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Abstract: Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant
clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims
to promote drug toxicology strategies for the effective investigation of the putative toxicity and
potential molecular mechanisms of antibiotic drugs through the study of tetracycline in AP. Using
the SwissTargetPrediction, SEA Search, Super-PRED, GeneCards, Drugbank, Online Mendelian
Inheritance in Man (OMIM), and Therapeutic Target Database (TTD), we identified 259 potential
targets associated with tetracycline exposure and AP. Further refinement via the STRING database
and Cytoscape (version 3.10.1) software highlighted 22 core targets, including TP53, TNF, and AKT1.
Functional enrichment via the Database for Annotation, Visualization, and Integrated Discovery
(DAVID) identified pathways through Gene Ontology (GO) terms and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, highlighting PI3K-Akt, MAPK, HIF-1, and AGE-RAGE as
critical mediators in tetracycline-induced AP. Molecular docking confirmed the strong binding be-
tween tetracycline and the core targets. Overall, these findings suggest that tetracycline may affect
the occurrence and progression of pancreas-related inflammation by regulating pancreatic cell apop-
tosis and proliferation, activating inflammatory signaling pathways, and regulating lipid metabolic
pathways. This study provides a theoretical basis for understanding the molecular mechanism of
tetracycline-induced AP and lays the foundation for the prevention and treatment of digestive system
diseases associated with excessive exposure to tetracycline antibiotics and certain tetracyclines. In
addition, our network toxicology approach has accelerated the elucidation of toxic pathways in
antibiotic drugs that lack specific characteristics.

Keywords: tetracycline; acute pancreatitis; network toxicology; molecular docking; toxicant
metabolism

1. Introduction

The antibiotic tetracycline, which has attracted much attention in medical use, is an
important factor in inducing pharmacogenetic acute pancreatitis; however, its induction
mechanism has not been fully clarified [1]. Traditional research methods are difficult to
analyze the complex pathological process because they focus on a single index or local
pathology, ignoring the organism’s overall internal environment and complex physiological

Toxics 2024, 12, 929. https://doi.org/10.3390/toxics12120929 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics12120929
https://doi.org/10.3390/toxics12120929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0001-5027-9159
https://doi.org/10.3390/toxics12120929
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics12120929?type=check_update&version=2


Toxics 2024, 12, 929 2 of 15

pathways [2]. Tetracycline-induced acute pancreatitis is realized by affecting multiple
physiological systems and complex molecular networks; therefore, new methods are needed
to assess its potential health threats, so as to guide the rational use of clinical medication
and the prevention and treatment of related diseases.

Acute pancreatitis is a common digestive disease with a variety of clinical manifes-
tations, ranging from mild to severe, and if early treatment is not timely, it can develop
into a severe and life-threatening condition [3]. Its etiology is diverse, and includes drug
pancreatitis. Although the incidence of drug acute pancreatitis is low, it is on the rise with
the increase in specific populations, it lacks specific manifestations, and its pathogenesis is
still unclear, which may be related to allergies, drug cytotoxicity, sphincter contraction, or
toxic metabolite accumulation [4–6].

Tetracycline-induced pancreatitis may be triggered by hypertriglyceridemia through
the inhibition of protein synthesis, which results in the accumulation of defective pro-
teins clogging up the pancreas [7,8]. Studies have shown that tetracycline-induced acute
pancreatitis is strongly associated with underlying liver disease, with a longer time to
acute pancreatitis with tetracycline in those without a history of liver disease and a shorter
time required in those with severe liver dysfunction [9–11]. In addition, tetracycline has a
direct effect on pancreatic cells, interfering with trypsinogen synthesis and affecting trypsin
activity, which in turn increases the risk of morbidity [12].

The combination of network toxicology and molecular docking is a highly promising
research strategy [13]. Network toxicology allows for the construction of relational networks
and the translation of complex mechanisms into graphical models for easy analysis and
prediction [14]. In this paper, we adopt this method to study the potential toxicity and
mechanism of tetracycline in depth, and explore the toxicity pathway of tetracycline in
acute pancreatitis through network toxicology, which is in line with the modern toxicity
testing paradigm, and helps to elucidate the toxicological characteristics of tetracycline,
predict the potential toxicity and molecular mechanism, provide ideas for the assessment
of drug toxicity strategies, lay the foundation for the diagnosis of related diseases, and
assist in the development of targeted interventions to minimize the toxic side effects.

2. Materials and Methods

We retrieved tetracycline action targets and acute pancreatitis disease targets from
publicly available databases and identified common potential targets using Venn diagram
analysis. These shared targets were input into the STRING database to construct a protein–
protein interaction (PPI) network, which was then parametrically analyzed and visualized
using Cytoscape (version 3.10.1) software to generate a PPI network diagram and identify
key targets. Subsequently, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis of the potential and core
targets were conducted using the DAVID database. The results identified tumor protein
p53 (TP53), tumor necrosis factor (TNF), AKT serine/threonine kinase 1 (AKT1), albumin
(ALB), and epidermal growth factor receptor (EGFR) as key targets, with lipid metabolism,
advanced glycation end-products–receptor for advanced glycation end-products (AGE-
RAGE), phosphatidylinositol-3-kinase/protein kinase B (PI3K-Akt), mitogen-activated
protein kinase (MAPK), and hypoxia-inducible factor 1 (HIF-1) among the critical signaling
pathways. Molecular docking further confirmed a strong association between tetracycline
and these key targets. The workflow for this study is outlined in Figure 1.
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Figure 1. The flowchart of this study. TP53, tumor protein p53; TNF, tumor necrosis factor; AKT1, 
AKT serine/threonine kinase 1; ALB, albumin; EGFR, epidermal growth factor receptor. 
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higher than the median to establish the acute pancreatitis target network (the Drugbank 
and OMIM databases do not give “scores” and have a small number of targets, so they 
were not processed). In addition, we used Venn diagrams to screen for common potential 
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tions as potential targets for tetracycline-induced acute pancreatitis. 

2.4. Construction of Protein Interaction Network and Screening of Major Targets 
Scattered genes of potential targets of tetracycline-induced acute pancreatitis were 

entered into the STRING database. By restricting the species to “Homo sapiens”, setting 
the “Minimum Required Interaction Score” to “High Confidence > 0.7”, and selecting 
“FDR Strictness” to “0.7”, the STRING database was used to identify the potential targets 
of tetracycline-induced acute pancreatitis. These parameters ensured that we analyzed the 
active target protein corresponding to the target gene. 

The results generated by STRING were then imported into the visual network biol-
ogy analysis application Cytoscape (version 3.10.1) software, which calculates the param-
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Figure 1. The flowchart of this study. TP53, tumor protein p53; TNF, tumor necrosis factor; AKT1,
AKT serine/threonine kinase 1; ALB, albumin; EGFR, epidermal growth factor receptor.

2.1. Preliminary Network Analysis of Tetracycline Toxicity

The integration of network-based search algorithms and biotoxicity prediction meth-
ods into a relevant software tool allowed us to use structural modeling to predict toxicity as-
sociated with tetracycline compounds. Using ProTox-3.0 as a preliminary screening tool [15],
we attempted to obtain basic but accurate information about tetracycline-induced toxicity.

2.2. Collection of Tetracycline Targets

The standard structure and SMILE node of tetracycline was determined by searching
for “tetracycline” in the PubChem database [16]. Based on the search results using the
keyword “tetracycline”, potential tetracycline targets were obtained from databases such as
SwissTargetPrediction, SEA Search, and Super-PRED, and the species range was narrowed
down to the “Homo sapiens predicted probability value” [17]. All targets were greater than
0.1. Finally, we integrated and de-emphasized the targets obtained above to generate a
tetracycline target library.

2.3. Selection of Acute Pancreatitis-Related Target Network

With “acute pancreatitis” as the keyword, we comprehensively searched the domestic
and international literature as well as the GeneCards, Drugbank, and OMIM databases to
find related targets. In order to ensure the high correlation between the obtained genes and
acute pancreatitis, we further processed the data obtained from the GeneCards database,
set the “score” threshold as the median, and selected the genes with “score” values higher
than the median to establish the acute pancreatitis target network (the Drugbank and
OMIM databases do not give “scores” and have a small number of targets, so they were
not processed). In addition, we used Venn diagrams to screen for common potential targets
between tetracycline targets and acute pancreatitis targets, and identified intersections as
potential targets for tetracycline-induced acute pancreatitis.

2.4. Construction of Protein Interaction Network and Screening of Major Targets

Scattered genes of potential targets of tetracycline-induced acute pancreatitis were
entered into the STRING database. By restricting the species to “Homo sapiens”, setting the
“Minimum Required Interaction Score” to “High Confidence > 0.7”, and selecting “FDR
Strictness” to “0.7”, the STRING database was used to identify the potential targets of
tetracycline-induced acute pancreatitis. These parameters ensured that we analyzed the
active target protein corresponding to the target gene.



Toxics 2024, 12, 929 4 of 15

The results generated by STRING were then imported into the visual network biology
analysis application Cytoscape (version 3.10.1) software, which calculates the parameters of
each node in the network graph and displays the molecular connections [18]. This makes it
possible to calculate the topological properties of network nodes and edges to generate PPI
network graphs. The screening criteria for the primary target were as follows: select the
node corresponding to the target that also satisfies the following conditions as the primary
target for tetracycline-induced acute pancreatitis: (i) median centrality index > median,
(ii) proximity centrality > median, and (iii) mean shortest path length > median.

2.5. Gene Function Analysis and Target Protein Pathway Enrichment

In order to investigate the biological functions of potential targets of tetracycline-
induced acute pancreatitis, data were collected for GO analysis and KEGG pathway en-
richment analysis using the DAVID database. We performed GO analyses including
assessments of biological processes (BPs), cellular components (CCs), and molecular func-
tions (MFs) to elucidate their main biological functions [19]. In addition, KEGG enrichment
analysis was performed to identify important pathways associated with potential targets of
tetracycline acute pancreatitis by setting the FDR threshold at <0.05 and identifying the
main toxicity pathways that gained access to the targets [20].

In addition, we performed KEGG enrichment analysis of the core targets of tetracycline-
induced acute pancreatitis using the DAVID database. The aim of this study was to further
explore the pathways associated with acute pancreatitis through the main targets in order
to elucidate and highlight the important signaling pathways involved in the biological
process. Finally, we used the Microbiotics platform for visualization and analysis to
effectively interpret and present the results of GO and KEGG analyses.

2.6. Molecular Docking of Tetracycline with Major Targets

This study employed molecular docking to analyze the interactions between tetracy-
cline and the identified core target proteins in detail. The molecular structure of tetracycline
was obtained from the PubChem database, and the crystal structures of 22 core proteins
were retrieved from the RCSB Protein Data Bank (PDB). Protein structures in SDF format
were imported into PyMOL (version 3.1.0) for preprocessing, including dehydration, and
exported in mol2 format. These were subsequently imported into AutoDock Tools (version
1.5.7), hydrogenated, and saved in pdbqt format.

The small molecule ligand, converted to mol2 format via PyMOL, underwent hy-
drogenation and charge assignment, then was exported in pdbqt format. The docking
area was defined as a blind docking grid using AutoGrid and AutoDock Tools, which
generated PDB- and DLG-format files. The docking results were visualized and analyzed
using PyMOL, with adjustments to the color scheme for clarity.

The interaction types analyzed included hydrogen bonding, van der Waals forces,
hydrophobic interactions, electrostatic interactions, and π–π stacking interactions. The
parameters used for these interactions were as follows: hydrogen bond lengths ranged
from 0.15 to 0.30 nm, van der Waals radii summed to 0.05–0.10 nm, hydrophobic interaction
distances ranged from 0.3 to 0.6 nm, electrostatic interaction distances ranged from 0.2 to
0.5 nm, and π–π stacking interaction distances ranged from 0.3 to 0.6 nm.

3. Results
3.1. Preliminary Network Assessment of Tetracycline Toxicity

After integrating the output of the software tool, we obtained an overview of the
toxicity profile of tetracycline (see Supplementary B for details), and the toxicity modeling
suggests that the active target of tetracycline toxicity is related to immunotoxicity. These
findings are consistent with previous reports of tetracycline-mediated toxicity in humans
in the literature, and provide a basis for further systematic and in-depth studies of the toxic
effects of tetracycline in humans.
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3.2. Identification of Tetracycline-Induced Acute Pancreatitis Targets

In this study, we first screened 320 tetracycline targets from the SwissTargetPrediction,
Super-PRED, and GeneCards databases, and identified through the GeneCards, Drugbank,
and OMIM databases a highly associated 5856 targets. The integration and deletion of these
target sets yielded a total of 259 overlapping targets (see Supplementary C for detailed
target names) as potential targets for tetracycline-induced acute pancreatitis (Figure 2).
Figure 2 shows a Venn diagram illustrating the targets of tetracycline and acute pancreatitis.
The 320 tetracycline targets screened from the SwissTargetPrediction, SEA Search, and
Super-PRED databases were intersected with 5856 targets identified as highly relevant
to acute pancreatitis through the GeneCards, Drugbank, and OMIM databases. Notably,
the region of overlap between the two datasets revealed 259 potential targets specifically
associated with tetracycline-induced acute pancreatitis.
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Figure 2. The intersection of 320 tetracycline clinical targets screened from the SwissTargetPrediction,
SEA Search, and Super PRED databases with 5856 targets highly associated with acute pancreatitis
identified through the GeneCards, Drugbank, and OMIM databases can be visualized by plotting the
Venn diagrams. The overlap between the two datasets is significant. The overlap region between the
two datasets clearly reveals 259 potential targets specifically associated with tetracycline-induced
acute pancreatitis.

3.3. Potential Targets and the Interaction Network of Essential Gene Acquisition

A PPI network was constructed using the STRING database, which contains a total of
259 nodes and 5237 edges. At the same time, we used Cytoscape (version 3.10.1) software
to analyze the topological characteristics of network nodes, including degree centrality and
betweenness, and to visualize them (Figure 3). Due to the large number of overlapping
targets, we selected targets with a degree value of 40–175 to create a visually optimized
protein–protein interaction map. The proteins in the middle of the network are more closely
related to other proteins and may have potential targets. We mapped the target points into
five layers according to the degree value. The larger the degree value, the closer the target
point is to the center, that is, the closer its relationship with other targets. From the inside
out, the first layer of target points has a rank value of 140–175, and the circle layer is red;
the second layer of target points has a rank value of 100–139, and the circle layer is pink;
the third layer of target points has a rank value of 70–99, with a purple-blue circle layer; the
fourth layer of target points has a value of 55–69, with a sky-blue circle layer; and the fifth
layer of target points is the scale, with a value of 40–54 and a cyan circle layer. The node
size and color correspond to the respective degree value; the larger the node, the more
vibrant it is and the higher the degree of representation. The thickness and color depth
of the edges are directly proportional to their connection scores, with thicker and darker
edges indicating higher connection scores.
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Figure 3. Protein–protein interaction (PPI) network construction and core target visualization for
tetracycline-induced acute pancreatitis: (a) Original PPI network exported from String database, with
different targets and their interactions distinguished by colors. (b) Visualization of selected targets in
Cytoscape (version 3.10.1) software, where purple represents the intersection of tetracycline and acute
pancreatitis targets, and green lines represent the interconnections between targets. In the network
of (b), each node represents a gene, while the edges indicate their interactions. The size of the node
is directly related to its degree, and the intensity of the color reflects the betweenness centrality of
the node.

Through network analysis, we identified 22 major targets of tetracycline-induced acute
pancreatitis (Table 1). Notably, the top three targets based on the ranking value were TP53,
TNF, and AKT1. These genes are widely recognized in current research to encode proteins
that play important roles in a variety of cellular functions, including cell cycle regulation,
DNA damage repair, apoptosis induction, and key roles in inflammatory responses and
immune regulation.
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Table 1. Ranked intersection targets based on degree, betweenness, and closeness values for the top
22 key targets associated with tetracycline-induced acute pancreatitis.

Name Degree Betweenness Closeness

1 TP53 175 5772.26 0.7652439
2 TNF 159 2887.652 0.73177844
3 AKT1 158 2908.7302 0.72965115
4 ALB 150 4823.652 0.7130682
5 EGFR 145 1915.3193 0.69529086
6 MYC 139 1498.9303 0.6839237
7 STAT3 138 1169.8619 0.68767124
8 CASP3 137 1208.9492 0.6857923
9 IL1B 136 1645.6488 0.6820652
10 BCL2 134 1067.7808 0.6783784
11 SRC 131 1757.402 0.6657825
12 ESR1 126 1686.3923 0.66402113
13 HIF1A 123 1050.1356 0.6570681
14 HSP90AA1 121 1374.9637 0.6536458
15 TGFB1 119 986.43243 0.6485788
16 CCND1 114 670.39246 0.6403061
17 NFKB1 114 527.567 0.64194375
18 MMP9 113 500.38266 0.64194375
19 PTGS2 106 867.17944 0.62907267
20 ERBB2 106 618.3276 0.62593514
21 HSP90AB1 103 696.5803 0.6243781
22 IGF1 100 470.61935 0.61975306

The PPI network of the 22 core targets was constructed using Cytoscape (version 3.10.1)
software to visually represent the interactions between the potential targets identified in
this study (Figure 4). The node size and color correspond to the respective degree value,
with larger and more vibrant nodes representing higher degrees. The thickness and color
depth of the edges are directly proportional to their connection scores, with thicker and
darker edges indicating higher connection scores.
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The network was constructed based on the complex interactions of 22 core targets. This
optimized network diagram provides a clear visual representation of the relationships and
functional associations between these core targets. By analyzing the connection patterns
and interactions within the network, it provides insights into the molecular interactions of
tetracycline-induced pancreatic toxicity. Among these core targets, TP53, TNF, and AKT1
have the highest degree values, as can be seen from their larger font sizes and redder colors
in the figure.

3.4. GO and KEGG Analysis of Potential Targets

We used the DAVID database to perform GO analysis on 259 potential targets, limiting
the species to Homo sapiens. Our analysis yielded a total of 1200 GO entries, including
903 biological processes (BPs), 111 cellular components (CCs), and 186 molecular functions
(MFs). Among these, 950 GO entries, including 714 biological processes, 96 cellular compo-
nents, and 140 molecular functions, were statistically significant (p < 0.05). The GO terms
were ranked according to the false discovery rate (FDR) value, and the top 10 terms with
the lowest FDR values in BPs, CCs, and MFs were selected and visualized in an enrichment
analysis diagram (Figure 5).
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Figure 5. The top 10 enriched Gene Ontology (GO) terms for each category—biological process (BP),
cellular component (CC), and molecular function (MF). (a) This histogram shows the top 10 enriched
entries for each GO category (BP, CC, and MF). The FDR value reflects the statistical significance of
the enrichment, with lower values indicating higher significance. The height of each bar corresponds
to the gene count, reflecting the degree of enrichment in the corresponding category. These enriched
terms highlight key biological processes, cellular components, and molecular functions that may be
affected by tetracycline exposure. (b) The bubble plot presents the top 10 enriched pathways for
the BP, CC, and MF categories. The bubble size reflects the number of genes associated with each
pathway, representing the degree of enrichment, while the bubble color intensity corresponds to the
statistical significance (measured by FDR value), with darker colors indicating higher significance.
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In addition, we used the DAVID database to perform a KEGG analysis on these
259 potential targets to determine their involvement in specific signal pathways. Among
the 181 signal pathways enriched in total, we sorted them in ascending order of FDR value
and generated a bubble chart with significance statistics and a classification histogram
(Figure 6) to visually represent the top 20 KEGG signal pathways. Our research results
show that tetracycline may induce acute pancreatitis mainly through lipid-related signaling
pathways such as atherosclerosis, AGE-RAGE, PI3K-Akt, MAPK, and HIF-1.
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3.5. Molecular Docking of Tetracycline and Core Target Proteins in Acute Pancreatitis

The interactions between tetracycline and the 22 core target genes were studied
through molecular docking analysis (Figure 7). This indicates a strong affinity between the
compound and the target. It is worth noting that all 22 core target proteins and tetracycline
exhibit strong binding affinity, with binding energies <0, indicating that tetracycline can
spontaneously bind to these core target proteins and play an important role in the molecular
mechanism of tetracycline-induced pancreatic toxicology. Due to the length limitations of
this article, we only include the molecular docking result graphs of the five most core target
proteins. The remaining result graphs and data on the lowest binding energy of molecular
docking can be viewed in the Supplementary Materials.
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4. Discussion

In our study, after applying the network assessment tool, we systematically screened
259 potential targets related to tetracycline-induced acute pancreatitis using the SwissTar-
getPrediction, SEA Search, STITCH, Super–PRED, GeneCards, OMIM, and TTD databases.
Based on the STRING database and Cytoscape, we constructed an interaction network of
potential target genes and extracted 22 key nodes, including TP53, TNF, AKT1, ALB, and
EGFR, which are core targets in the context of tetracycline-induced acute pancreatitis.

Regarding TP53, also known as the “guardian of the genome”, it encodes the p53
protein, an important tumor suppressor protein that also plays an important role in human
homeostasis in cell cycle regulation, control of apoptosis, and maintenance of genomic
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stability [21,22]. p53 is associated with anti-inflammatory activity by signal transducer and
activator of transcription 3 (STAT3) to regulate inflammation [23]. STAT3 acts downstream
of interleukin (IL-6), which has both pro-inflammatory and anti-inflammatory potential in
acute inflammatory responses [24,25].

TNF can be divided into TNF-α and TNF-β. As a powerful pro-inflammatory cytokine,
TNF can induce cell death and thus indirectly promote the inflammatory response. In
addition, it can also induce the expression of inflammatory genes, thereby directly driving
inflammation [26]. Under normal circumstances, tetracycline can inhibit the synthesis
of the pro-inflammatory factor TNF-α or its mRNA synthesis, thereby exerting an anti-
inflammatory effect [27]. However, in the special microenvironment of the pancreas, the
body’s inflammatory balance is very delicate. When tetracycline is used, it may disrupt
the original balance, leading to a disorder of other compensatory mechanisms, which in
turn indirectly causes adverse effects on the pancreas and promotes the pathogenesis of
acute pancreatitis.

The protein encoded by the AKT1 gene is a serine/threonine kinase that belongs to the
protein kinase B (PKB) family. It is a key node in the intracellular signal transduction path-
way, capable of receiving signals from upstream signal molecules and transmitting them to
downstream target molecules [28]. When cells are stimulated by harmful external factors,
the upstream signal pathway may be abnormally activated or inhibited, and interference
with the function of the AKT1 gene and its protein product will affect the signal trans-
duction network. Abnormal AKT1 signaling can cause metabolic disorders in pancreatic
acinar cells, making pancreatic cells more sensitive to damaging factors such as abnormal
activation of trypsinogen and oxidative stress [29]. The AKT1 protein may also regulate the
activity of key molecules in inflammatory-related signaling pathways. Dysfunction can
promote the excessive release of inflammatory factors, exacerbate inflammatory responses,
and promote the development of pancreatitis [30].

In an inflammatory state, serum ALB levels are usually reduced, mainly because the
levels of inflammatory factors (such as IL-6) and tumor necrosis factors (such as TNF-α) are
elevated and directly affect the synthesis of ALB by acting on liver cells [31]. At the same
time, during the inflammatory process, the body is in a state of “stress”, with an increased
metabolic rate and increased energy requirements [32]. In order to meet the body’s needs,
the body breaks down albumin to provide amino acids for processes such as gluconeogene-
sis, providing energy for immune cells and other cells in the inflammatory response, which
in turn aggravates inflammation and leads to the development of acute pancreatitis.

EGFR, a member of the tyrosine kinase receptor family, is involved in a variety of
physiological processes, including cell proliferation, differentiation, adhesion, migration,
and apoptosis [30,33]. In recent years, studies have shown that EGFR signaling plays a
key role in the activation and function of macrophages and is essential for the produc-
tion of inflammatory chemokines in vivo [34]. In addition, proper EGFR signaling can
help maintain cellular homeostasis and prevent excessive inflammatory responses. In the
pathogenesis of acute pancreatitis, when certain factors (such as pancreatic juice reflux,
abnormal activation of pancreatic enzymes, etc.) occur, it may cause changes in the local
microenvironment, which can interfere with normal EGFR signaling and cause it to lose
precise regulation of the inflammatory response. On the one hand, abnormal EGFR signal-
ing may overactivate macrophages, promote the release of a large number of inflammatory
chemokines, and trigger an inflammatory cascade reaction [35]. On the other hand, cell
homeostasis is disrupted, and inflammation cannot be effectively suppressed, leading to
the exacerbation of inflammation in pancreatic tissue. Pathological changes such as edema,
bleeding, and necrosis appear one after the other, ultimately leading to the development of
acute pancreatitis [36].

According to the results of KEGG pathway enrichment analysis, tetracycline may
induce acute pancreatitis by affecting lipid and atherosclerosis, AGE-RAGE, PI3K-Akt,
MAPK, HIF-1, and other signaling pathways. In the lipid and atherosclerosis signaling
pathway, tetracycline may affect the activity of key enzymes or transport proteins in lipid
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metabolism, thereby changing the lipid metabolic process in pancreatic cells. It may in-
hibit enzymes that contribute to normal lipid metabolism, causing lipids to accumulate
in pancreatic cells and the number of lipid droplets to increase [37,38]. At the same time,
abnormal lipid metabolism can trigger an inflammatory response, activate related signal
pathways, and increase the release of inflammatory factors [39], ultimately leading to the
development of acute pancreatitis. In terms of the AGE-RAGE pathway, the mechanism by
which tetracycline induces acute pancreatitis may be to increase the production of advanced
glycation end-products (AGEs) or enhance the binding of AGEs to the receptor (RAGE).
When this pathway is activated, it triggers a series of cascading reactions, activates nuclear
factor-κB (NF-κB), and in turn increases inflammatory factors such as interleukin-1β (IL-1β)
and TNF-α, which cause damage to pancreatic tissue [40]. The PI3K-Akt signaling path-
way plays a key role in processes such as cell survival, proliferation, and metabolism [41].
Tetracycline may interfere with the function of key molecules in this pathway, affecting
the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) or the phosphorylation
and activation of Akt protein, thereby disrupting the metabolism of pancreatic cells, al-
tering the sensitivity of pancreatic cells to apoptotic signals, promoting cell damage and
inflammatory responses [42], and ultimately inducing acute pancreatitis. For the MAPK
signaling pathway, it is very likely that tetracycline affects upstream signaling, leading
to the phosphorylation and activation of MAPK members, the activation of transcription
factors such as activator protein-1 (AP-1), the regulation of gene expression, the production
of inflammatory factors, and effects on pancreatic cell function, triggering inflammation
and damage [43], which in turn leads to acute pancreatitis. In addition, an abnormal HIF-1
pathway can trigger an inflammatory response [44]. Tetracycline may abnormally activate
this pathway under aerobic conditions through specific regulatory mechanisms, causing a
stable accumulation of the hypoxia-inducible factor-1α (HIF-1α) protein, which initiates the
transcription of inflammation-related genes, promotes the infiltration of inflammatory cells
and the release of inflammatory factors, and affects the energy metabolism of pancreatic
cells, triggering inflammation and damage [45] and thereby inducing acute pancreatitis.

In addition to providing the molecular mechanism of tetracycline-induced acute
pancreatitis, this study also proposes a network toxicology strategy for the rapid study of
the toxicity of potential drugs. Traditional toxicology studies often use animal models as a
basis, while experimental techniques in pathology and immunology are used to identify
the toxic targets of drug factors. Although these reductionist approaches are invaluable,
they face certain limitations, especially in keeping up with the rapid emergence of potential
chemical toxicants in drugs. First, the length and cost of animal experiments limits the
breadth of toxicology studies. This hinders the assessment of the large number of unstudied
drugs that have proliferated as a result of industrial development. Second, due to species
differences in physiology, genetics, and molecular pathways, animal models often do
not perfectly recapitulate human responses, providing only a vague interpretation of the
relevant drug’s toxicity mechanism.

On the other hand, network toxicology analysis, which utilizes the latest advances in
bioinformatics, genomics, and big data analysis of databases, can quickly and comprehen-
sively map the complex molecular relationships linking new toxicants and pathological
endpoints. By modeling biomolecular networks across multiple biochemical scales, net-
work toxicology can reveal common mechanisms of new chemical substances and prioritize
potential targets and core targets that mediate toxic phenotypes. In addition, molecular
docking techniques have become the most critical and widely used method for elucidating
biological and molecular mechanisms, especially in the process of predicting and simulat-
ing complex structures at the molecular or even atomic level. The use of network-based
toxicology and molecular docking paradigms will likely expand the efficiency, depth, and
predictive accuracy of toxicological screening, facilitating the assessment of a large number
of understudied drugs with unexpected toxicities.

While this study provides valuable insights into the molecular mechanisms underlying
tetracycline-induced acute pancreatitis, certain limitations must be addressed. The reliance
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on publicly available databases, such as STRING and DAVID, may introduce variability
due to incomplete or outdated data, potentially impacting the comprehensiveness of target
and pathway identification. Although network toxicology and molecular docking serve
as powerful predictive tools, their findings remain theoretical and necessitate experimen-
tal validation through in vitro assays, in vivo models, and clinical trials to confirm their
biological relevance. Moreover, the study’s focus on tetracycline-induced acute pancre-
atitis may limit the generalizability of its findings to other drug-induced or multifactorial
cases of pancreatitis. Additionally, the computational models used in molecular docking,
including grid parameters and scoring functions, may influence the accuracy of predicted
binding interactions, necessitating cross-validation with alternative tools and experimental
results to enhance the robustness of the conclusions. Addressing these limitations in future
research will enable a deeper understanding of tetracycline’s effects on acute pancreatitis
and facilitate the development of targeted prevention and treatment strategies.

5. Conclusions

This study sheds light on the molecular mechanisms underlying tetracycline-induced
acute pancreatitis by identifying critical proteins and pathways implicated in its patho-
genesis. Specifically, tetracycline interacts with key inflammation-related proteins such as
TP53, TNF, and AKT1, which regulate processes including pancreatic cell apoptosis and
proliferation. Functional enrichment analysis pinpointed significant pathways, including
PI3K-Akt, MAPK, and AGE-RAGE, suggesting tetracycline’s potential to disrupt cellular
homeostasis and exacerbate inflammatory responses.

Molecular docking revealed strong binding affinities between tetracycline and these
core targets, strengthening the hypothesis that these interactions promote the initiation
and progression of inflammatory cascades. Notably, TP53 exhibited the strongest bind-
ing affinity, further emphasizing its role as a central mediator in tetracycline-induced
acute pancreatitis.

The integration of network toxicology and molecular docking in this study estab-
lishes a robust methodological framework for investigating drug-induced toxicities. These
findings provide theoretical insights into tetracycline-associated inflammation and lay a
foundation for developing targeted interventions to mitigate its adverse effects. Future
research should focus on validating these mechanisms through in vitro and in vivo studies,
with an emphasis on identifying therapeutic targets to prevent or treat tetracycline-induced
acute pancreatitis effectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics12120929/s1, Supplementary A: The name of the detailed database used in this study
and the corresponding URL used. Supplementary B: Overview of the toxicity profile of tetracycline.
Supplementary C: The intersection of tetracycline and acute pancreatitis target collection; Figure
S1: Molecular docking results of the lowest binding energy for each target protein with tetracycline;
Table S1: Targets of tetracycline; Table S2: Targets of acute pancreatitis; Table S3: GO enrichment
analysis results; Table S4: KEGG enrichment analysis results; Table S5: Minimum binding energy
data for docking of core target molecules.
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