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Abstract: The mechanical ventilation systems used in houses are designed to reduce carbon dioxide
emissions while minimizing the energy loss resulting from ventilation. However, the increase in
indoor fine particulate (PM2.5) concentration because of external PM2.5 influx through the ventilation
system poses a problem. Here, we analyzed the changes in indoor PM2.5 concentration, distinguishing
between cases of high and low outdoor PM2.5 concentrations and considering the efficiency of the
filters used in residential mechanical ventilation systems. When using filters with the minimum
efficiency reporting value (MERV) of 10 in the ventilation system, the outdoor PM2.5 concentration was
5 µg/m3; compared to the initial concentration, the indoor PM2.5 concentration after 60 min decreased
to 73%. When the outdoor PM2.5 concentration was 30–40 µg/m3, the indoor PM2.5 concentration
reached 91%. However, when MERV 13 filters were used, the indoor PM2.5 concentration consistently
dropped to 73–76%, regardless of the outdoor PM2.5 concentration. Furthermore, by comparing
the established equation with the mass balance model, the error was confirmed to be within 5%,
indicating a good fit. This allows for the prediction of indoor PM2.5 under various conditions when
using mechanical ventilation systems, enabling the formulation of strategies for maintaining indoor
PM2.5, as recommended by the World Health Organization.

Keywords: mechanical ventilation; CADR; PM2.5; MERV; residential house

1. Introduction

People spend a significant proportion of their time indoors [1–3]. This includes the
time spent in residences, where they sleep and eat, and in workplaces. Commuting using
public transportation or vehicles to reach the workplace is a substantial indoor activity.
Thus, a major portion of time is dedicated to being indoors.

The primary pollutants originating from indoor environments encompass a wide range
of sources. These include airborne microorganisms from humidifiers, air conditioning units,
refrigerators, pets, and food waste [4,5]. Furthermore, formaldehyde is emitted by furniture,
insulating materials, and plywood [6–8]. Moreover, acetone is emitted from synthetic resins
and adhesives, and combustion gases (carbon monoxide and oxides of nitrogen and sulfur)
are emitted from stoves and gas ranges [9,10]. Radon emitted from latex matrices and
building materials [11] along with volatile organic compounds from cigarette smoke and
fine particulate matter are also prevalent indoor contaminants [12–14].

Prolonged exposure to these pollutants can lead to skin conditions, respiratory ill-
nesses, and even lung cancer [15]. Furthermore, recent research has suggested that fine
particulate matter can affect the stomach and cause colorectal cancer [16]. However, the
recognition of indoor pollutants is often challenging. One method for mitigating indoor
pollution is the frequent ventilation of indoor spaces via opening windows. Nonetheless, on
days with high outdoor particulate matter levels, natural ventilation may increase indoor
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particulate matter concentrations, which could lead to energy losses during summer and
winter owing to heating or cooling [17,18]. Consequently, mechanical ventilation systems
are required, and extensive research is being conducted on managing indoor air quality
using such systems.

Mechanical ventilation systems are designed to bring in outdoor air and expel indoor
air, utilizing the heat exchange between indoor and outdoor air to minimize heating and
cooling losses. In addition, these systems are equipped with filters to prevent the influx
of fine particulate matter and ensure a clean air supply [19]. Starting in 2006, South
Korea introduced mandatory ventilation systems in residential complexes with more than
100 units [20]. Consequently, many apartment buildings are equipped with mechanical
ventilation systems. Filter efficiency regulations based on outdoor air intake have also been
strengthened. Currently, the ventilation systems in residential complexes and multi-use
facilities are required to achieve a capture efficiency of over 60% using particle-counting
methods. While residential complexes have a specified minimum ventilation rate of at
least 0.5 air change per hour, multi-use facilities regulate ventilation based on per-person
ventilation rate.

Various studies have defined the factors that influence indoor air quality and assessed
their impacts. Noh and Yook (2016) evaluated the effectiveness of air purifiers and their
circulation effects in university lecture rooms [21]. Martins and da Graca (2017) reported
that outdoor fine particulate matter (PM2.5), which infiltrates indoors via natural ventilation,
is the primary source of indoor PM2.5 [22]. Ben-David and Waring (2016) simulated the
impacts of natural and mechanical ventilation on indoor pollutant concentrations and
energy usage in office buildings and proposed ventilation strategies [23]. Ruan and Rim
(2019) measured indoor PM2.5 and ozone concentrations based on the air handling unit
and occlusion-aware filter efficiency in offices and analyzed the effects of filter efficiency
and outdoor air concentration on indoor PM2.5 concentrations [24]. They also conducted
an analysis on the influence of ventilation rates and filter efficiency on the indoor PM2.5
and ozone concentrations in office buildings. Despite the diverse range of studies on
pollutant control via mechanical ventilation, most have focused on ventilation devices in
office spaces [25,26], while studies analyzing the effects of ventilation systems in actual
residential houses are limited. In the case of offices, the frequent influx and outflow of
people through entry points make it challenging to predict changes over time. Additionally,
a higher number of occupants per unit area necessitates a higher ventilation rate. However,
in residential houses, the lower occupancy per unit area results in a reduced demand
for ventilation, leading to lower airflow requirements for mechanical ventilation systems.
Thus, it is easier to predict concentration changes over time using numerical models. For
these reasons, while previous research has focused on comparing the effectiveness of filters
based on indoor concentrations that converge when using ventilation system filters, our
study expressed the effectiveness of mechanical ventilation in terms of Clean Air Delivery
Rate (CADR) to determine whether ventilation systems can effectively and rapidly reduce
indoor PM2.5 concentrations.

In this study, indoor concentrations based on filter efficiency were measured in res-
idential mechanical ventilation systems. Variations in indoor PM2.5 concentrations were
analyzed between periods of high and low outdoor PM2.5 concentrations. Furthermore, a
mass balance model was formulated to compare the actual measurements with theoretical
values, deriving an equation that accurately predicted the indoor PM2.5 concentrations.
The accuracy of this equation was verified not only in the experimental houses, but also
in various other residential houses. This study thus devised an approach to predicting
indoor PM2.5 concentrations using mechanical ventilation systems based on outdoor PM2.5
concentrations and ventilation system filter grades. This approach can be used to maintain
indoor PM2.5 concentrations below 10 µg/m3.
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2. Materials and Methods

Figure 1 depicts a schematic that models the factors affecting indoor particle concen-
trations when a ventilation system is used in an actual residential house.
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Figure 1. Schematic diagram of indoor particle concentration with a mechanical ventilation system.

The factors that influence the indoor concentrations applied in the model include the
particles entering and exiting via the ventilation system, those entering and exiting via
the building envelope, and particles settling naturally. Through the modeling process,
an equation describing the variation in indoor concentrations over time was formulated
as follows:

V
dCin(t)

dt
= PMV × QSA × Cout(t)− QRA × Cin(t) + Pin f × Qin f × Cout(t)− Qex f × Cin(t)− V ×

.
S × Cin(t) (1)

Here, Cin represents the indoor PM2.5 concentration, V is the volume of the interpreted
space, QSA is the indoor supply airflow rate due to the ventilation system, PMV is the
particle penetration coefficient of the ventilation system filter, Pin f is the particle penetration
coefficient through the apartment envelope, Qin f is the airflow rate entering through the
apartment envelope, Cout is the outdoor PM2.5 concentration, Qex f is the airflow rate exiting

the indoor space through the apartment envelope, and
.
S is the deposition rate by settling.

Solving the differential equation in Equation (1) leads to the following Equation (2):

Cin(ti) =

(
Cin(ti−1)−

PMV×QSA+Pin f ×Qin f

QRA+Qex f +V×
.
S

× Cout(ti−1)

)
× exp

(
−QRA+Qex f +V×

.
S

V (ti − ti−1)

)
+

PMV×QSA+Pin f ×Qin f

QRA+Qex f +V×
.
S

× Cout(ti−1)
(2)

Equation (2) represents the indoor PM2.5 concentration over time as an exponential
function of its relationship with the outdoor PM2.5 concentration. In this study, the current
indoor PM2.5 concentration (Cin(ti)) was influenced by the prior indoor PM2.5 concentration
(Cin(ti−1)) and the inflow of the prior outdoor PM2.5 concentration (Cout(ti−1)), and the
real-time outdoor PM2.5 concentration was measured and applied at one minute intervals
for calculation.

Figure 2 shows the experimental setup used to investigate the changes in the indoor
particle concentrations using ventilation systems in a residential house. The experiment was
conducted in an apartment built in 2018 with a dedicated area of 72 m2. Only the kitchen
and living room areas were utilized for the experiment, with a calculated volume of 84 m3.
Particle measurements were performed at location B using an optical particle counter (1.109,
Grimm Aerosol Technik, Ainring, Germany) placed on a table in the living room. The test
particles were generated at location A using a potassium chloride 1% solution in a six-jet
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atomizer (9306, TSI, Shoreview, MN, USA), which was passed through a diffusion dryer to
remove moisture and neutralized using a neutralizer (3012, TSI) with a krypton-85 source.
The generated KCl particles had a monodisperse mass distribution as a function of particle
size; their mass median diameter was 0.3 µm and their geometric standard deviation was
about 1.4. A ventilation system was installed on the exterior side of the living room ceiling
with two supply and exhaust diffusers connected to the living room and kitchen. The flow
rate of the diffusers was measured using a flowmeter (6750, KANOMAX, Osaka, Japan),
revealing a combined supply flow rate of 44 m3/h and an exhaust flow rate of 56 m3/h.
To determine the infiltration and exfiltration flow rates through the apartment envelope,
airtightness measurements were conducted following standardized tests (EN13829 [27] and
ASTM E779-10 [28]) and compared with the decay of carbon dioxide (CO2) concentrations
under normal temperature and pressure conditions. The CO2 concentration was measured
with an IAQ sensor (IQ 610, GrayWolf Sensing Solutions, Shelton, CT, USA).
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Figure 2. Floor plan of the test house and experimental setup. A is the particle generation system
and B is the particle measurement system.

In this study, the CADR, a metric commonly used to indicate air purifier performance,
was used to quantify the particle removal efficiency of the ventilation system. CADR
represents the volume of clean air delivered by an air purifier per unit of time and is
calculated by multiplying the airflow rate of the air purifier by the particle collection
efficiency of the filter. Similarly, ventilation systems supply clean air by filtering out
pollutants from the incoming outdoor air. Therefore, the particle reduction effect of the
ventilation system can be expressed using the CADR ventilation system. It is defined by
the following equation:

CADRMV = V ×
(

lnC2 − lnC1

t2 − t1

)∣∣∣∣
on

− V ×
(

lnC2 − lnC1

t2 − t1

)∣∣∣∣
o f f

= CADRMV,on − CADRMV,o f f (3)

The CADR, as defined by the standard test protocol (SPS-KACA002-132 [29]), is
calculated as the product of the slope of the indoor concentration decay curve over time
and the experimental space volume. However, in actual residential houses, indoor particle
concentrations often exhibit a decay pattern in the form of Cin(t) = exp(−kt) + A, rather
than a simple exponential decay of Cin(t) = exp (−kt). Therefore, defining the CADR in an
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actual environment requires adopting a formulation similar to the aforementioned pattern.
In this study, t1 for the CADR via mechanical ventilation (CADRMV) was considered to
be approximately 2–3 min after the operation of the ventilation system, and t2 was set to
20 min after t1. According to the standard testing protocol SPS-KACA002-132, more than
20 measurement points or measurements should be marked until the time is equal to 1/10
of the initial particle concentration. Hence, the duration t2−t1 was set to 20 min. Using
Equation (2) for calculations and fitting, the results indicated that, when the time exceeded
40 min, the R2 value decreased below 0.99. Based on this observation, Equation (3) was
utilized to calculate the CADRMV and accurately define the purification capability of the
ventilation system.

In this study, filters with minimum efficiency reporting value (MERV) ratings of 10 and
13 were used and compared. Following the standard testing protocol SPS-KACA002-132,
tests were conducted to determine the fine particle removal efficiencies of the filters. The
PM2.5 removal efficiency of the MERV 10 filter was approximately 7%, whereas the MERV
13 filter exhibited an efficiency of around 90%. The particle reduction effects originating
from the ventilation system were examined by comparing the differences in particle capture
efficiency between these filters.

3. Results

Figure 3 shows the measured changes in CO2 concentration over time with and
without the ventilation system after introducing CO2 into the test house. A comparison
was made between the results calculated using Equation (2) and the actual measured data.
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Figure 3. Normalized carbon dioxide (CO2) concentrations with operation of a mechanical ventilation
system on and off according to elapsed time. The marked symbols are the measured concentrations
and the lines represent the estimates from the theoretical calculation.

First, the measured and theoretical values were compared without the ventilation
system operating. The air leakage rate of the test house, as measured using the building
envelope standard test, showed an ACH50 value of 2.1 air changes per hour (ACH). This
value can be converted into ACH under atmospheric pressure conditions by dividing
ACH50 by 20 [30], resulting in an ACH of 0.11 for the test house. Using this, the calculated
value of Qin f was 0.13 m3/h. Applying this value to Equation (2), the calculated MV OFF
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value was determined to be 92% after 60 min. The measured value of MV OFF exhibited a
similar trend, reaching 92% after 60 min with an error within 0.5%.

Second, the measured and theoretical values were compared with the ventilation
system operating. The airflow rates of the supply and exhaust diffusers were measured
to be 44 and 56 m3/h, respectively. These airflow rates were input to Equation (2) for
calculation and comparison with the measured data. The measured PM2.5 concentrations
after 60 min decreased to approximately 67% of the initial concentration, which was
consistent with the theoretical value.

Figure 4 shows graphs illustrating the variations in indoor PM2.5 concentration over
time. The graphs compare the reduction levels based on the rating of the ventilation system
filter and thus compare the measured values with those calculated using Equation (2). The
ventilation system used for comparison the employed filters with MERV ratings of 10 and
13, representing low- and high-performance filters, respectively.
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(MERV) of 10 and 13 installed in the mechanical ventilation system according to elapsed time. Outdoor
PM2.5 concentrations are in the ranges of (a) 0–5 µg/m3 and (b) 30–40 µg/m3. Marked symbols are
measured concentrations and lines represent estimation ones from the theoretical calculation.

Figure 4a shows the measurements taken on days when the outdoor PM2.5 concentra-
tion was below 5 µg/m3. The initial indoor PM2.5 concentration was set to 47 µg/m3, and
the ventilation system was operated for a total of 60 min. The results showed that, when
using the MERV 13 filters, the PM2.5 concentration decreased to 72% of the initial value,
whereas, with the MERV 10 filters, the concentration decreased to 73%. This indicated that
the filter performance did not significantly impact the indoor PM2.5 concentration when
the outdoor PM2.5 concentration was sufficiently low.

Figure 4b shows the effect of indoor PM2.5 concentration reduction over time by oper-
ating the ventilation system on days when the outdoor PM2.5 concentration ranged from
30 to 40 µg/m3. Using the relatively high-efficiency MERV 13 filter, the concentration
after 60 min decreased to 76% of the initial value. On the other hand, with the relatively
low-efficiency MERV 10 filters, the concentration decreased to approximately 91% of the
initial value. This indicated that, when the outdoor PM2.5 concentration was higher, the
dust particle concentration in the air supplied through the ventilation system increased, sig-
nificantly influencing the indoor PM2.5 concentration reduction capability. Furthermore, by
comparing the calculated results from Equation (2) with the measured values, the error was
found to be within 1%. Ruan and Rim [24] also found that, compared to lower-efficiency
filters, higher-efficiency mechanical ventilation filters can decrease the indoor PM2.5 con-
centrations in office spaces. However, the indoor concentration variations measured by
Ruan and Rim [24] make it challenging to accurately predict indoor PM2.5 concentrations,
which are approximately 25% of outdoor PM2.5 concentrations. This difficulty arises be-
cause, in office environments, unlike residential houses, people move freely, introducing



Toxics 2023, 11, 912 7 of 12

factors beyond the inflow and outflow of air through ventilation systems. Unlike offices,
houses offer easier control of variables, reducing such errors and enabling relatively precise
predictions of indoor concentrations based on outdoor PM2.5 concentrations.

Figure 5 shows the CADRMV according to the outdoor PM2.5 concentrations. The
measurements were conducted via alternating the application of the MERV 10 and 13 filters
to the ventilation system while varying the outdoor PM2.5 concentration. The goal of
these experiments was to analyze the indoor fine particle removal efficiency of the venti-
lation system based on the outdoor PM2.5 and filter ratings. Twelve measurements were
performed using the MERV 10 filters and seven using the MERV 13 filters. In the figure,
the circular data points represent the actual measured values and the lines indicate the
CADRMV values calculated using the theoretical equation. The measured and calculated
values were evidently in good agreement. Furthermore, on days when the outdoor PM2.5
was below 5 µg/m3, the CADRMV ranged from 0.9 to 1.2 m3/min, regardless of the filter
grade. However, as the outdoor PM2.5 concentration increased, the CADRMV decreased,
and the decrease rate varied based on the filter grade. When using the MERV 10 filters, at
an outdoor PM2.5 concentration of 50 µg/m3 (considered to be an “unhealthy” air qual-
ity), the CADRMV decreased to 0.09 m3/min, which was ten times lower compared to
0.94 m3/min at 5 µg/m3. With the MERV 13 filters, at an outdoor PM2.5 concentration
of 50 µg/m3, the CADRMV decreased to 0.81 m3/min, which was 1.3 times lower than
1.03 m3/min at 5 µg/m3. This demonstrated that the filter efficiency significantly affected
the air purification capability of the ventilation system.
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Figure 5. Experimental and theoretical clean air delivery rate for mechanical ventilation (CADRMV)
with filters with minimum efficiency reporting values (MERV) of 10 and 13 installed in the mechanical
ventilation system according to outdoor fine particulate matter (PM2.5) concentrations.

Figure 6 presents the comparison between the measured indoor PM2.5 concentra-
tions and those calculated using Equation (2) for seven residential houses (apartments)
constructed between 2013 and 2018. The experiments were conducted by opening the
windows of each apartment to allow outdoor air to enter and equilibrate with the outdoor
PM2.5. Subsequently, the windows were closed and the ventilation systems were operated
to measure the reduction in indoor PM2.5 concentrations.
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Figure 6. Indoor fine particulate matter (PM2.5) concentration changes in actual residential houses
according to time.

Table 1 provides information on the construction year, floor area, test volume, ven-
tilation system supply and exhaust airflow rates, filter efficiency, and other parameters
used in the calculations. The ACH50, initial particle concentration, outdoor PM2.5 con-
centration, deposition rate, particle penetration through walls, and other relevant values
used in Equation (2) are also included. The window frames in all apartments constructed
within the last 10 years were made of polyvinyl chloride. For all apartments, the ACH50
value of 2.1/h measured from Apartment A was applied because their construction years
were similar. When the construction year was similar, the air leakage rate tended to be
comparable [31].

Table 1. Test house information for substitution in Equation (2).

Apartment
Year of
Com-

pletion
(Year)

Exclusive
Area
(m2)

Test
Volume, V

(m3)

Mechanical Ventilation

ACH50
(1/h)

Initial
PM2.51,

C0
(µg/m3)

Average
Outdoor
PM2.5,
Cout

(µg/m3)

Deposition
Rate,

.
S

(1/h)

Penetration
of Wall,

Pinf
(%)

Supply Air
Flow Rate,

QSA
(m3/h)

Exhaust Air
Flow Rate,

QRA
(m3/h)

Collection
Efficiency,

1−PMV
(%)

A 2018 72 84 44 56 90 2.1 43.2 30 0.1 90

B 2018 75 72 79 50 52 2.1 25 31 0.1 90

C 2015 70 72 80 0 72 2.1 29.9 36 0.1 90

D 2017 75 85 50 39 20 2.1 12.4 16 0.1 90

E 2013 85 85 167 142 41 2.1 11.2 16 0.1 90

F 2017 85 85 70 35 60 2.1 36.1 50 0.1 90

G 2016 85 85 138 167 92 2.1 28.1 31 0.1 90
1 PM2.5, fine particulate matter.

Atmospheric particles were used as test particles, and indoor and outdoor PM2.5
concentrations were simultaneously measured and incorporated into the equation. This
study examined the use of various ventilation systems with different performance levels
for different house types. When applying the equation established in this study, the
degree of reduction in indoor PM2.5 concentrations was observed to vary. In particular,
for houses D and E with low-efficiency filters (under 40%), a phenomenon was observed
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where, over time, the indoor PM2.5 concentration became similar to or even higher than the
outdoor PM2.5 concentration when the initial concentration was lower than that outdoors.
The equation aligned well with the observed data, particularly in cases where different
ventilation system performances and filter efficiencies were applied. The filter performance
when using the ventilation system was confirmed to have the most significant impact on
indoor PM2.5 concentrations.

4. Discussion

A measurement analysis of the indoor concentration reduction achieved using ventila-
tion systems in apartments was performed and represented using mathematical equations
for comparison. Through previous experiments, this equation was verified to closely ap-
proximate the actual measured values. In the future, utilizing this equation will allow for
the prediction of indoor fine PM2.5 concentrations during ventilation system operation
based on outdoor PM2.5. This could help to develop methods for operating ventilation
systems to reduce indoor exposure to fine particulate matter.

The impact of filter efficiency on indoor PM2.5 concentrations during ventilation
system operating was confirmed. The use of different MERV-rated filters resulted in
different pressure differences and airflow rates within the ventilation systems. Higher
pressure differences led to reduced airflow rates, subsequently lowering the frequency of
the indoor air exchange. Equation (2) was employed to analyze the reduction in CO2 and
PM2.5 concentrations based on filter efficiency. An analysis was conducted for different
outdoor PM2.5 concentration levels: good, moderate, and unhealthy.

Figure 7 shows the calculated CO2 concentration over time using Equation (2) while
considering three different filter grades and varying airflow rates resulting from filter
pressure differences. MERV 6, 10, and 13 filters with airflow rates of 52, 44, and 39 m3/h,
respectively, were utilized. The initial CO2 concentration was set at 2000 ppm, and the
simulation was conducted for 300 min of ventilation system operation. The times required
to reach the indoor air quality standard of 1000 ppm or less were 93, 107, and 121 min for
the MERV 6, 10, and 13 filters, respectively. As the filter grade of the ventilation system
increased, it led to higher pressure differences and reduced airflow rates. This can result in
a lower CO2 removal capacity of the ventilation system.
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Figure 8 shows the changes in indoor PM2.5 concentration over a 400-min period
using different MERV filter grades when the outdoor PM2.5 concentration was classified as
“good”, “moderate”, or “unhealthy”. Figure 8a shows the indoor PM2.5 concentration when
using the MERV 6 filter. The initial indoor PM2.5 concentration was assumed to be half of
the outdoor PM2.5 concentration [32]. The efficiency of the MERV 6 filter for PM2.5 was set
to 10%. When the outdoor PM2.5 concentration was at the “good” level of 10 µg/m3, the
initial indoor PM2.5 concentration was 4.5 µg/m3, increasing over time to reach 8.6 µg/m3

in the saturated state. When the outdoor PM2.5 concentration was at the “moderate” level of
25 µg/m3, the initial indoor PM2.5 concentration was 11 µg/m3, increasing to 19.7 µg/m3 in
the saturated state. When the outdoor PM2.5 concentration was at the “unhealthy” level of
55 µg/m3, the initial indoor PM2.5 concentration was 23.9 µg/m3, increasing to 43.3 µg/m3

in the saturated state. Thus, using a low-efficiency filter in a ventilation system can increase
the indoor PM2.5 concentration.
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Figure 8b shows the indoor PM2.5 concentration when using the MERV 10 filter with a
filter efficiency of 50%. After 400 min, after reaching the saturated state, the indoor PM2.5
concentration was 4.8 µg/m3 for outdoor PM2.5 concentrations of 10 µg/m3, 12.1 µg/m3

for 25 µg/m3, and 26.6 µg/m3 for 55 µg/m3. Overall, the use of the MERV 10 filter tended
to maintain or slightly increase the initial PM2.5 concentration.

Figure 8c shows the indoor PM2.5 concentration when using the MERV 13 filter with a
filter efficiency of 97%. After 400 min, after reaching the saturated state, the indoor PM2.5
concentration was 2.0 µg/m3 for an outdoor PM2.5 concentration of 10 µg/m3, 5.1 µg/m3

for 25 µg/m3, and 11.2 µg/m3 for 55 µg/m3. Overall, the indoor PM2.5 concentration
decreased when using the MERV 13 filter.
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These findings showed the importance of selecting a relatively high-efficiency filter
for a ventilation system, as well as a ventilation rate that meets the regulatory ventilation
requirements. This combination of enough ventilation and high-efficiency filtration is
conclusively essential for maintaining indoor PM2.5 concentrations of 10 µg/m3.

5. Conclusions

In the context of using mechanical ventilation systems for indoor CO2 reduction in
houses, the impact of ventilation system filter efficiency on indoor PM2.5 concentrations
was investigated, aiming to provide insights into predicting and controlling indoor PM2.5
concentrations via ventilation system operation. The impacts of filter efficiency, ventilation
flow rates, and outdoor PM2.5 concentrations on indoor air quality were assessed using
mathematical modeling and experimentation. The results revealed that using filters rated
MERV 13 or higher was more advantageous than using lower rated ones. Additionally,
the study developed a mass balance equation for indoor PM2.5 and demonstrated that this
equation accurately matched the measured values. These findings enable the development
of effective strategies for maintaining indoor air quality and minimizing exposure to fine
particulate matter in residential houses.
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