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Abstract: Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora
and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can
affect forager bees. The goal of our study was to evaluate the effects of sublethal concentrations of
pyraclostrobin on the midgut ultrastructure of M. scutellaris forager workers. The bees were collected
from three non-parental colonies and kept under laboratory conditions. The bees were orally exposed
continuously for five days to pyraclostrobin in syrup at concentrations of 0.125 ng a.i./µL (FG1) and
0.005 ng a.i./µL (FG2). The control bees (CTL) were fed a no-fungicide sucrose solution, and the
acetone solvent control bees (CAC) received a sucrose solution containing acetone. At the end of
the exposure, the midguts were sampled, fixed in Karnovsky solution, and routinely processed for
transmission electron microscopy. Ultrastructural analysis demonstrated that both the fungicide
concentrations altered the midgut, such as cytoplasmic vacuolization (more intense in FG1), the
presence of an atypical nuclear morphology, and slightly dilated mitochondrial cristae in the bees
from the FG1 and FG2 groups (both more intense in FG1). Additionally, there was an alteration
in the ultrastructure of the spherocrystals (FG1), which could be the result of cellular metabolism
impairment and the excretion of toxic metabolites in the digestive cells as a response to fungicide
exposure. The results indicate that ingested pyraclostrobin induced cytotoxic effects in the midgut
of native stingless bees. These cellular ultrastructural responses of the midgut are a prelude to a
reduced survival rate, as observed in previous studies.

Keywords: digestive tract; Meliponini; mitochondria; morphology; strobilurin; sublethal effects

1. Introduction

Stingless bees are a large and diverse bee group belonging to the Meliponini tribe, of
which around 550 species and 58 genera have been described worldwide [1,2]. As well
as honey bees (Apis mellifera, Linnaeus, 1758), stingless bees are a member of the Apidae
family and are the largest group of eusocial bees [3]. The geographical distribution of
these bees is predominantly in tropical and subtropical regions, and they can be found in
Africa [4], America [5], the Indo-Malayan region, and Australasia [2]. The distribution of
stingless bees in these regions is closely related to the diversity of available flora (preferred
plant families) [6].

In Brazil, there is a high diversity of about 250 described stingless bee species belonging
to 29 genera, of which 20% are endemic [5]. Stingless bees are known for some remarkable
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characteristics, such as the incapacity to sting with a vestigial sting, well-developed defense
strategies, morphological diversity, a variety of nest architectures, and importance for
humans and the environment [2,7].

These native bee species are essential to conserving native flora [6,8–10] and are
important for several crops [11–14]. Nowadays, the breeding and care of stingless bees
(Meliponiculture) have become popular [15], which consequently has increased the commer-
cialization and research of stingless bee products like honey, pollen, and propolis [16]. Ad-
ditionally, many bioactive compounds, such as honey, propolis and geopropolis, with thera-
peutic properties that can contribute to treating human diseases, such as anti-inflammatory,
antioxidant, and antimicrobial effects, have been discovered [17–20].

In the same way as previously mentioned, Melipona scutellaris (Latreille, 1811; common
name—Northeast Uruçu) is an important bee species native to northeast Brazil [21], mainly
due to pollination services [8] and honey production since its singular aroma and flavor
are highly appreciated. The antibacterial properties of honey [22], and the antiproliferative
constituents of geopropolis [23], have been described. Although M. scutellaris is an essential
and relevant species, it is listed in the Brazil Red Book of Threatened Species of Fauna [24]. Ac-
cording to Toledo-Hernández et al. [25], many factors threaten stingless bees, highlighting
pesticides (insecticides, herbicides, fungicides, biopesticides, and fertilizers), transgenic
crops, deforestation, diseases and pests, competition for food resources, and climate change.
This is worrying since stingless bees are not as well studied as honey bees [26].

The increasing use of fungicides, worldwide, for many years [27], means bees are
more exposed to fungicides by aerial spraying or ingesting floral resources containing
their residues [28]. Raimets et al. [29] detected several fungicides in beekeeping matrices.
In that regard, pyraclostrobin is one of the most relevant strobilurin fungicides used in
some crops that stingless bees visit (coffee, eucalyptus, and pepper) and has also been
detected in pollen [30], nectar [31], and beebread [32]. Due to the inhibition of mitochondrial
respiration [33], the fungicide pyraclostrobin can affect essential functions of bee physiology.
A few studies have shown the side effects of fungicides on non-target stingless bees [34–38],
but there is still a considerable gap between insecticide and fungicide studies [25].

Additionally, there is a lack of knowledge about the sublethal effects of fungicides
on the digestive tracts of bees at a cellular level, which is responsible for vital nutritional
functions [39,40] and is an entrance site for many compounds such as nutrients or toxic
compounds [41]. The digestive tract of bees is divided into three compartments, the foregut
or stomodaeum, the midgut or mesenteron, and the hindgut or proctodaeum [42]. Due
to the importance of food digestion and the absorption of nutrients [43], the midgut can
be used as a key organ for cell biomarkers evaluation in ecotoxicological studies of the
sublethal effects of pesticide exposure [44–48].

According to Lourencetti et al. [49], three stingless bee species showed greater sen-
sitivity to pesticide exposure (the insecticide neonicotinoid) than the model organism
Africanized A. mellifera used in Brazil. Thus, stingless bees should be included in toxicolog-
ical evaluation programs, as Africanized honey bees do not represent the country’s vast
diversity of bee species [50]. Based on this, the effects of fungicides on these native bees
need to be clarified. Therefore, this study used an ultrastructural approach to evaluate the
morphological alterations on a subcellular level induced by the fungicide pyraclostrobin
and indications of cytotoxicity on the midgut cells after the oral exposure of M. scutellaris
to this fungicide.

2. Materials and Methods
2.1. Meliponary

The bees used in this work were obtained from a meliponary located at the Federal
University of São Carlos (UFSCar), Sorocaba campus (23◦34′52.1′′ S 47◦31′34.7′′ W), Soro-
caba, Brazil. Before starting the experiments, the colonies were visually inspected to ensure
a healthy status. Only colonies with similar strengths and populations that did not swarm
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were selected (n = 3). No chemical treatment was applied to manage the colonies, and they
were kept in an urban area without pesticide application.

2.2. Stingless Bee Sampling

Forager bees of M. scutellaris were sampled at the entrance of nests of three non-
parental colonies from the meliponary (Section 2.1) when they returned from foraging
activity (Figure 1). The collections were carried out with plastic bee cages (9 × 7 cm,
250 mL) containing 120 aeration holes (3 mm) and feeders (microtube 2 µL) filled with syrup
(crystal sugar 1:1 water, w:w) on primarily sunny days at 7:30–9:00 a.m., with temperatures
with a range of 15–25 ◦C, throughout the summer in the Southern Hemisphere in 2021.
After sampling, the cages were covered with fabric to avoid stress and transferred to the
“Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA)” at UFSCar
and placed in an incubator at a constant temperature of 28 ◦C (±1) and 65% (±5) relative
humidity in darkness before starting the bioassay.
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Figure 1. A representative picture of the study model, the M. scutellaris stingless bee.

2.3. Fungicide Pyraclostrobin

The standard analytical chemical was purchased from Sigma-Aldrich (CAS Number
175013-18-0, 99.9% purity). The stock solution (1000 ng a.i./mL) was prepared using acetone
as a solvent and autoclaved distilled water in proportions of 60–40%, respectively. Dilutions
were performed to obtain the working solutions (0.125 ng a.i./µL and 0.005 ng a.i./µL)
based on Domingues et al. [35,48]. These concentrations have been found in resources
collected by bees [30,32].

2.4. Oral Exposure to Pyraclostrobin

For the bioassays, after bee sampling (Section 2.2), the feeders were removed from
the cages two hours before starting oral exposure with two concentrations of the fungicide
pyraclostrobin in syrup (0.125 ng a.i./µL—FG1; 0.005 ng a.i./µL—FG2). Then, the bees were
randomly divided into fungicide-treated groups (FG1 and FG2), untreated controls (CTL),
and solvent controls (CAC), with four replicates (n = 20 bees per cage); each experimental
group contained 80 bees. The bees from CTL were fed syrup only, and the bees from CAC
received syrup containing acetone (1% of the final volume) based on the recommendation
of the OECD in 2013 [51]. Oral exposure was performed ad libitum over five days based on
previous studies [35,48].

2.5. Midgut Processing for Morphological Analysis

In order to evaluate the effects of oral exposure to pyraclostrobin on M. scutellaris, the
bees were randomly selected from all the groups (n = 6) and rendered motionless using a
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low temperature (4 ◦C) for one minute, and then dissected under a stereomicroscope at
room temperature 25 ◦C (±1). The midguts were collected and processed for ultrastructural
analysis. Light microscopy analysis was also performed according to the methodology
described in the Supplementary Materials (SM). The purpose was to identify which midgut
regions were more suitable for ultrastructure analysis by electron microscopy (Figure S1).

Transmission Electron Microscopy (TEM)

Three midguts for each experimental group were sampled, and the median region
of each individual was subdivided into three portions (median subregions), fixed in a
Karnovsky solution (2.5% glutaraldehyde—4% formaldehyde) in 0.1 M phosphate-buffered
saline (pH 7.3) for 24 h at room temperature, and postfixed in 1% osmium tetroxide
using the same buffer. Then, the midguts were washed in phosphate-buffered saline,
dehydrated in a graded acetone series (50%, 75%, 90%, 95%, and 100%), and embed-
ded in ultrapure resin (Araldite®). This process resulted in nine blocks per experimental
group. The ultra-sections (90–60 nm) obtained from all samples were contrasted with
0.5% uranyl acetate for 20 min and lead citrate for 10 min (room temperature), and
then visualized and photographed using a transmission electron microscope (Tecnai
Spirit—FEI Company). Ninety regions were examined per experimental group. All steps
were conducted as established in the protocol used at the Electron Microscopy Center of
the Bioscience Institute (UNESP, Botucatu—Brazil), where these steps were performed.

3. Results

The TEM analysis pattern performed on the midgut epitheliums of the forager workers
of M. scutellaris from all the experimental groups is highlighted in Figure 2. Based on
the analysis, the midgut epitheliums of the bees from the CTL and CAC groups were
determined to be similar. The digestive cells in both exhibited well-developed microvilli
containing mitochondria with a high electron density and regular morphology, as well as
mitochondria in varied formats, spherocrystals, and myelin figures in average amounts
for the forager’s life stage (Figure 2A,B). In contrast, the bees in the FG1 group showed
large, homogeneous, electron-lucent regions in the cytoplasm of the midgut digestive
cells, like cytoplasm vacuolization, while the bees in the FG2 group exhibited only small
extensions of electron-lucent material in the cytoplasm (Figure 2C,D). These changes were
not observed in the bees from the control groups. Additionally, digestive cells of the bees’
midguts from the FG1 group showed an altered nuclei morphology with irregular shapes
and several spherocrystals, which were absent in the CTL and CAC groups (Figure 2C). The
midgut digestive cells from the FG2 group exhibited autophagic vacuoles in the cytoplasm
(Figure 2D).

Figure 3 summarizes the apical region of the digestive cells in the midgut region,
highlighting the changes mentioned above (Figure 2). The midgut digestive cells in the
bees from the CTL group demonstrated standard organelle morphology, well-organized
microvilli, followed by a cytoplasm rich in mitochondria, and displayed some typical
spherocrystals (Figure 3A,D). Similar to those found in bees from the CTL group, the bees
in FG1 and FG2 revealed digestive cells with well-organized microvilli and a cytoplasm
rich in mitochondria (Figure 3B,C,E,F). However, the presence of agglomerations of sphero-
crystals and a mischaracterized nuclei were observed when compared to the CTL group
(Figure 3B,E). Similarly, the bees from the FG2 group presented autophagic vacuoles and
lipid vacuoles in the cytoplasm of digestive cells, which were not seen in the CTL group
(Figure 3C,F).
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Figure 2. Ultrastructural midgut epithelium morphology in forager workers of M. scutellaris following
five days of exposure to pyraclostrobin. (A) Untreated control—CTL; (B) solvent control—CAC;
(C) pyraclostrobin (0.125 ng a.i./µL)—FG1; (D) pyraclostrobin (0.005 ng a.i./µL)—FG2. Altered
nuclei (an), autophagic vacuole (av), lipid deposit (ld), microvilli (mv), mitochondria (mt), nuclei (n),
nucleolus (nc), and spherocrystal (s).

Regarding the basal region of the midgut digestive cells in the midgut region, the
individuals from all the experimental groups did not show any morphological changes
among themselves (Figure 4). The cells in this region were characterized by the presence of
evident agranular endoplasmic reticulums and mitochondria associated with the membrane
forming the basal labyrinth (Figure 4A–C). In the cellular medial region, the digestive cells
of the bees not exposed to the fungicide pyraclostrobin (CTL and CAC) showed a large
quantity of vesiculated Golgi apparatus (Figure 4D). However, the bees from the FG1 group
exhibited a more significant extension of myelin figures and spherocrystals compared to
those of the CTL and FG2 groups in the medial region of the digestive cells (Figure 4E).
Regarding the FG2 group, the bees demonstrated the presence of autophagic vacuoles in
the digestive cells (Figure 4F).

Based on the TEM analysis of the digestive cells, the mitochondria exhibited similar
ultrastructural morphologies among the groups (Figure 5). However, the mitochondrial
cristae appeared tubular and slightly dilated in the bees from the FG1 and FG2 groups,
becoming more evident (Figure 5A–C). The bees in the CTL and CAC groups did not
exhibit this trait and were similar. Figure 6 highlights the spherocrystals present in the FG1
and FG2 bee groups; some of them appeared unstructured, and this feature was present
only in the fungicide-exposed groups.
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reticulum (rer), and spherocrystal (s).
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workers of M. scutellaris following five days of exposure to pyraclostrobin. (A,D) Untreated
control—CTL; (B,E) pyraclostrobin (0.125 ng a.i./µL)—FG1; (C,F) pyraclostrobin
(0.005 ng a.i./µL)—FG2. Agranular endoplasmic reticulum (aer), autophagic vacuole (av),
cytomembrane (cm), Golgi complexes (gc), lipid deposit (ld), mitochondria (mt), myelin figures (mf),
and spherocrystal (s).
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a.i./µL)—FG2. Mitochondria (mt).
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Figure 6. Ultrastructural changes in the spherocrystals of the digestive cells in the midgut epithelium
in forager workers of M. scutellaris following five days of exposure to pyraclostrobin. (A,B) pyra-
clostrobin (0.125 ng a.i./µL)—FG1; (C) pyraclostrobin (0.005 ng a.i./µL)—FG2. Altered nuclei (an),
Golgi complexes (gc), lipid deposit (ld), lysosomes (ly), microvilli (mv), mitochondria (mt), myelin
figures (mf), and spherocrystals (s).

4. Discussion

Pesticides have been recognized as significant stressors, contributing to honey bee
colony losses [52,53]. In Brazil, the weakness and losses in colonies of Africanized A.
mellifera are highly associated with pesticide use [54,55]. In the same way, populations of
stingless bees are also at risk due to pesticide exposure [25]. According to Rondeau and
Raine [56], there are significantly more knowledge gaps regarding the risk of fungicides on
some bees, particularly wild bees, compared to honey bees. From this point of view, the
findings of pyraclostrobin’s harmful effects on the midgut’s ultrastructure are crucial to
clarify some of these gaps in native stingless bees.

The electron-lucent areas, similar to cytoplasmic vacuolization, observed in the di-
gestive cells of M. scutellaris indicate a cytotoxic effect caused by exposure to the higher
residual concentration of pyraclostrobin continuously ingested by these bees. Similar effects
were reported in A. mellifera workers exposed to the fungicide iprodione (dicarboximide)
at a concentration of 2 mg/kg [46] and the fungicide azoxystrobin (strobilurin) at 100 µg
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a.i./bee [57]. Additionally, Batista et al. [58] highlighted cellular vacuolization at the zone
of differentiation above the regenerative cells in the midgut of honey bees after exposure to
fungicide picoxystrobin (strobilurin) at a concentration of 0.018 ng a.i./µL.

Ultrastructural analyses revealed the presence of atypical nuclear morphology, in-
dicating a prelude to cellular death, which was more pronounced in the bees from the
FG1 group. Cytotoxic effects, such as pyknotic nuclei, were also observed in the midgut
epitheliums of the adult honey bees after four days of larval exposure to the fungicide pyr-
aclostrobin at a concentration of 4.93 ng/mL, as reported by Tadei et al. [59]. The described
characteristics are associated with programmed cell death (apoptosis) [60]. These responses
can act as a defense mechanism against pyraclostrobin exposure, as observed with the other
stressors [44,61–63]. However, even with the characteristics indicative of cytotoxicity, the
cells maintained intact and probably active organelles (normal morphology), such as Golgi
complexes, rough endoplasmic reticulums, and mitochondria. If the oral exposure has been
prolonged, the cytotoxic effects might have expanded, and these cells would likely die.

Although the mode of action of pyraclostrobin and the other strobilurin fungicides is
known to involve the inhibition of the respiratory chain [33], no drastic ultra-morphological
alterations were observed in the mitochondria of the bees from the FG1 and FG2 groups.
These bees exhibited only slightly dilated mitochondrial cristae, suggesting that energy
production could be decreased with continued exposure. According to Zick et al. [64], the
cristae morphology is linked to the bioenergetic state of the mitochondria, although there are
still some gaps in understanding the key factors. A study conducted by Campbell et al. [65]
highlighted that honey bees increased their mitochondrial oxygen consumption rates
when exposed to the strobilurin fungicide Pristine® at concentrations of 5 ppm and higher.
Ultrastructural alterations in the mitochondrial cristae were observed in the newly emerged
workers of Africanized A. mellifera after exposure to thiamethoxam (0.001 ng/µL) during
the larval phase [66], such as dilated mitochondria with a deformed shape and a loss of
cristae. The mitochondrial cristae can vary from simple tubular structures to more complex
lamellar structures merging with the inner boundary membrane, and their ultrastructural
features have important implications for mitochondrial bioenergetics, biogenesis, and the
role of mitochondria in apoptosis [67].

Myelin figures and autophagic vacuoles, or autophagosomes, are common in the
digestive cells of the bee midgut, which exhibit a high turnover level of intracellular
compounds, such as membranes and organelles, due to their multiple functions [68].
These cells synthesize digestive enzymes [69], compounds of the peritrophic matrix [70],
and membrane protein transporters for nutrient absorption in the midgut [40]. The high
absorption rate of digestive cells is linked to the longer striated border observed in this
study, similar to what has been found in the midguts of other stingless bee species [71]

An alteration in the ultrastructure of the spherocrystal was observed. This alteration
supports our hypothesis that fungicide exposure impairs cellular metabolism and causes
the excretion of toxic products within the digestive cells. According to Serrão et al. [40],
spherocrystals are relevant to maintaining osmoregulation, storing inorganic compounds,
and preventing intoxication. According to the lesion index (severity and reversibility)
adapted to bees [72], a score of one was assigned to spherocrystal alteration due to its asso-
ciation with the inactivation of toxic substances. Although in a scenario with continuous
exposure, it could change and worsen.

In summary, our findings indicate that the fungicide pyraclostrobin clearly compro-
mises the midgut of M. scutellaris at the ultrastructural level, offering another perspective
on the effects of this fungicide on native stingless bees. These results reinforce our previous
studies conducted by our research group [35,48,50,59,73]. Furthermore, our results further
contribute to developing preventive safety measures to reduce the risks of pesticide use
to bees. Regarding this issue, applying pesticides when bees are less active, considering
weather conditions, establishing buffer zones, and implementing monitoring, integrated
pest management, and habitat conservation measures, may reduce the risks of pesticides
to bees.
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5. Conclusions

The results of this study confirm the hypothesis that ingested pyraclostrobin induces
cytotoxic effects at the ultrastructural, subcellular level of the midgut in native stingless
bees. In conclusion, these cellular responses of the midgut at the tissue level may serve
as a prelude to reduced bee survival rates. Therefore, it is necessary to consider the
effects of fungicides on native bees and include them in protective measures to enhance
regulatory decisions on risk assessment. Additionally, more studies like this would reduce
the knowledge gap in how different external factors affect stingless bees.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11121028/s1. Figure S1: Midgut epithelium in forager work-
ers of M. scutellaris, following five days of exposure to pyraclostrobin. (A) Untreated
control—CTL; (B) solvent control—CAC; (C) pyraclostrobin 0.125 ng a.i./µL—FG1; (D) pyraclostrobin
0.005 ng a.i./µL—FG2. Asterisk (a) = apocrine secretion, black arrow = cells being released into the
lumen (l), muscle (m) and villi (l). N = 6 individuals per experimental group.
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