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Abstract: Nowadays, the problem of inland water pollution is acute. It is caused by vast industrial
growth and agricultural intensification. Concentrations of Cd, Pb, Zn, Cu, Mn, Fe, Mg, and Kwere
determined in the muscles, liver, and gonads sabrefish from Rybinsk Reservoir areas with different
anthropogenic loads. The tissue samples were analyzed by atomic absorption spectrometry. Heavy
metals accumulated more intensively in the body of fish from more polluted areas of the reservoir.
Among the analyzed elements, the maximum accumulation levels were found for K, Zn, and Fe and
the minimum levels were observed for Cd and Pb. The gonads contained the largest concentration of
Cd and Mn, the muscles contained the highest concentrations of Mg, and the other elements mainly
accumulated in the liver of sabrefish. The THQ and HI values for all elements did not exceed 1,
which suggests that there is no potential non-carcinogenic risk to human health. The target values
of carcinogenic risk (TR) for cadmium ranged from 8.32 × 10−6 to 1.22 × 10−4 in the muscles. The
increased content of cadmium in the gonads of sabrefish not only poses a risk to human health, but
also to the reproduction of this species in the Rybinsk Reservoir.

Keywords: sabrefish Pelecus cultratus; liver; gonads; heavy metals; Rybinsk Reservoir; risk assessment

1. Introduction

Nowadays, the problem of inland water pollution is acute. It is caused by vast
industrial growth, agricultural intensification, and urban development along the banks of
rivers [1,2]. Sources of pollution are often domestic and industrial wastewater, runoff from
landfills, agricultural land, and urban areas [3–6].

Heavy metals are the most ubiquitous environmental pollutants affecting the quality
of water resources even in the most remote places on Earth, for example, Tibet, Sundarbans,
Amazonia, the Pacific region, the Polar region, and others [7–12]. Inland waters such as
rivers, lakes, streams, and even groundwater are also subject to heavy metal pollution [13–19].

The content of pollutants in water reflects only short-term exposure and does not
always show the state of biota due to the diffusion of contaminants and their concentrations
below the limit of detection, which may increase over time [2,20]. Heavy metals can
enter and accumulate in the fish body by chemisorption, mechanical capture of suspended
particles, and absorption by gills and through the digestive tract viafood [21]. The latter way
is considered the most dangerous because the toxic properties of substances can manifest
themselves not only in prey, but also in predators through food webs [22]. Once in the
fish body, heavy metals replace important minerals for vital activity and block biological
functions, affecting physiological and biochemical parameters [23–25]. Therefore, fish are a
convenient test object for studying water pollution [26–29].

Since fish area source of valuable proteins, a number of vitamins, minerals, and fatty
acids, especially omega-3, which are essential for human health, they play an important
role in the human diet [30,31]. However, after accumulating heavy metals, fish transmit
them to humans when eaten [32,33].
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Sabrefish Pelecus cultratus is a pelagic species widespread in both fresh and brackish
waters of Europe and Russia [34–40]. The species is a planktophage and ichthyophage,
able to consume a very wide range of food organisms. Juveniles feed mainly on plankton,
while the food of adults is diverse. Both plankton and benthic larvae of chironomids and
terrestrial and aquatic insects are found in its intestines. A significant part of the sabrefish
diet is juveniles of other fish species [41–43]. Due to its broad dietary spectrum, the species
is characterized by a high nutritional value [44,45]. Sabrefish is a target for commercial
fisheries, which in a number of countries has led to the threat of its extinction [46–48].

There are only a few studies on the elemental composition of this fish species. Attention
has mainly been paid to studies of the mercury content in sabrefish meat [49–51]. A
number of works are devoted to the study of heavy metal concentrations in the muscles
of commercial fish species, including sabrefish [52–54]. The most comprehensive study,
which includes analysis of different tissues of this species, was conducted in the Danube
River [55]. We have not found any works on the elemental composition of various tissues
of sabrefish from water bodies in Russia or health risk assessments associated with the
consumption of this species by humans.

Therefore, studies to determine the elemental composition of sichel tissues are relevant
for ecological monitoring of water bodies, as well as for assessing both the physiological
state of individuals and the quality of fish products consumed by humans.

The purpose of the work is to study the features of the accumulation of essential and
toxic elements in the muscles, liver, and gonads of Pelecus cultratus and to assess the risks
to human health when consuming this species.

2. Materials and Methods
2.1. Research Area

Thisresearch was conducted in the Rybinsk Reservoir, the largest artificial water body
in the Russian Federation [56,57]. Its area is 4550 km2, its maximum length is 250 km, its
width is 70 km, its average depth is 5.6 m, and its catchment area is 150,500 km2 [58,59].
The reservoir is a lake-type eutrophic water body [60]. The profundal macrozoobenthos
is represented by an oligochaete–chironomid complex [61]. Intense fishing is carried out
in this reservoir. For many people living on its shores, fishing remains the only means
of subsistence [62,63]. In Cherepovets, the north-eastern part of the reservoir, chemical
and metallurgical industries are widely developed. The largest mining and metallurgical
company “Severstal” is located there. This area has been subjected to long-term pollution by
industrial wastewater, characterized by high concentrations of persistent organic pollutants
and heavy metals [64,65]. Scientists have recorded a significant content of heavy metals
in the water and bottom sediments [64,66]. In addition, the area is exposed to household
wastewater, as well as diffuse runoff from agricultural land and highways [67]. The adverse
impact of industrial pollution has been described in numerous research papers [68–75].
Sampling sites where sabrefish were caught differ in the level of anthropogenic load
(Figure 1).

Station 1 (58◦23′ N, 37◦45′ E.) is considered conditionally clean and at Station 2
(58◦25′ N, 38◦29′ E), some increased heavy metal concentrations in bottom sediments have
been detected. Stations 3 (58◦43′ N, 38◦16′ E.) and 4 (58◦51′ N, 38◦06′ E) have the status of
heavily polluted. They are located near the metallurgical industrial complex—the main
source of reservoir pollution [64,76,77].
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(58°25′ N, 38°29′ E), some increased heavy metal concentrations in bottom sediments 
have been detected. Stations 3 (58°43′ N, 38°16′ E.) and 4 (58°51′ N, 38°06′ E) have the 
status of heavily polluted. They are located near the metallurgical industrial com-
plex—the main source of reservoir pollution[64,76,77]. 
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organs occur. 
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The skin was separated from the skeletal muscles on a refrigerant and tissue samples 
of the muscle along the spine, as well as of the liver and gonads from the internal cavity, 
were excised. Prior to analysis, all samples were weighed and frozen at a temperature of 
−18 °C. Since more males were caught than females (35 vs. 4), the elemental content was 
analyzed only in the testes. 
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Figure 1. Schematic map of the Rybinsk Reservoir.

2.2. Sampling

All procedures with fish were performed in accordance with the ARRIVE guidelines
for the use of animals for research purposes [78].

A total of 39 sabrefish individuals were caught by trawl nets at the end of the feeding
period (September–early October) (Table 1). We chose this early fall sampling season to
exclude spawning periods, when shifts in biochemical parameters of fish muscles and
organs occur.

Table 1. Dimensional and mass characteristics of sabrefish.

Sampling Station n Fish Length, cm Fish Weight, g Fish Weight without
Entrails, g

1 7 32.7 ± 2.1 425 ± 85 368 ± 66
2 10 25.4 ± 0.8 175 ± 17 157 ± 16
3 12 23.7 ± 0.4 129 ± 7 117 ± 6
4 10 26.8 ± 1.2 208 ± 31 190 ± 29

In order to acclimate after capture, the fish were kept in tanks with river water. After
this, each individual fish’s length and weight with and without entrails were measured.

The skin was separated from the skeletal muscles on a refrigerant and tissue samples
of the muscle along the spine, as well as of the liver and gonads from the internal cavity,
were excised. Prior to analysis, all samples were weighed and frozen at a temperature of
−18 ◦C. Since more males were caught than females (35 vs. 4), the elemental content was
analyzed only in the testes.

2.3. Heavy Metal Analysis

Concentrations of the following micro- and macro-elements were measured in the fish
muscles, liver, and gonads: cadmium (Cd), lead (Pb), zinc, (Zn), copper (Cu), manganese
(Mn), iron (Fe), magnesium (Mg), and potassium (K). The tissue samples were analyzed by
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atomic absorption spectrometry with electrothermal atomization (ETA-AAS) in a KVANT
2-AT spectrophotometer (Kortec Ltd., Moscow, Russia). The ash was dissolved in 5 mL of
20% HCl and filtered through filter paper. The correctness of determining the concentration
of elements was checked using the state standard samples for atomic absorption spec-
trophotometry. The concentration of potassium was determined using the official methods
of AOAC International [79]. The results obtained were expressed in mg/kg of wet weight.

2.4. Health Risk Assessment

It is known that heavy metals can enter the human body and affect it in three ways:
through the gastrointestinal tract or skin or via inhalation [80]. In this study, the first path-
way was considered to assess the risk to human health. To determine the risk over a lifetime
of fish consumption, the target hazard quotient (THQ), hazard index (HI), and target cancer
risk (TR), determined by generally accepted Formulas (1), (2), and (3), respectively, were
used [81–83].

THQ = EF × ED × Ir × C/RfD × BW × TA, (1)

HI = THQCd + THQPb + . . . + THQn . . ., (2)

TR = EF × ED × Ir × C × CSF/BW × TA, (3)

where EF—exposure frequency (365 days/year), ED—exposure duration (74 years), Ir—
daily consumption of fish (according to FAO data for the Russian Federation in 2020;
0.015 kg/day for pelagic fish), C—metal concentration in fish, mg/kg, RfD—reference
peroral dose, mg/kg/day, BW—average human weight (74 kg in the Russian Federa-
tion), TA—average exposure time (365 days/year×ED), and CSF—cancer slope factor for
carcinogenic metals (mg/kg/day).

The RfD values of Cd, Pb, Zn, Cu, Mn, and Fe are 0.001, 0.0035, 0.3, 0.04, 0.14, and
0.7 mg/kg/day, respectively [80,81,84,85]. The CSF for Cd is 15 mg/kg/day and for Pb it
is 0.0085 mg/kg/day [81,86].

2.5. Statistical Analysis

The data were checked for normality of the distribution using a Shapiro–Wilk test.
Since the data did not follow a Gaussian distribution, the Kruskal–Wallis criterion and the
Dunn multiple comparison criterion were applied to compare between different sampling
areas and between tissues. The results of the study are presented in the form of mean values
and their standard deviations (x ± SD). Differences between the compared parameters
were considered statistically significant at p < 0.05.

3. Results
3.1. The Concentration of Micro- and Macro-Elements in Sabrefish from Different Areas of the
Reservoir, Characterized by Varying Degrees of Anthropogenic Load

The highest Cd and Pb concentrations were found, respectively, in the gonads and
liver of sabrefish from Station 4; for Zn, Cu, and Fe, the highest concentrations were found
in the liver of individuals from Station 3; for Mn, the highest concentration was found in
the gonads of fish from Station 3; and for Mg and K, the highest concentrations were found
in the gonads of sabrefish from Station 1 (Table 2).
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Table 2. The content of micro- and macro-elements in the muscles, liver, and gonads of sabrefish.

Organs Sampling
Station n Cd Pb Zn Cu Mn Fe Mg K

Muscles

1 7 0.003 ± 0.001 a 0.016 ± 0.004 9.33 ± 1.72 1.15 ± 0.98 0.52 ± 0.13 8.49 ± 3.63 0.64 ± 0.03 a 2628 ± 390 a

2 10 0.004 ± 0.001 0.025 ± 0.007 10.11 ± 2.42 1.08 ± 0.88 0.87 ± 0.26 12.05 ± 8.21 1.30 ± 0.31 6157 ± 826 b

3 12 0.006 ± 0.002 0.046 ± 0.014 10.00 ± 2.79 0.79 ± 0.32 0.65 ± 0.34 9.71 ± 6.45 1.86 ± 0.87 b 5350 ± 2147
4 10 0.010 ± 0.004 b 0.044 ± 0.006 9.71 ± 1.62 0.75 ± 0.43 0.81 ± 0.42 9.13 ± 4.42 1.04 ± 0.40 4756 ± 2331

Liver

1 7 0.007 ± 0.002 0.022 ± 0.006 16.03 ± 2.22 4.03 ± 0.63 a 1.19 ± 0.33 100.56 ± 57.54 0.58 ± 0.17 5570 ± 1798
2 10 0.011 ± 0.003 0.034 ± 0.006 22.08 ± 1.48 5.17 ± 0.56 1.66 ± 0.19 151.25 ± 13.39 1.06 ± 0.06 9051 ± 1774
3 12 0.016 ± 0.003 0.045 ± 0.036 27.95 ± 3.83 a 7.70 ± 0.53 b 2.40 ± 0.67 a 196.22 ± 28.0 1.12 ± 0.30 9083 ± 3873
4 10 0.026 ± 0.012 0.070 ± 0.017 14.17 ± 2.87 b 4.73 ± 0.80 1.04 ± 0.31 b 117.04 ± 19.81 0.44 ± 0.06 4563 ± 1056

Gonads

1 6 0.011 ± 0.003 0.003 ± 0.000 20.23 ± 4.50 0.31 ± 0.25 a 1.87 ± 1.48 125.06 ± 39.26 a 1.92 ± 0.75 11,224 ± 168
2 10 0.016 ± 0.005 0.005 ± 0.001 10.63 ± 1.28 1.19 ± 0.09 2.51 ± 0.48 6.93 ± 1.01 b 0.39 ± 0.02 5622 ± 1984
3 10 0.024 ± 0.007 0.007 ± 0.006 19.11 ± 11.48 1.55 ± 0.21 b 3.19 ± 0.51 15.38 ± 1.55 0.66 ± 0.34 4186 ± 1236
4 9 0.040 ± 0.016 0.010 ± 0.001 10.10 ± 2.33 1.19 ± 0.10 1.61 ± 0.88 16.12 ± 14.72 0.35 ± 0.04 4249 ± 918

Note: small letters (a > b) denote statistically significant differences between stations in the same tissue samples.
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The lowest concentrations of Cd, Zn, Mn, and K were found in the muscles of sabrefish
at Station 1, those of Pb and Cu were found in the gonads of fish from Station 1, and those
of Fe and Mg were found in the gonads of individuals at Station 2 (Table 2).

The contents of Cd, Mg, and K in the muscles of sabrefish from Station 1 were signifi-
cantly lower than at Stations 4, 3, and 2, respectively (Table 2). In the liver of individuals
from Station 3, significantly more Zn and Mn had accumulated than in the liver of sabrefish
from Station 4, and higher Cu concentrations were recorded than in fish from Station 1. The
Cu content in the gonads of sabrefish from Station 1 was significantly lower than in the
gonads of fish from Station 3, and the concentration of Fe was higher than in individuals
from Station 2.

Regardless of the sampling area, the following pattern of the intensity of element
accumulation in the liver of sabrefish was observed: Cd < Pb < Mg < Mn < Cu < Zn
< Fe < K. No such dependence was found in the muscles and gonads; however, there
was a tendency toward greater accumulation of K, Zn, and Fe in these tissues, the least
accumulation of Cd was in the muscles, and the least accumulation of Pb was in the gonads.

3.2. Concentration of Micro- and Macro-Elements in Different Parts of Sabrefish

A comparison of micro- and macro-nutrient concentrations in different tissues of
sabrefish from Station 1 shows significant statistical differences between the concentration
of Cd and K in the muscles and gonads, as well as between the concentration of Cu in the
liver and gonads (Figure 2).
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At Station 2, statistically significant differences in Pb, Fe, and K concentrations were
shown for the liver and gonads, in Cu and Zn concentrations for the muscles and liver, and
in Mn and Mg concentrations for the muscles and gonads (Figure 3).
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the Rybinsk Reservoir. G—statistically significant differences from the gonads and muscles or liver,
respectively. L—statistically significant differences from the liver and gonads or muscles, respectively.
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At Station 3, statistically significant differences are found between the concentrations
of Cd and Mn in the muscles and gonads of sabrefish, as well as between the concentrations
of Cu, Fe, and Zn in the muscles and liver (Figure 4).

At Station 4, significant differences were found between the content of Pb in the liver
and gonads, between the concentration of Cu and Fe in the muscles and liver, and between
Mg concentrations in the muscles and gonads (Figure 5).

Regardless of the sampling area, the concentration of Cd and Mn increased in the
following order: muscles→ liver→ gonads. Zn concentration at Stations 2–4 increased in
the order muscles→ gonads→ liver, and at Station 1 it increased in the order muscles→
liver→ gonads. The other elements accumulated mainly in the liver of sabrefish, with the
exception of Mg, which accumulated more intensively in the fish muscles at Stations 2–4.

3.3. Health Risk Assessment

The values of THQ and HI for specific tissues of sabrefish from different areas of the
reservoir are presented in Table 3. The results of the study show that the THQ and HI
indices for all metals do not exceed the permissible threshold (<1).

The HI value, regardless of the sampling area, decreases in the following order: liver
→ gonads→muscles.

The carcinogenic risk is calculated only for Cd and Pb because the carcinogenic potency
slope factor of carcinogens (CSF) exists only for these metals (Table 4).
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Table 3. Target hazard quotient (THQ) and hazard index (HI) of sabrefish.

Organs Sampling
Station

n
THQ

HI
Cd Pb Zn Cu Mn Fe

Muscles

1 7 0.001 0.001 0.006 0.006 0.001 0.002 0.017
2 10 0.001 0.001 0.007 0.005 0.001 0.003 0.019
3 12 0.001 0.002 0.007 0.004 0.001 0.003 0.018
4 10 0.002 0.003 0.007 0.004 0.001 0.003 0.019

Liver

1 7 0.001 0.001 0.011 0.020 0.002 0.029 0.065
2 10 0.002 0.002 0.015 0.026 0.002 0.044 0.091
3 12 0.003 0.003 0.019 0.039 0.003 0.057 0.124
4 10 0.005 0.004 0.010 0.024 0.002 0.034 0.078

Gonads

1 6 0.002 0.000 0.014 0.002 0.003 0.036 0.057
2 10 0.003 0.000 0.007 0.006 0.004 0.002 0.022
3 10 0.005 0.000 0.013 0.008 0.005 0.004 0.035
4 9 0.008 0.001 0.007 0.006 0.002 0.005 0.029Toxics 2023, 11, x FOR PEER REVIEW 8 of 19 
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Figure 5. Concentration of micro- and macro-nutrients in different parts of sabrefish from Station
4 of the Rybinsk Reservoir. G—statistically significant differences from the gonads and muscles,
respectively. L—statistically significant differences from the liver and gonads or muscles, respectively.
Muscles n = 10, liver n = 10, gonads n = 9.

Table 4. Target cancer risk (TR) estimates of sichel sampled.

Organs Sampling
Station n Cd Pb

Muscles

1 7 8.32 × 10−6 2.77 × 10−8

2 10 1.33 × 10−5 4.39 × 10−8

3 12 1.94 × 10−5 6.76 × 10−8

4 10 3.02 × 10−5 7.53 × 10−8

Liver

1 7 2.08 × 10−5 3.71 × 10−8

2 10 3.30 × 10−5 5.88 × 10−8

3 12 4.72 × 10−5 7.77 × 10−8

4 10 7.84 × 10−5 1.21 × 10−7

Gonads

1 6 3.46 × 10−5 5.25 × 10−9

2 10 4.83 × 10−5 9.26 × 10−9

3 10 7.45 × 10−5 1.23 × 10−8

4 9 1.22 × 10−4 1.70 × 10−8

The calculated Pb values are less than 1 × 10−6 and Cd values range from 8.32 × 10−6

in the muscles at Station 1 to 1.22 × 10−4 in the gonads at Station 4 (Table 4).

4. Discussion

This study has revealed a tendency for more intensive accumulation of heavy metals
(Cd, Pb, Zn, Cu, Mn, and Fe) in sabrefish from an area with a high anthropogenic load.
A number of studies have also shown that stations located near the industrial complex
(Stations 3 and 4) are considered the most unfavorable for aquatic organisms, in terms of
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heavy metal concentrations in both the water and bottom sediments and according to the
results of biotesting in different areas of the reservoir [66,77,87,88].

In order to assess the degree of water pollution at the studied stations, the concen-
trations of heavy metals recorded in sabrefish during this study were compared with
those from other studies. As mentioned above, only limited information is available on
heavy metal concentrations in this fish species. Acomparison of our results with the data
published by Subotić [55] suggests that in our study Cd, Cu, Fe, and Mn concentrations in
the muscles and gonads of sabrefish are higher since they were obtained for wet weight
and are comparable or exceed those in sabrefish from the Danube River, expressed on
a dry weight basis. The heavy metal contents of Cd, Cu, Pb, and Zn in the muscles of
sabrefish from the Rybinsk Reservoir are higher than from Lake Ladoga and lower than
in this fish species from the Caspian Sea and water bodies of Moldova [52–54]. The liter-
ature data and the results of our study show that the metal concentrations in fish tissues
vary widely depending on the sampling area. It is known that heavy metal contents in
aquatic organisms are influenced not only by the anthropogenic load on the water body,
the concentration of elements, and the duration of exposure, but also by the hydrochemical
factors of the aquatic environment, because the solubility of a number of trace elements
located in hard-to-reach compounds in silts depends on the oxygen level, pH, and other
environmental parameters [89–92].

In our study, no single pattern of distribution of metals in the sabrefish body was
found, with the exception of the liver—the organ responsible for the redistribution and
detoxification of heavy metals [93–95]. In addition, the concentrations of metals in the
liver are proportional to those present in the aquatic environment [96,97]. Probably due
to this reason, in this organ, a general pattern of element accumulation was revealed for
sabrefish from different stations of the reservoir, which may reflect the level of pollution of
the entire reservoir.

In all the tissues of sabrefish, the content of elements such as K, Fe, and Zn significantly
exceeded those of the other substances studied. At the same time, the concentration
of K was several times higher than other elements. These metals are vital for living
organisms and are called essential [98,99]. Normally, they should accumulate in large
quantities because of their important role in the work of biological systems (enzymatic,
metabolic, regulatory, and other roles) [100–103]. Deficiency of essential elements can lead
to improper enzyme-mediated metabolic functions, congenital anomalies, immunological
disorders, and chronic diseases [102,104–108]. High levels of K, Fe, and Zn in fish, including
pelagic species, have also been reported by other researchers both in freshwater and
marine ecosystems [101,104,109–111]. The highest K values, in comparison with other
elements, were observed in the Black Sea kalkan Psetta Maxima Maeotica [108]. Potassium
is one of the most important minerals in the body. It is involved in acid–base balance,
glycogenesis reactions, regulation of osmotic pressure, conduction of nerve impulses, and
muscle contractions [105,112].

In our study, the contents of Cd and Pb in the analyzed tissues of sabrefish were the
lowest. Similar results, where the concentrations of essential elements exceeded those of Cd
and Pb, were shown for both marine and freshwater pelagic fish species inhabiting rivers as
well as lakes [96,113–118]. The reason for the low accumulation of nonessential metals (Cd
and Pb) is the lack of need for them in physiological processes in living organisms [119].
Nevertheless, there are studies showing that the content of toxic elements in fish organs
may exceed the concentration of essential ones due to the high level of anthropogenic
load [120].

The pattern of macro- and micro-element distribution in the organs of sabrefish had
some special features: an increased content of Cd and Mn was recorded in the gonads, an
increased content of Mg was found in the muscle tissue, and other elements accumulated
mainly in the liver of this fish species (Figures 2–5).

Gonads are important reproductive organs responsible for producing gametes needed
for fertilization [121]. In general, lower concentrations of heavy metals in the sex glands of
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fish may indicate a certain physiological mechanism of protection in these organs from the
effects of heavy metals in order to avoid disruption of their work [122]. However, elevated
Cd levels in the testes of sabrefish pose a risk for the reproduction of this species in the
reservoir. Our results are consistent with findings of a number of studies on freshwater fish
species, which have also reported higher Cd concentrations in the gonads in comparison
with those in the liver and muscles [122–124]. In the gonads of sabrefish from the Danube
River, Cd concentrations were below the detection limit [55].

Manganese is an essential microelement that acts as a cofactor in many enzymatic
processes, and its deficiency can lead to reproductive abnormalities [102,125–127]. A higher
Mn content in the gonads than in the muscles and liver of marine and freshwater fish
species has been reported in a number of studies [33,123,128]. However, in the gonads of
sabrefish from the Danube River, the content of Mn was lower compared to the muscles
and liver [55].

It is known that magnesium ions are concentrated in the intercellular space of soft
tissues and are in a bound form in fish muscles [129]. In the marine pelagic species Caesio
varilineata and Caesio lunaris, the magnesium content is higher in the muscles than in the
gonads and liver [130]. However, in Van fish (Alburnus tarichi), a cyprinid fish species
which lives in the alkaline Lake Van, the Mg content in the muscles is lower than in the
liver and gonads [131].

The liver is considered the main organ of metabolism and the most metabolically active
tissue which accumulates and neutralizes toxic substances, including heavy metals [33,122,132].
It is known that the liver is a target organ for most metals, regardless of their route of entry,
and is the optimum tissue for water monitoring, since higher concentrations of metals
remain in this organ for a long time [96,97,115]. The results of our study regarding the
greater accumulation of Fe and Cu in the liver of sabrefish are comparable to the work by
Subotić [55] on a similar fish species. The literature data confirm that Pb accumulates more
intensively in the liver of freshwater fish than in muscle tissue [92,133]. Despite the fact
that muscles are not an active participant in the process of accumulation of the elements
under study, they need to be analyzed, since they are considered the main edible part of
fish and are important for human health [33,134].

It is interesting to note that in our study, the concentration of Zn at conditionally
clean Station 1 was higher in the gonads, while at the other stations it was higher in
the liver. It is known that this element plays an important role in the development of
reproductive organs and fish reproduction, and its concentration in the gonads can be
several times higher than in the muscles [108,132]. The tissues of sabrefish from Stations 2–4,
subjected to anthropogenic load, contained higher concentrations of cadmium than the
fish collected at Station 1. Zinc can be replaced by cadmium, reducing the harmful effects
of the latter [135,136]. Perhaps for this reason, the zinc content in the gonads of fish from
Station 1 was higher than in fish caught at the other stations.

Fish consumption is one of the main sources of heavy metal exposure to humans [84].
A human health risk assessment, associated with the duration of exposure to heavy metals,
was performed using the recorded concentrations of Cd, Pb, Zn, Cu, Mn, and Fe in the
tissues of sabrefish. The THQ data obtained in this study show that there is no potential
risk for people related to the consumption of sabrefish from the Rybinsk Reservoir. The
HI corresponded to the THQ model and did not exceed the permissible limit (<1). Thus,
people will not experience non-carcinogenic health effects when consuming sabrefish from
the Rybinsk Reservoir.

It is known that a number of toxic elements, such as lead, cadmium, methylmercury,
and arsenic, have carcinogenic, mutagenic, and teratogenic effects when they enter the
human body due to their insufficient excretion [86,137]. Carcinogenic risk (TR) indicates an
increased likelihood of developing cancer in a person over the course of their lifetime due
to the exposure to potential carcinogens [138]. The risk of developing cancer is considered
insignificant, at TR < 1× 10−6. When TR > 1 × 10−4, the consumers are in the unacceptable
risk zone and some correction is needed [86,139,140].
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In our study, the carcinogenic risks of Pb were less than 1 × 10−6, which indicates
the absence of carcinogenic effects from sabrefish associated with this metal. As for Cd,
theresults showed a slightly different picture. The consumption of muscle tissue of fish
caught at Station 1 can be considered conditionally safe. For the other tissues, the risk of
cancer from Cd is 1 per 100,000, and with regular lifetime consumption of fish gonads from
Station 4 it is 1 per 10,000, because the TR values for these tissues exceeded 1 × 10−4. Long-
term exposure to Cd can cause kidney failure, disrupt the gastrointestinal tract, reduce bone
mineral density, and cause osteoporosis [102,104,117]. It is worth noting that in the areas
adjacent to the reservoir, there is a steady increase in oncological diseases among all age
groups of the population, and the highest number of cancer cases in the country [141,142].

Thus, due to potential human health risks associated with consumption of sabrefish,
it is recommended to constantly monitor the levels of metals in their tissues, especially
in fish caught from areas with an increased anthropogenic load. Given the target values
of the carcinogenic risk for cadmium, we do not recommend using the internal organs of
sabrefish from the Rybinsk Reservoir for food.

5. Conclusions

In this study, the concentrations of macro- and micro-elements in the muscles, liver,
and gonads of sabrefish from Rybinsk Reservoir areas with different levels of anthropogenic
load were determined. Heavy metals accumulated more intensively in the body of fish
from more polluted areas of the reservoir. Among the analyzed elements, the maximum
accumulation levels were found for K, Zn, and Fe and the minimum for Cd and Pb. The
gonads contained the highest concentration of Cd and Mn, the muscles contained the
highest concentration Mg, and the other elements accumulated mainly in the liver of
sabrefish. In regard to human health, the THQ and HI values for all the elements did
not exceed 1, which suggests that there is no potential non-carcinogenic risk to human
health from heavy metals. The target values of carcinogenic risk (TR) for lead in all the
tissues of fish from all the stations were below the threshold of 10−6, and for cadmium
they ranged from 8.32 × 10−6 in the muscles of fish from Station 1 to 1.22 × 10−4 in the
gonads of fish from Station 4. The increased content of cadmium in the gonads of sabrefish
not only poses a risk to human health, but also to the reproduction of this species in the
Rybinsk Reservoir. The data obtained in this study on the elemental content, including
concentrations of toxic elements in the tissues of sabrefish, complement and expand our
knowledge on the chemical and environmental situation in the Rybinsk Reservoir.
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