidae, such as Callinectes, Liocarcinus, Scylla, and Thalamita.
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Figure 1. Schematic drawings of a generalized Portunus pelagicus illustrating morphology. (Lai
et al. [14] modified).

The carapaces are greenish-brown in color, with irregular, pale mottling and dark
brown edges. Chelipeds are purplish and mottled, and their fingers are blue. The carapace
is broad in breadth with transverse granulate lines. The breadth–length ratio is 2/13. The
front edge has four acutely triangular teeth, with nine teeth on each anterolateral margin
(including acute lateral orbital angle teeth). The last pair of teeth is 2–4 times larger than
the preceding teeth. Chelipeds are long, massive, spinous, and ridged. The inner margin of
the merus (cheliped) has three spines.

This species displays sexual dimorphism. Females are better camouflaged in a uniform
dull green-brown carapace with red-tipped chelipeds. Males acquire a dark blue-green
carapace with purple-blue, red-tipped chelipeds. The abdomen shape also differs between
sexes (Figure 1). The abdomens of males are narrow, pointed, and rostrally. Females are
characterized by broad triangle-shaped abdomens for carrying eggs during breeding [15].

2.2. Phylogeny

Four complete mitogenome sequence records of this species, KT382858.1, KR153996.1,
NC_026209.1, and KM977882.1, are available in GenBank. The mitogenome of P. pelagicus
contains the same set of genes and one control region as the other metazoans (Figure 2). P.
pelagicus is logically included in the Portunoidea [13] superfamily.
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More precisely, mitochondrial DNA (mtDNA) was used to determine the phylogenetic
relationship between distinct species of the genus Portunus. Phylogenetic analyses mined
using 16S sequences showed that the genus Portunus was divided into three lineages (clades
A, B, and C; Figure 3) [17]. Clade (A) shared a common basal lineage with Arenaeus and
Callinectes in the analysis, whereas clades B and C were derived from an independent
common lineage.
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The type species of P. pelagicus, Portunus trituberculatus (Miers, 1876), and P. sayi
(Gibbes, 1850) were clustered together.

A more recent phylogenetic study (using mitochondrial COI) revealed that P. pelagicus
is in fact a species complex. Genetic data separated “P. pelagicus” into four sister species:
P. armatus (A. Milne-Edwards, 1861), P. pelagicus, P. reticulatus (Herbst, 1799), and P. segnis
(Forskål, 1775) (Figure 4). According to [14], P. pelagicus sensu stricto is extensive across
Southeast and East Asia and is sympatric with P. armatus in northern Australia. P. armatus
is observed around most of Australia and east of New Caledonia. P. reticulatus exists in the
eastern Indian Ocean, and it is confirmed that the Bay of Bengal is a zone of hybridization
for P. pelagicus and P. reticulatus [14]. P. segnis seems to be enclosed in the western Indian
Ocean from Pakistan to South Africa and is a Lessepsian migrant into the Mediterranean
from the Red Sea [14].
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2.3. Distribution and Habitat

The distribution of P. pelagicus, one of the important representatives of decapod
crustaceans, covers a wide area from the southern Mediterranean Sea, the east coast
of Africa across the Indian Ocean to Japan, and the western Pacific Ocean in nearshore
marine embayments and estuarine systems [18–20]. It is a species commonly found on
the Arabian Gulf coasts [10]. The blue swimmer crab also occurs in the Mediterranean
Sea as a Lessepsian species along the coast of Egypt, Lebanon, Turkey, Syria, Cyprus, and
the southeastern coast of Sicily [21]. It migrated to the Mediterranean through the Suez
Canal. The first sample was documented in 1898 in the Levantine Basin. Its Mediterranean
migration mainly traced the Anatolian coasts and continued westwards [22]. For example,
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the first finding of P. pelagicus along the Tunisian coastline (Gulf of Gabes, southeastern
Tunisia) was in October 2014 by local fishermen [23].

In general, P. pelagicus lives in a wide range of inshore and continental shelf habitats,
including sandy, muddy, or algal and seagrass habitats, from the intertidal zone to at least
50 m depth [24,25].

2.4. Life Cycle

Zoeal stages vary between four and eight among the family of Portuninae [26–28].
Portunus pelagicus has four zoeal stages and one megalopal stage (Figure 5). The first and
second zoeal stages take 3–4 days each, the third and fourth stages take 2–3 days each, and
the megalopa takes 3–4 days. The megalopa metamorphoses directly into the first crab
instar. The time span of larval development is reported to be 14–17 days. The first crab
instar emerges between 15 and 18 days [29]. Males are able to reach sexual maturity by
their 12th molt, whereas females reach sexual maturity at their 14th molt [30].
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2.5. Physiological Capacities

Blue swimmer crab juveniles emigrate in mass numbers preceding seasonal salinity
reductions in estuaries [18]. According to [31], salinity outside of 20–35 ppt can significantly
reduce the survival, development, and growth of early juvenile sand crabs. Mortality is
higher for juveniles cultured at salinities ≤15 psu and at 45 psu. At a salinity of 5 psu,
complete mortality occurred on day 20 [31]. The osmoregulatory ability of aquatic animals
is resolved by calculating the hemolymph osmolality under different salinity conditions [32]
and comparing it with the medium osmolality. P. pelagicus hemolymph displayed a positive
linear relationship with the osmolality of the medium [31].

Critical thermal maxima (CTmax) and minima (CTmin) were determined for P. pelag-
icus acclimated at 15, 20, 24, 25, 28, 30, 32, and 35 ◦C [33,34]. The CTmax ranged from
38.17 ◦C to 44.38 ◦C, while the CTmin ranged from 12.28 ◦C to 19.30 ◦C [33,34], and both
increased directly with temperature [34]. The high critical thermal maximum indicates the
potential of this species to adapt to a wide range of temperatures and justifies its considera-
tion as an invasive alien species. Heat tolerance plays an important role in the successful
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invasion of aquatic invertebrates [35,36]. The acclimation response ratio ranged from 0.25 to
0.51 [34] and from 0.05 to 0.28 [33]. The juvenile and larval stages of P. pelagicus are reported
to be vulnerable at temperatures below approximately 17 ◦C [37]. Some authors [38] have
described fluctuations in hemolymph serotonin levels upon thermal stress in P. pelagicus.

Low- and high-temperature treatments limit the locomotion of crabs [39]. Changes
in temperature significantly influence the mobility of crabs in their natural habitats. An
increase in water temperature from 36 ◦C to 20 ◦C can lead to a difference of 29 movements
per 30 min for the blue swimmer crab [34]. No significant differences were observed in the
amount of food consumed by male and female P. pelagicus within the temperature range
16.5–26 ◦C [40].

3. Portunus pelagicus as a Sentinel Species (Quantitative Bioindicator)

A sentinel organism has to fulfill some basic criteria that mainly include ease of
sampling, a temporal and spatial abundance of the organism, and the range in which
biological responses can be detected [41]. Crustacean species are usually considered
sentinels for the estimation of toxicological impacts [42–44], mainly due to their high
ecological plasticity, ability to alter their physiological and biochemical functions to survive
in the presence of pollutants, and their wide distribution [45,46]. In addition, crustaceans
that live near the bottom of water bodies have restricted mobility and are therefore powerful
indicators of ecological conditions [47]. Decapod crustaceans have been suggested as
potentially useful environmental indicators for coastal marine environments [48,49]. A
variety of indicator types were identified as relevant for application to decapod crustaceans,
such as molecular biomarker synthesis [50–52], bioaccumulation of toxicants [53,54], sex
ratio [55], abundance [56,57], biomass [56,58], morphometrics [59,60], and prevalence of
disease [61,62]. To assess the concentrations of chemical pollutants and the current status of
marine ecosystems, different species of portunids can be used as sentinel organisms [63–67].

P. pelagicus also has the potential to be utilized as a sentinel of pollution in coastal
ecosystems [68] given the assessed bioaccumulative ability of trace metals and organic
compounds [10,18,69–71] and being a scavenger organism that feeds on a wide range of
materials, including debris and other bottom-dwelling animals [72,73]. Crabs have the
capacity to metabolize chemical pollutants adsorbed on surface sediment particles [74].
The hepatopancreas is one of the most important organs that plays important roles in metal
detoxification [75–77].

The concentrations of heavy metals accumulated in different organs of P. pelagicus from
the southeast coast of India exhibited the following order of concentrations in different
organs: Cu > Mn > Cd > Ni > Pb > Co > Hg = Cr = U in gills, Cu > Mn > Cd > Ni >
Pb = Co > Hg > Cr = U in hepatopancreas, and Cu > Cr > Ni > Mn > Cd > Pb > Co
> Hg > U in muscle [78]. The order of trace metal uptake is gills > hepatopancreas >
muscle [78]. In fact, heavy metals accumulate first in the gills, and excessive uptake
of heavy metals into the hemolymph leads to their successive distribution in the crab’s
internal organs [79]. In general, the bioaccumulation of heavy metals in tissues and organs
may damage normal physiological processes in animals [80]. Sugumar [81] detected
hyperglycemic hormone in the hemolymph of P. pelagicus exposed to heavy metals and
an elevation in carbohydrate metabolite levels. Copper exposure induces an increase in
oxygen consumption and heart rate in P. pelagicus [82]. Environmental pollution by heavy
metals (AS, Cd, Hg, and Pb) negatively affected the condition of the blue swimmer crab
population structure, the growth rate, and the morphometry of the carapace size [83]. These
studies later reported damage to the organs of crabs exposed to heavy metals based on
the degree of maturity of the gonads. Heavy metals in polluted environments are also
responsible for oxidative and metabolic stress in crabs [84]. Heavy metal bioaccumulation
leads to a high synthesis of antioxidants and metabolic enzymes in crabs [84]. For example,
Superoxide Dismutase and Catalase are considered the primary defenses against oxidative
stress and are essential for fighting superoxide anion radicals during tissue damage [85].
With increasing concentrations of heavy metals in crabs, the activities of digestive enzymes
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decreased [86]. Metal accumulation in marine animal tissues is affected by sex, size,
seasonal changes, and the molting cycle [87].

P. pelagicus has a high bioaccumulation capacity similar to other marine species recog-
nized as bioindicators. Bivalves are commonly used to assess the levels of heavy metals
in marine ecosystems [88–90]. According to Nour [85], Tridacna squamosa (Lamarck, 1819)
has the highest accumulation ability for Pb, Ni, and Zn; Chama pacifica (Broderip, 1835)
has the highest accumulation capability for Cd and Co; and Periglypta reticulata (Linnaeus,
1758) has the highest concentration ability for Cu. Mytilus galloprovincialis (Lamarck, 1819)
and Tapes decussatus (Linnaeus, 1758) are also described as important bioaccumulators of
essential and nonessential metals, and their responses depend on variations in the physic-
ochemical parameters of water (e.g., temperature, salinity, and dissolved oxygen) [91].
Furthermore, it has been reported that the concentrations of Al, Cr, and Pb in the tissues of
M. galloprovincialis were higher than those of the same elements in the tissues of T. decussa-
tus [91]. However, the levels of Cd, Cu, Mn, Ni, and Zn in the tissues of T. decussatus were
higher compared to their counterparts in the tissues of M. galloprovincialis [91]. Oysters
are also known to accumulate high concentrations of Cu and Zn in their tissues [92,93].
For example, high Cu (12,000 mg/g d.w) and Zn (17,000 mg/g d.w) levels were observed
in Crassostrea hongkongensis (Lam & B. Morton, 2003) collected from estuaries in southern
China enriched in industrial effluent releases [90]. The study showed that the shells of
bivalves accumulated particularly high metal levels [94]. Fish are also highly sensitive to
heavy metal pollution, making them suitable bioindicators for aquatic ecosystem moni-
toring because they readily metabolize, detoxify, and accumulate heavy metals within the
body [95].

Beg et al. [96] confirmed that tilapia fish fingerlings Oreochromis spilurus (Günther,
1894) exhibited sensitivity to marine sediment elutriate suspensions in seawater, where
their survival was reduced, and selected it as a suitable bioindicator for metal (Cd, Cr,
Cu, Ni, Pb, Va, Zn) pollution in marine sediments. Other fish species, such as yellowfin
seabream (Acanthopagrus latus (Houttuyn, 1782)) and tonguesole (Cynoglossus arel (Bloch
and Schneider, 1801)), are bioindicators of metal pollution in marine sediments, which
demonstrate oxidative impacts in tissues [97].

4. Case of Kuwait Bay (Northwestern Arabian Gulf) and Metal Pollution

The differences in the pattern of metal occurrence in various organs of P. pelagicus and
the significant increase of Cu and Zn concentrations are presumably associated with the
1991 Gulf War oil spill that affected Kuwait’s marine environment [98]. This illustrates
the ability of decapods to accumulate metals to detectable levels [98]. Male blue crabs
pelagicus [98–100] are burrowing decapod crustaceans that occur abundantly in sandy and
sandy-muddy sediments in shallow waters. This study aimed to examine Cd, Cu, Pb, and
Zn field concentrations in the sediment, water, and selected tissues (gills, hepatopancreas,
and carapace) of P. pelagicus in the coastal areas of Shuwaikh Port, Shuaiba Port, and
Al-Khiran, Kuwait.

Samples (crabs, sediment, and water) were collected from three geographic locations in
Kuwait: Shuwaikh Port, Shuaiba Port, and Al-Khiran (Figure 6). P. pelagicus specimens were
collected at about 1 m (i.e., the average depth of crab burrow), using an acid-prewashed
hand shovel and plastic bags packed in acid-prewashed plastic bags, preserved, and
transported to the laboratory for analysis [98]. The samples were washed with double-
distilled deionized water to remove debris. Crabs were stored in a freezer at −20 ◦C before
trace metal analysis. Water samples from the three locations were collected in plastic bottles,
preserved by adding a few drops of concentrated nitric acid, and stored in a freezer for
metal analysis. All equipment, glassware, and plastic containers were prewashed, soaked
in Aristar-grade diluted nitric acid (10% v/v), and rinsed completely in double-distilled
and deionized water before use to avoid pollution [98].
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Crabs were dissected for their tissues (carapace, hepatopancreas, and gills) and dried
in an oven to a constant weight at 650 ◦C for at least 72 h according to [98]. The samples
were then ground in a porcelain mortar (particle size 250 µm), and an amount of 0.5 g of
collective dried tissue samples was triplicated and digested in 20 mL concentrated nitric
acid for 24 h. Afterward, the digested samples were blended with 10 mL of concentrated
nitric and perchloric acid (4:1) and heated on a hot plate at 1200 ◦C until evaporation
of the acid mixture and dryness. Residues were made up to 20 mL solution by adding
20 mL solution of Milli-Q® water with 20% nitric acid and filtering with Whatman© filter
paper. Heavy metal concentrations in organs were analyzed by Inductively Plasma Optical
Emission Spectrometry (ICP-OES®, Perkin Elmer, Waltham, MA, USA). The sediments
were oven-dried at 600 ◦C to a constant weight for at least 48 h [26]. The dried sediments
consisted of fine particles, and the mud was ground into a powdery form using a ball
grinder. Analyses were performed on the <63 µm fraction of the sediments, which were
separated by sieving. One gram of homogenized sediment was digested with acid in
triplicates, similar to the procedure used for tissue samples. Water samples were filtered
with a 0.45-µm filter paper (Millipore Corporation, Burlington, MA, USA). An amount of
5 mL of water samples were digested in 10 mL of Aristar nitric acid, made up to 50 mL
with deionized water [98]. The Quality assurance and quality control (QA/QC) of the
analytical methods of metal detection in the crabs, sediments, and seawater were examined
with oyster tissue (SRM 1566a), Peruvian sediment (SRM-4355), and seawater (QC 3163)
certified reference materials to test for the analytical ability of Cd, Cu, Pb, and Zn [98]. The
results of the QA/QC are displayed in Table 1.



Toxics 2023, 11, 426 9 of 19

Table 1. Validated and measured standards of heavy metal concentrations in certified
reference material.

Cadmium (Cd) µg/g Copper (Cu) µg/g Lead (Pb) µg/g Zinc (Zn) µg/g

Water
Measured 8.94 ± 0.12 Measured 22.2 ± 0.96 Measured 0.51 ± 1.42 Measured 70.02 ± 0.38
Certified 9.49 ± 0.15 Certified 22.7 ± 2.39 Certified 0.53 ± 0.29 Certified 60.81 ± 4.59

% Recovery 96.8 % Recovery 112 % Recovery 109 % Recovery 108

Sediment
Measured 7.15 ± 1.87 Measured 107 ± 2.64 Measured 169 ± 3.91 Measured 911 ± 61.67
Certified 5.63 ± 0.89 Certified 112 ± 20.41 Certified 192 ± 22.18 Certified 873 ± 179

% Recovery 127 % Recovery 90.7 % Recovery 94 % Recovery 101

Crab
Measured 111 ± 22.9 Measured 176 ± 44.59 Measured 208 ± 29.6 Measured 49.22 ± 16.8
Certified 112 ±1.96 Certified 186 ± 3.93 Certified 198 ± 2.17 Certified 53.04 ± 1.98

% Recovery 106 % Recovery 96.9 % Recovery 107 % Recovery 92.8

One-way ANOVA and paired comparisons using post hoc Tukey’s test were conducted
on the metal concentration between the three studied areas and between different crab
tissues. Pearson’s correlation coefficient was tested to resolve the relationship between total
metal concentrations in the crab tissues, sediments, and seawater using Xl-stat 2019 v. 21.2
software [101]. The data recorded in this study were submitted to a normalized Principal
Component Analysis (PCA) [102].

4.1. Metal Concentrations in Crab Tissues

The mean concentrations of metals in the crab tissues from the Shuwaikh, Shuaiba,
and Al-Khiran areas were turned out in the following order: Cu > Zn > Pb > Cd. Metal
accumulation in crabs was higher in the carapace > gill > hepatopancreas. The highest
metal accumulation was in crabs collected from Shuwaikh > Shuaiba > Al-Khiran. The
results of metal concentrations in crab tissues varied according to the sampling stations
(Table 2).

Table 2. Heavy metal (mean ± SD) amounts in carapace, gills, hepatopancreas, and total crabs
recorded in Shuwaikh, Shuaiba, and Al-Khiran study areas.

Heavy Metal Cu Zn

Study Area Shuwaikh Shuaiba Al-Khiran F (d.f) p Value Shuwaikh Shuaiba Al-Khiran F (d.f) p Value

Carapace 80.5 ± 1.49 aA 25.2 ± 1.22 bA 16.9 ± 0.29 cA 2836.55 (8) <0.0001 *** 25.9 ± 0.27 aAB 8.92 ± 0.31 bA 6.87 ± 0.19 cA 4787.89 (8) <0.0001 ***
Gills 79.1 ± 2.99 aA 53.8 ± 5.01 bB 24.9 ± 1.01 cB 188.81 (8) <0.0001 *** 29.1 ± 3.96 aB 14.2 ± 1.39 bB 6.82 ± 0.58 cA 64.59 (8) <0.0001 ***

Hepatopancreas 68.6 ± 1.23 aB 22.6 ± 0.18 bA 14.9 ± 0.21 cA 4774.43 (8) <0.0001 *** 18.9 ± 0.69 aA 6.92 ± 0.21 bA 4.74 ± 0.21 cB 927.11 (8) <0.0001 ***
Total Crab 228.20 ± 5.71 aC 101.60 ± 6.41 bC 56.70 ± 1.51 cC 936.97 (8) <0.0001 *** 73.9 ± 4.92 aC 30.04 ± 1.91 bC 18.43 ± 0.98 cC 267.33 (8) <0.0001 ***

F (d.f) 1540.0 (11) 238.68 (11) 1315.63 (11) 185.46 (11) 230.12 (11) 337.48 (11)
p values <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***

Heavy Metal Pb Cd

Study area Shuwaikh Shuaiba Al-Khiran F (d.f) p value Shuwaikh Shuaiba Al-Khiran F (d.f) p value

Carapace 2.39 ± 0.11 aA 1.27 ± 0.19 bA 3.76 ± 0.21 cA 151.65 (8) <0.0001 *** 0.39 ± 0.01 aA 0.24 ± 0.03 bA 0.19 ± 0.02 bA 69.64 (8) <0.0001 ***
Gills 3.29 ± 0.29 aA 1.59 ± 0.21 bA 1.06 ± 0.02 cB 94.99 (8) <0.0001 *** 0.28 ± 0.02 aB 0.16 ± 0.01 bA 0.19 ± 0.02 bA 39.00 (8) 0.000 ***

Hepatopancreas 4.69 ± 0.29 aB 1.60 ± 0.12 bA 1.76 ± 0.21 aC 191.01 (8) <0.0001 *** 0.43 ± 0.02 aA 0.16 ± 0.02 bA 0.20 ± 0.02 bA 159.25 (8) <0.0001 ***
Total Crab 10.37 ± 0.69 aC 4.46 ± 0.52 bB 6.58 ± 0.44 cD 85.82 (8) <0.0001 *** 1.10 ± 0.05 aC 0.56 ± 0.06 bB 0.58 ± 0.06 bB 86.97 (8) <0.0001 ***

F (d.f) 234.81 (11) 73.44 (11) 260.23 (11) 488.71 (11) 87.04 (11) 93.50 (11)
p values <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 *** <0.0001 ***

F-value: between-groups mean square/within-groups mean square. d.f: degree of freedom. a, b, c, per row
denote significant differences between study areas as tested with one-way ANOVA and paired comparisons using
Tukey’s test (p < 0.05). A, B, C, D per column denote significant differences between samples of crabs as tested
with one-way ANOVA and paired comparisons using Tukey’s test (*** p < 0.01).

Cadmium (Cd) mean concentrations ± standard deviation (mean ± SD) were highest
in the hepatopancreas> carapace > gills in the Shuwaikh Area, respectively (Table 2). Cd
mean concentrations ± standard deviation were highest in the carapace > hepatopan-
creas> gills in Shuaiba Area, respectively. Cd (mean ± SD) concentrations ± standard
deviation were highest in the hepatopancreas> carapace = gills in Al-Khiran Area, respec-
tively (Table 2). Moreover, the ANOVA test showed that the Cd concentration differed
significantly between the three studied areas (p < 0.001) (Table 2).
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Copper (Cu) mean ± SD concentrations ± standard deviation were significantly higher
in the carapace and gills than those in the hepatopancreas in the Shuwaikh Area (p < 0.001)
(Table 2). Cu concentrations ± standard deviation were highest in the gills > carapace >
hepatopancreas in the Shauiba Area, respectively (p < 0.001) (Table 2). Cu concentrations ±
standard deviation were highest in the gills > hepatopancreas> carapace in Al-Khiran Area,
respectively (p < 0.001) (Table 2). Cu concentration in different tissues differed significantly
between the three studied areas (p < 0.001).

Lead (Pb) concentrations ± standard deviation were highest in the hepatopancreas>
gills > carapace in the Shuwaikh Area, respectively (Table 2). Pb concentrations ± standard
deviation were highest in the hepatopancreas the > gills > carapace in the Shuaiba Area,
respectively (Table 2). Pb concentrations ± standard deviation were highest in the carapace
> hepatopancreas > gills in the Al-Khiran Area, respectively (Table 2). Pb concentration in
different tissues differed significantly between the three studied areas (p < 0.001).

Zinc (Zn) concentrations ± standard deviation were highest in the gills > carapace
> hepatopancreas in the Shuwaikh Area, respectively (Table 2). Zn concentrations ±
standard deviation were highest in the gills > carapace > hepatopancreas in the Shuaiba
Area, respectively (Table 2). Zn concentrations ± standard deviation were highest in the
carapace > gills > hepatopancreas in the Al-the Khairan Area (Table 2). Zn concentration in
different tissues differed significantly between the three studied areas (p < 0.001).

Generally, the highest metal concentration determined was Cu (80.5 ± 1.49 µg/g)
in P. pelagicus carapace sampled from the Shuwaikh Area. In opposition, the lowest
metal concentration detected was Cd (0.16 ± 0.01 µg/g) in crab gills in the Shuaiba Area.
Nonetheless, the concentration of Cd in the Shuaiba and Al-Khiran areas in hepatopancreas
(0.16 ± 0.02 µg/g) was not significantly different (Tukey, p > 0.05) from that of gills in the
same area (Table 2).

The Pearson’s Correlation coefficient linking the total heavy metals (Cd, Cu, Pb, and
Zn) concentrations in the crab, sediment, and water measured in the Shuwaikh, Shuaiba,
and Al-Khiran areas were significantly correlated (p < 0.05) (Table 3). Total metal in the
tissue of crab from the three studied areas was positively correlated with metal in water
(p < 0.001).

Table 3. Pearson’s Correlation Coefficient (R) between total heavy metal concentrations in the crab
tissue, sediment (Sed), and water (wat) measured in the Shuwaikh (Shkh), Shuaiba (Shu), and
Al-Khiran (Kh) areas.

Variables Wat-Shkh Sed-Shkh Tissue-Shkh Wat-Shu Sed-Shu Tissue-Shu Wat-Kh Sed-Kh Tissue-Kh

wat-Shkh 1
Sed-Shkh 0.248 1

Tissue-Shkh 0.913 *** 0.313 1
wat-shu 0.981 *** 0.318 0.971 *** 1
Sed-Shu 0.349 0.612 * 0.186 0.331 1

Tissue-shu 0.919 *** 0.286 0.999 *** 0.972 *** 0.171 1
wat-Kh 0.578 * 0.925 *** 0.622 * 0.641 * 0.628 * 0.604 * 1
Sed-Kh 0.441 0.949 *** 0.392 0.461 0.722 ** 0.368 0.933 *** 1

Tissu-Kh 0.938 *** 0.303 0.998 *** 0.983 *** 0.207 0.997 *** 0.618 * 0.403 1

* p < 0.05; ** p < 0.01, *** p < 0.001.

4.2. Metal Concentrations in Sediments

Heavy metal concentrations (Cd, Cu, Pb, and Zn) in sediments from Shuwaikh,
Shuaiba, and Al-Khiran appear in the order; Zn > Cu > Pb > Cd (Table 4). Cd concentra-
tions ± standard deviation were highest in Al-Khiran > Shauiba > Shuwaikh, respectively
(Table 4). Cu concentrations ± standard deviation were highest in Al-Khiran > Shuwaikh >
Shauiba, respectively. Pb concentrations ± standard deviation were highest in Al-Khiran >
Shauiba > Shuwaikh, respectively. Zn concentrations ± standard deviation were highest in
Al-Khiran > Shuwaikh > Shauiba, respectively (Table 4). The highest metal concentration
detected in marine sediment was Zn (49.29 ± 1.69 µg/g) sampled from the Al-Khiran
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Area. However, the lowest metal concentration determined was Cd (2.63 ± 0.04 µg/g) in
sediments from the Shuwaikh Area.

Table 4. Heavy metal (Cd, Cu, Pb, and Zn) accumulations in the sediments and water from Shuwaikh,
Shuaiba, and Al-Khiran. (Mean value (µg/g) ± SD).

Compartiment Sediment Water

Study Area Shuwaikh Shuaiba Al-Khiran F(d.f) p Values Shuwaikh Shuaiba Al-Khiran F(d.f) p Values

Cd 2.63 ± 0.04 a 3.29 ± 0.25 b 6.72 ± 0.12 c 552.77 (8) <0.0001 *** 2.63 ± 0.04 a 3.29 ± 0.25 a 6.72 ± 0.12 a 0.87 (8) 0.467
Cu 15.95 ± 0.84 a 15.23 ± 0.27 a 33.12 ± 0.44 949.56 (8) <0.0001 *** 1.95 ± 0.84 a 15.23 ± 0.27 a 33.12 ± 0.44 a 1.93 (8) 0.226
Pb 11.42 ± 0.43 19.42 ± 1.79 30.23 ± 1.27 160.34 (8) <0.0001 *** 11.42 ± 0.43 a 19.42 ± 1.79 b 30.23 ± 1.27 a 14.69 (8) 0.005 **
Zn 33.12 ± 0.79 ab 22.02 ± 16.14 a 49.29 ± 1.69 b 6.41 (8) 0.032 * 33.12 ± 0.79 a 22.02 ± 16.14 a 49.29 ± 1.69 a 126.68 (8) <0.0001 ***

F-value: between-groups mean square/within-groups mean square. d.f: degree of freedom. a, b, c, per row denote
significant differences between study area for each heavy metal as tested with one-way ANOVA and paired
comparisons using Tukey’s test (* p < 0.05; ** p < 0.01, *** p < 0.001).

4.3. Metal Concentrations in Seawater

Cd concentrations ± standard deviation were highest in the waters sampled from
Al-Khiran > Shauiba > Shuwaikh, respectively (Table 4). Cu concentrations ± standard
deviation were highest in Shuwaikh > Shauiba > Al-Khiran, respectively. Pb concentrations
± standard deviation were highest in Shuwaikh > Al-Khiran > Shauiba, respectively. Zn
concentrations ± standard deviation were highest in Al-Khiran > Shauiba > Shuwaikh,
respectively (Table 4). The highest metal concentration detected in marine water was Zn
(149.0 ± 10.28 µg/g) sampled from the Al-Khiran Area. In opposition, the lowest metal
concentration determined in water was Cd (8.22 ± 2.32 µg/g) in water from the Shuwaikh
Area. The mean concentrations of Cd and Cu were not significantly noticeable (p > 0.05) in
water from the investigated areas (Table 4). The surrounding water quality measurements
of the three study areas are displayed in Table 5.

Table 5. Background physicochemical properties of the water in Shuwaikh, Shuaiba, and Al-Khiran
(±SD). n = 45.

Areas
Water Parameters Shuwaikh Shuaiba Al-Khiran

Salinity (psu) 40.9 ± 0.98 40.2 ± 0.26 39.8 ± 0.83
Dissolved oxygen (mg/L) 4.35 ± 0.56 4.95 ± 0.69 4.12 ± 0.87

Temperature (◦C) 23.4 ± 0.67 22.2 ± 0.97 21.3 ± 0.54
pH 8.06 ± 0.18 8.24 ± 0.94 7.65 ± 0.65

4.4. Multivariate Analysis

Discrimination between the three studied areas was assessed by examining the pro-
jection of plots of the extracted factors on the factorial plane consisting of the statistically
significant axis of the PCA analysis (Figure 7). The principal components analysis (PCA)
showed 74.42% and 25.58% of the total variance in axis-1 (F1) and axis-2 (F2) (Figure 7).
The plot of field observations showed a clear segregation between observations made in
the studied areas: Al-Khiran, Shuaiba, and Shuwaikh (Figure 7B). The observations were
grouped in the positive part of axis F1 together with zinc, copper, and cadmium metals
accumulated in different parts of crabs, which were coupled with copper in water, salinity,
and temperature of water (G1). However, the negative part of F1 negatively selected Cd
and Zn in the water and Pb, Cd, and Cu in the sediment (G2). We assumed that the
population of crabs in the Shuwaikh Area could be used as a bioindicator of copper in
water. Axis F2 negatively selected the total lead in crabs, lead in carapace, lead in water,
and zinc in sediment (G3). The latter group corresponds to the Al-Khiran Area, where
crabs accumulate lead from the water column (Figure 7B).
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Figure 7. Principal component analysis (PCA): (A) Biplot of variables made on the metal amounts
recorded in water, sediment, and different tissues of crabs and physical parameters of water. (B) Biplot
of observations showing the distribution of the study areas: Shuwaikh, Shuaiba, and Al-Khiran
(down). C: carapace, G: Gill, H: Hepatopancreas, Sed: sediment, Wat: water, T: total, Cu: copper, Pb:
lead, Cd: cadmium, Zn: zinc.
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5. Discussion

Heavy metal absorption levels in marine animals, especially the ability to accumulate
in the different organs of crabs, are of particular interest due to the probable transfer and
biomagnification along the food chain [100]. The present investigation indicated statistically
significant inequality in organ (carapace, hepatopancreas, and gill) concentrations of metals
(Cd, Cu, Pb, and Zn), as presumed. Significant differences in the tissue concentrations of
Cd, Cu, Pb, and Zn have been reported in the mangrove crab Sesarma mederi (H. Milne
Edwards, 1853) [103] and Cardisoma armatum (Herklots, 1851) [104]. Bioconcentrations of
Cu and Zn (essential metals) in crabs from all study locations were higher than those of Cd
and Pb (nonessential metals). In fact, the elevated concentrations of Zn and Cu might be
due to their crucial role in maintaining physiological functions through various enzymatic
activities [105]. Consequently, the uptake of these two essential micronutrients is higher
than that of Cd and Pb, leading to a higher bioaccumulation of Zn and Cu in crabs. Raised
concentrations of essential metals (such as Cu and Zn) in P. pelagicus exhibited in this
study are an ordinary characteristic of marine crustaceans due to their potential to regulate
these metal concentrations according to their physiological needs [106]. Concentrations
of Cu were higher in the gills than in the hepatopancreas and carapace in Shuaiba and
Al-Khiran. High concentrations of Cu in the gills could be a result of Cu being a component
of hemocyanin, which is a respiratory pigment with its site of action in the gills [69]. Being
nonessential metals, Cd and Pb accumulated more in the hepatopancreas, detoxification
organs, than in the gills. Thus, the accumulation of nonessential metals in tissues induces
detoxification mechanisms implying multiple proteins (such as metallothionein) [106]. In
this investigation, the carapace of the crab P. pelagicus showed the highest significant levels
of nonessential metal concentrations when compared to the gill and hepatopancreas. The
carapace is the most important storage tissue, storing more metals as crabs grow [107].
Accordingly, the carapace is favored as the most convenient tissue compartment to sample
when compelled by measure and time. The crab can eliminate the metals accumulated in
the carapace during the molting period. The concentration and uptake of metals by crabs
rely on environmental circumstances, as a surge in bioavailable metal concentrations results
in high metal accumulation [108,109]. It is worth mentioning that the body concentration
of the metal observed to be abnormally high for one species could be considered too
low for another [110]. Accordingly, in a single taxon, metal concentration levels in crab
tissues and the whole body vary substantially, even in the absence of anthropogenic metal
pollution [98]. A metal frequently binds to proteins, for instance, in soluble metalliferous
granules [110].

Particulate matter of sediments is composed of various mixed components and phases,
which consist of organic material, carbonates, hydrous metal oxides, and crystalline min-
erals; thus, heavy metals could be bound to a particulate material via a range of pro-
cesses [111,112]. Therefore, the dissemination of trace metals in individual phases clarifies
their toxicity, mobility, and bioavailability [111,112]. The inverse relationship between the
high heavy metal concentrations in sediments and noticeably low metal concentrations in
the crab organs from the Al-Khiran Area compared to those from the Shuwaikh and Shuaiba
Ports areas could point out the geological aspects. Consequently, they arise naturally in nat-
urally high background levels of metals in the Al-Khiran Coastal Area, which could firmly
influence the bioavailability of heavy metals, as the free ionic forms are consistently the
most bioavailable [113,114]. Consequently, there is generally a strong negative relationship
between the grain size of sediments and heavy metal concentrations [115,116]. Hence, the
intensity of refinement of sediments investigated from Al-Khiran could also be accountable
for the increased natural concentration of heavy metals. Although the Al-Khiran Coastal
Area seems to have recovered largely from this anthropogenic event, the consequent effects
of this event could have added to the inflated metal concentrations in the system.

Analysis revealed similar patterns for metal concentrations in both water and sediment
samples, in which Zn > Cu > Pb > Cd. The three investigated study sites showed a mean
concentration of the analyzed metals (Cd, Cu, Pb, and Zn) that was higher than the marine
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water quality guideline levels [117,118]. Metal concentrations in water from the Al-Khiran
Coastal Area were not remarkably distinct from the other two investigated sites. The reason
for the high concentrations of metals in the Al-Khiran Coastal Area could be attributed to
high natural background metal concentrations. In addition, a possible explanation for high
metal background concentrations is the 1991 Gulf War, which resulted in the deposition of
high metal and the subsequent desorption of metals from the sediment compartment into
the water column. It has been established that fluctuations in pH levels in seawater could
eventually affect metal solubility. Alterations in seawater chemistry due to pH fluctuations
can affect metal solubility, distribution, and speciation in the aqueous and solid phases [119].
Generally, the heavy metal load of marine sediments surpasses the one in seawater by
considerable orders of magnitude [120], making sediment a crucial sink for metals. Despite
this, a decrease in pH concentration can consequently increase both metal solubility and
desorption from both sediments and organic ligands, ultimately leading to an extreme
influx of heavy metals into the water column [121,122].

6. Conclusions

The outcome of this study indicates that the marine crab P. pelagicus could be used as a
relevant biosentinel (quantitative bioindicator) due to its susceptibility to high accumulation
of metals, notably in its carapace. Consequently, due to their deposit-feeding, submerging,
and burrowing habits, they are prospective bioindicators for evaluating heavy metal
pollutants in marine ecosystems where they are distributed extensively. The heavy metal
extent in the sediments from the three investigated areas (Shuwaikh Port, Shuaiba Port, and
Al-Khiran Coastal Area) was comparatively lower than the Australian sediment quality
specification value, showing no negative ramifications to benthic organisms in these areas.
The accumulation of Cd, Cu, Pb, and Zn in seawater from these investigated areas was
above the water quality regulation mark. The results of this study will be beneficial in
policy decision-making for regulatory authorities for better environmental management of
crab habitats devastated by chemical pollution.
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