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Abstract: Mercury is considered to be one of the chemical elements posing the greatest threats
to the health of most animals and can be transferred from aquatic ecosystems to terrestrial food
webs. Many bat species forage above water, and their food sources include aquatic and amphibious
organisms. Bats are very sensitive to the slightest changes in the environment. The objective was
to determine the accumulation of mercury in the fur of insectivorous bats in summer habitats in
an area with limited anthropogenic activity in the conditions of the middle taiga in the northwest
European part of the Russian Federation. In the studied species, the average values of the metal’s
content (µg/g) increased in the following order: Myotis daubentonii (3.294 ± 0.934), Myotis dasycneme
(3.909 ± 0.543), Vespertilio murinus (8.011 ± 1.136), Pipistrellus nathusii (8.366 ± 0.546), and Nyctalus
noctula (8.408 ± 1.386). The key factor regarding the mercury accumulation in each bat species is the
foraging strategy. The mercury content in the fur of adult bats was higher than in subadults.

Keywords: mercury; environmental monitoring; risk assessment

1. Introduction

Mercury is considered to be one of the chemical elements posing the greatest threats
to the health of most animals [1]. This is due to the high biogeochemical mobility of
organomercury compounds and their ability to accumulate in the tissues of living organ-
isms [2–4]. Metal concentrations generally increase with the increasing trophic level of
the organism, and the metal can be transferred from aquatic ecosystems to terrestrial food
webs [5,6].

Bats are a unique group of mammals in terms of their ecological properties. European
bat species have complex thermoregulatory processes, expend significant amounts of
energy on flight, and consume large numbers of insects; many are also seasonal migrants,
which is associated with the need to change summer and winter habitats [7]. It has
been noted that bats can be convenient bioindicators of mercury in ecosystems as they
are long-lived species [8,9], with a high metabolic rate in the active state, requiring the
consumption of large amounts of food [10–14]. Many bat species forage above water, and
their food sources include aquatic and amphibious organisms that are involved in the
transfer of mercury from aquatic to terrestrial ecosystems. Bats are very sensitive to the
slightest changes in the environment [15–20], and some bat species are currently listed
as threatened or endangered [21,22]. The main attention is paid to studies of mercury
accumulation by hydrobionts and fish-eating birds and mammals [23] since it is in the
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aquatic environment that the conditions are present for the bacterial process of the formation
of the most toxic organomercury compounds [24]. As a rule, the study of mercury in the
fur of bats was carried out in areas near anthropogenic and natural sources of mercury
in the atmosphere [14,25–27]. However, elevated mercury concentrations have also been
reported in bats far from the sources of this metal [28,29].

This is the first study assessing mercury accumulation regarding bats in Russia. The
objective was to determine the accumulation of mercury in the fur of insectivorous bats
in summer habitats in an area with limited anthropogenic activity in the conditions of the
middle taiga in the northwest European part of the Russian Federation.

2. Materials and Methods
2.1. Study Area

Bat fur was collected in 2021–2022 in the specially protected natural area, the Darwin
State Nature Biosphere Reserve, which is located on a gently sloping lowland watershed
peninsula on the northwestern shore of the Rybinsk Reservoir (Figure 1).
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Figure 1. The region of study (the dots show the places where the material was collected).

The area of the reserve is over 112 thousand hectares, of which 67 thousand are land
and the rest are coastal waters. The lowland and flat relief is dissected by a sparse network
of rivers; most of the reserve is swampy.

2.2. Sampling

Over two years, 175 individuals of five species were studied: pond bat (Myotis dasyc-
neme Boie, 1825); Daubenton’s bat (Myotis daubentonii Kunh, 1817); parti-colored bat (Ves-
pertilio murinus L., 1758); Nathusius’s pipistrelle (Pipistrellus nathusii Keyserling & Blasius,
1839); and common noctule (Nyctalus noctula, Schreber, 1774). In 2021, bats were captured
in late June. All individuals were assigned to the s/ad (subadult) age group—independent
flying juvenile [30]. In 2022, material was collected in August, and all individuals were
assigned to the ad (adult) age group—sexually mature individuals aged one year and
older. All captured individuals were weighed to the nearest 0.1 g 8–12 h after capture.
During this time, the digestive tract of bats is almost completely emptied, which reduces
the weighing error since bats are able to increase their body weight by 30% during the night
by eating more food [31]. The length of the forearm (R, mm) was used as the main indicator
of the linear dimensions of the body. All manipulations were carried out in accordance
with the recommendations of the American Society of Mammalogists [32]. The animal
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study protocol was approved by the Ethics Committee of the Zoological Institute RAS
(1-11/21-03-2024). The bats’ fur was collected from their backs (0.1–0.2, g). The animals
were kept in cloth bags. After all manipulations, bats were released into the wild the
following day after sunset. The animals were checked for dehydration by assessing the
elasticity of the skin; some of them were administered water to drink before release. Based
on the features of foraging behavior, species of the Vespertidae family in the European part
of the Russian Federation are divided into three groups [33]. The first group consists of
species with high dietary plasticity, employing different hunting strategies and regularly
changing the biotopes in which they feed. Among the studied species of the Darwin Nature
Reserve, only the common noctule bat belongs to this group. The second group consists of
conditionally plastic species; their representatives in one region hunt in different biotopes
but at the same time prefer not to leave the hunting place during the night. In the Darwin
Nature Reserve, this group includes Nathusius’s pipistrelle and the parti-colored bat. The
third group are conservative species preferring the same food items regardless of the region.
In the Darwin Nature Reserve, these are the pond bat and Daubenton’s bat.

2.3. Analytical Methodology

The mercury content in the fur was determined at the Regional Center for Collec-
tive Use of Cherepovets State University. The analysis was performed by the pyrolysis
method on an atomic absorption spectrometer RA-915M with a PIRO attachment (the
limit of detection for mercury is 0.002–200 µg/g). Fur samples weighing 10–50 mg were
placed on a quartz dispenser and transferred to a thermolysis cell to determine the to-
tal mercury content. The samples were burned at a temperature of 300 ◦C for 1–2 min.
The accuracy of the analysis was determined using certified biological material DORM-4
(0.412 ± 0.036 µg/g) and DOLT-5 (0.44 ± 0.18 µg/g) (Institute of Environmental Chemistry,
Ottawa, ON, Canada). The accuracy was checked every 20 measurements (relative percent-
age difference (RPD) < 10%). The differences between replicates averaged 7.3%. The limit
of detection (LOD), the limit of quantitation (LOQ), trueness, and precision followed the
EURACHEM criteria. The LOD and LOQ values calculated using DORM-4 and DOLT-5
were 0.0004 and 0.0014 µg/g and 0.0007 and 0.0216 µg/g, respectively.

2.4. Statistical Analysis

Mercury concentrations in bat fur did not follow a normal distribution (Shapiro–Wilk
test and Kolmogorov–Smirnov test), so nonparametric methods were used in statistical
analysis: Kruskal–Wallis U-test and Mann–Whitney H-test. Spearman’s nonparametric
correlation coefficient was used to determine the correlation between mercury concentration
in the fur and animal’s weight.

3. Results

The absolute mercury concentrations in the fur of the bats from the Darwin Nature
Reserve varied widely, from 0.720 µg/g in Myotis daubentonii to 43 µg/g in Vespertilio
murinus. The minimum statistically significant mercury values in the fur were noted
for Myotis daubentonii (3.294 ± 0.934), Myotis dasycneme (3.909 ± 0.543), intermediate for
Vespertilio murinus (8.011 ± 1.136), and maximum for Pipistrellus nathusii (8.366 ± 0.546)
and Nyctalus noctula (8.408 ± 1.386). The same trend was noted when comparing both the
young and adult individuals of the studied species separately (Table 1; Figure 2).

In all the species, the mercury content in the fur of the adult bats was 1.5–3 times
higher than that of the subadults (Figure 2).
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Table 1. Multiple Comparisons p values, Kruskal-Wallis test of different bat species.

Myotis dasycneme Myotis
daubentonii

Pipistrellus
nathusii Nyctalus noctula Vespertilio

murinus

subadult H (4; 85) = 36.9, p < 0.001

Myotis dasycneme - 1.000 <0.001 0.007 0.004
Myotis daubentonii - <0.001 0.040 0.032
Pipistrellus nathusii - 0.124 0.028

Nyctalus noctula - 1.000
Vespertilio murinus -

adult H (4; 91) = 35.9, p < 0.001

Myotis dasycneme - 1.000 0.077 0.122 0.056
Myotis daubentonii - <0.001 <0.001 <0.001
Pipistrellus nathusii - 1.000 1.000

Nyctalus noctula - 1.000
Vespertilio murinus -

In bold, significant differences between bat species are shown.
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Figure 2. The mercury content in the fur of different bat species, where blue dots are subadults and
red are adults. Under the top axis, results of Mann–Whitney tests are shown. Different letters (a,b,c)
under bottom axis indicate significant differences between bat species in multiple comparisons of
mean ranks (Kruskal–Wallis ANOVA). Red line is a level of risk of the sublethal neurochemical effects
of mercury exposure [26].

Statistically significant differences in the mercury concentrations in the fur between
bats of different ages were noted in all the species, except for Daubenton’s bat species. The
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levels of mercury accumulation in the fur between the different species differed statisti-
cally significantly in both the juveniles and adults (H = 36.86 and H = 35.91, respectively;
p < 0.001). The minimum average concentrations were always observed in Myotis dauben-
tonii and M. dasycneme (in juveniles—1.610 ± 0.800 and 1.835 ± 0.482 µg/g; in
adults—4.865 ± 2.191 and 3.723 ± 4.925 µg/g, respectively). The highest concentrations of
mercury in the fur of the juveniles were observed in Pipistrellus nathusii (6.421 ± 1.700 µg/g)
and in the adults in the common noctule and Vespertilio murinus (13.455 ± 10.144 µg/g and
14.959 ± 11.791 µg/g, respectively). The differences between the average concentration of
mercury in the fur of the juveniles and adults of Pipistrellus nathusii are 1.5 times and in the
species of the genera Myotis and Vespertilio murinus 3–5 times.

No statistically significant differences in the concentration of mercury in the fur were
found between the males and females in any of the studied bat species (Table 2).

Table 2. Weight, forearm length, and THg concentrations in fur of male and female bats from the
Darwin Nature Reserve by species. In M–W columns, Mann–Whitney test results are displayed.

Species Sex Weight, g M–W Forearm
Length, mm M–W THg M–W

Myotis
dasycneme

male
n = 12

13.2 ± 3.2
8.1–20.0 Z = 1.99

p = 0.046

44.4 ± 3.0
36.2–48.0 Z = 0.78

p = 0.432

3.310 ± 2.969
0.720–11.240 Z = 1.89

p = 0.057female
n = 8

15.0 ± 2.6
9.9–19.4

45.1 ± 3.1
37.8–48.5

4.350 ± 1.037
2.425–5.569

Myotis
daubentonii

male
n = 5

8.7 ± 1.3
7.7–10.9 Z = 1.70

p = 0.090

38.5 ± 0.8
37.2–39.5 Z = 1.31

p = 0.185

1.964 ± 1.291
1.072–4.232 Z = 1.49

p = 0.140female
n = 17

9.5 ± 0.6
8.5–10.6

38.3 ± 0.9
37.0–40.3

3.685 ± 4.903
1.299–22.310

Pipistrellus
nathusii

male
n = 18

8.0 ± 1.1
6.4–10.4 Z = 1.46

p = 0.145

33.8 ± 0.9
32.2–35.0 Z = 2.91

p = 0.036

8.789 ± 4.807
1.799–21.950 Z = 0.012

p = 1.0female
n = 26

8.6 ± 1.2
6.7–11.8

35.5 ± 3.1
33.0–46.0

8.134 ± 2.762
3.205–15.490

Nyctalus
noctula

male
n = 11

30.5 ± 2.3
25.2–33.4 Z = 1.89

p = 0.057

54.5 ± 1.5
52.4–57.1 Z = 1.89

p = 0.057

7.988 ± 9.965
2.736–37.200 Z = 0.21

p = 0.836female
n = 22

31.1 ± 2.8
26.9–38.6

54.2 ± 4.7
34.0–57.1

8.651 ± 7.427
3.146–23.930

Vespertilio
murinus

male
n = 19

13.8 ± 1.5
12.0–17.5 Z = 2.10

p = 0.036

44.4 ± 1.3
42.0–46.8 Z = 1.14

p = 0.251

4.324 ± 1.694
0.929–7.547 Z = 1.87

p = 0.06female
n = 37

15.3 ± 3.0
11.8–27.4

44.9 ± 1.3
42.0–48.1

9.904 ± 9.905
1.882–43.005

Note: above the line mean value ± standard deviation, below the line - minimum and maximum values. In bold,
significant differences between male and female bats species are shown.

Despite the fact that the studied species differ in size, no significant correlations were
found between the mercury content in the fur of the bats and their size characteristics
(weight and forearm length). The correlation between the mercury levels in the fur and
forearm length was noted only for Nyctalus noctule (Figure 3).

The accumulation of mercury in some species is consistent with the characteristics
of their foraging strategy. Minimum mercury concentrations were observed in conserva-
tive species, and maximum concentrations were found in those species characterized by
trophic plasticity.
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4. Discussion

The mercury content in the organs and tissues of bats depends on its background
concentrations in the breeding sites and along the migration routes, including the presence
of point anthropogenic mercury sources [26,34,35]. The mercury concentrations in the fur
of all the bat species from the Darwin Nature Reserve are within the range observed in
representatives of the Vespertidae family inhabiting areas with minimal anthropogenic
stress in Europe and North America. Thus, in Myotis daubentonii from the Darwin Nature
Reserve, the average mercury content in the fur was 2 times higher than in individuals
of the same species from the southern regions of Sweden [36]. The average mercury
content in the fur of adult M. myotis from non-industrial regions of the Czech Republic was
comparable to the mercury content in the fur of adult M. daubentonii and M. dasycneme from
the Darwin Nature Reserve [28]. The average mercury concentration in the fur of some
Vespertilionidae species from the northeastern regions of the USA was either comparable
(Myotis leibii and Myotis sodalis) or 1.5–2 times higher (Perimyotis subflavus, Myotis lucifugus,
and Myotis septentrionalis) compared to Nyctalus noctula and Vespertilio murinus from the
Darwin Nature Reserve, which had the highest average mercury concentrations in their
fur [34].

The fur of bats from areas subject to anthropogenic influence may exhibit mercury
concentrations exceeding those found in the bats from the Darwin Nature Reserve. For
instance, the average mercury content in the fur of M. myotis from the Czech Republic,
living in areas of active coal mining and industrial enterprises, was 30 µg/g, i.e., 10 times
higher than that of the conspecifics from areas with low anthropogenic impact [28]. In
Myotis lucifugus caught in the vicinity of the mercury-contaminated South River in Virginia,
the average mercury concentration in the fur was 132 ± 96 µg/g, which is 10 times higher
than the maximum average values recorded in adult individuals of Nyctalus noctula and
Vespertilio murinus in the Darwin Nature Reserve [26]. The Darwin Nature Reserve is
located at a distance from large industrial sources of mercury. As studies show, the mercury
emissions from the metallurgical and chemical enterprises in the city of Cherepovets,
located 70 km north of the reserve, are minimal and do not lead to increased mercury
concentrations in the adjacent ecosystems [37–39].

Sex, age, reproductive status, and species characteristics are the most significant
factors determining the level of mercury accumulation in bats in an area with a limited
anthropogenic impact [34,40]. The ratio of the mercury concentrations in the fur between
the age groups of the bats from the Darwin Nature Reserve is consistent with the results
of other studies. For most species, it was shown that adults contain several times more
mercury than juveniles [27,34,41,42]. The mercury concentrations in the fur of the bats from
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the temperate zone reflect the levels of its intake into the organism during the active phase
of the annual life cycle, when the fur grows [43]. Therefore, the mercury concentration in the
fur is an integral indicator of the mercury accumulation in the organism between seasonal
molts. For a correct interpretation of the obtained results, it is necessary to consider whether
the fur was taken for analysis “before” or “after” the seasonal molt. Subadult bats are a
special group in which the complete replacement of the fur formed in utero occurs during
the first year of life [44]. Therefore, the mercury content in the fur of juveniles reflects its
intake during embryonic development and with maternal milk, and during independent
feeding. The fur from the adult bats in the Darwin Nature Reserve was collected in early
August, while most temperate species molt mainly in late summer–autumn. Therefore, the
mercury concentration in the fur of the adult bats from the Darwin Nature Reserve reflects
interspecific differences in mercury accumulation due to both its intake at breeding sites and
during seasonal migrations. In addition, the increase in the mercury concentrations in the
fur of the adults, compared to the juveniles, can be explained by the long-term accumulation
of mercury in the organism with a decrease in the synthesis of mercury-binding proteins
with age, such as metallothioneins, involved in mercury excretion.

Studies of other Vespertilionidae species show that mercury accumulation can differ
statistically significantly between the sexes [34]. The average mercury content in the fur
of females is generally lower than that of males, which is explained by its excretion from
the body during pregnancy and lactation [45]. In addition, sex differences in mercury
accumulation in bats may be associated with the fact that individuals of different sexes
prefer different biotopes for feeding and wintering, and their choice is dependent on the
river network density and altitude above sea level [46]. The absence of sexual differences
in subadults can be explained by the fact that all the individuals of this group have the
same reproductive status. The bats of this group have not yet undergone physiological
changes leading to the elimination of mercury from the organism (changes in hormonal
levels, pregnancy, and lactation in females).

Food is the main source of mercury for most vertebrates. The predatory species
occupying the upper trophic levels in local food webs contain more mercury in their organs
and tissues compared to the herbivorous species of the low trophic levels. This pattern is
also true for bats with different trophic specializations. Thus, when studying 32 tropical bat
species belonging to eight trophic guilds, it was shown that the minimum concentrations of
mercury in the fur are observed in frugivorous species, while the concentration of mercury
in the fur of insectivores was the highest [25]. Similar differences between bats of different
trophic guilds were found in a study in Belize [47].

The results of the present study show that interspecific differences are observed not
only in species from different trophic guilds but also for species belonging to the same
trophic guild but preferring different food items [40,48]. The diet composition of most
of the bats in the Darwin Nature Reserve has not been studied, with the exception of
Nathusius’s pipistrelle [49]. However, it can be assumed that their diet is based on the
same food items as among the representatives of these species from the other regions of the
European part of Russia—primarily insects of different taxonomic and ecological groups,
including amphibious ones [50]. Aquatic ecosystems are one of the main sources of mercury
in terrestrial food webs, and the level of mercury accumulation in bat fur reflects the link of
their diet with aquatic ecosystems [47]. However, despite the fact that Myotis daubentonii
and M. dasycneme prefer to feed over water, studies of the trophic niches in the different
bat species in the Volga region have shown that 60–70% of their diet includes butterfly and
caddisfly imago [50]. These two species of bats have conservative feeding behavior, so it
should be expected that their diets differ little in different parts of the range [33]. At the
same time, beetles comprise a significant share of the diets of the other studied bat species.

In addition to the composition of the diet, the rate of accumulation in the body can
be influenced by the body size and physiological characteristics of individual species.
Smaller species are expected to accumulate toxins faster because they have higher specific
metabolism and therefore must consume prey at a higher rate. In general, mammals of
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different ecological and size groups do not show significant correlations between mercury
content in fur and size–weight characteristics.

The mercury content in bat fur closely correlates with its content in the skin, muscle,
blood, and internal organs [28,34,35]. Therefore, fur is convenient for assessing the overall
toxic impact of mercury on bat organisms.

Previous studies on mammals have established concentrations of mercury in fur
leading to toxic effects.

The neurotoxic effect of the metal is primarily manifested by damage to the organs of
the central nervous system [51–53]. Visual impairment and changes in movement activity
in wild bat populations have been noted at mercury levels in fur > 5 µg/g [54]. The
mercury concentrations in the fur of bats in northwestern Russia exceed 5 µg/g in 48% of
the individuals studied (Figure 4).
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It has been established that 10 µgHg/g in bat fur is the threshold level of risk of the
sublethal neurochemical effects of mercury exposure [26,34,55]. Among the studied bats,
the proportion of individuals with mercury concentrations in their fur above 10 mg/kg is
18%. Exceeding the threshold value was noted in all the studied species (Figure 4).

The threshold level of mercury content in bat fur, exceeding which increases the risk
of DNA damage, is 30 µg/g [56]. Mercury content in fur exceeding 30 µg/g was found
in single individuals of Nyctalus noctula and Vespertilio murinus. There is also a risk of
reproductive damage: oxidative stress has been reported in the testes, for example, in
rats after mercury exposure [57,58]. The effects of mercury also include changes in fetal
development, which can cause impairment or even death after birth [59].

5. Conclusions

The study showed that 18% of the insectivorous bats had mercury concentrations
above the risk threshold for the sublethal neurochemical effects of mercury exposure.

The key factor for mercury accumulation in each bat species is the foraging strategy. In
addition, in all the studies of bat species, the mercury content in the fur of the adult bats was
higher than that of the subadults. The size of the individual and sex do not affect mercury
accumulation. The interspecies differences are due to dietary habits. Future studies should
therefore focus on analyzing the element concentrations in prey insects foraged by different
bat species.
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